Global DNA 5hmC and CK195hmC+ Contents: A Promising Biomarker for Predicting Prognosis in Small Hepatocellular Carcinoma
Abstract
:1. Background
2. Methods
2.1. Study Design and Specimens
2.2. Assessment about Global Genomic 5mC, 5fC and 5hmC Contents Using UHPLC-MS/MS
2.3. CK19 and 5hmC Contents Measured by IHC
2.4. IHC Analysis of 5hmC and CK19
2.5. Data Analysis
3. Results
3.1. Clinical Characteristics
3.2. Genome-Wide 5mC, 5fC and 5hmC Levels during SHCC Metastasis
3.3. Decreased 5mC, 5fC and 5hmC Levels within SHCC Genome Associated with HBV DNA Level
3.4. Global Genomic 5hmC Content Negatively Correlated with the CK19 Positive Cells
3.5. Reduced 5hmC and CK195hmC+ within SHCC Genomic DNA concerning Patients’ Poor Prognosis
3.6. 5hmC and CK195hmC+ Contents Were the Independent Prognostic Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data availability Statement
Conflicts of Interest
List of Abbreviations
References
- Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 391, 1301–1314. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Civan, J.M. Management of Small Hepatocellular Carcinoma. Radiology 2016, 279, 651–652. [Google Scholar] [CrossRef] [Green Version]
- Hyun, D.; Cho, S.K.; Shin, S.W.; Rhim, H.; Koh, K.C.; Paik, S.W. Treatment of small hepatocellular carcinoma (≤2 cm) in the caudate lobe with sequential transcatheter arterial chemoembolization and radiofrequency ablation. Cardiovasc. Interv. Radiol. 2016, 39, 1015–1022. [Google Scholar] [CrossRef]
- Llovet, J.M.; Bruix, J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology 2008, 48, 1312–1327. [Google Scholar] [CrossRef] [Green Version]
- Giannini, E.G.; Savarino, V. Platelet count and survival of patients with compensated cirrhosis and small hepatocellular carcinoma treated with surgery. Hepatology 2014, 59, 1649. [Google Scholar] [CrossRef]
- Tsujita, E.; Yamashita, Y.-I.; Takeishi, K.; Matsuyama, A.; Maeda, T.; Tsutsui, S.-I.; Matsuda, H.; Ishida, T. The clinicopathological impact of gross classification on solitary small hepatocellular carcinoma. Hepato-Gastroenterol. 2013, 60, 1726–1730. [Google Scholar]
- Dai, H.; Cui, D.; Li, D.; Zhai, B.; Zhang, J.; Zhang, J. Hepatic abscess with hepatobronchial fistula following percutaneous radiofrequency ablation for hepatocellular carcinoma: A case report. Oncol. Lett. 2015, 9, 2289–2292. [Google Scholar] [CrossRef] [Green Version]
- Tam, W.L.; Weinberg, R.A. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat. Med. 2013, 19, 1438–1449. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Cui, X.; Jiang, J.; Cao, D.; He, Y.; Wang, H. Uncoordinated expression of DNA methylation-related enzymes in human cancer. Epigenetics Chromatin 2017, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Storebjerg, T.M.; Strand, S.H.; Høyer, S.; Lynnerup, A.-S.; Borre, M.; Ørntoft, T.F.; Sørensen, K.D. Dysregulation and prognostic potential of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) levels in prostate cancer. Clin. Epigenetics 2018, 10, 1–16. [Google Scholar] [CrossRef]
- Kantidze, O.L.; Razin, S.V. 5-Hydroxymethylcytosine in DNA repair: A new player or a red herring? Cell Cycle 2017, 16, 1499–1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, D.W.; Getchell, C.R.; McCarthy, E.T.; Ohman, A.W.; Sasamoto, N.; Xu, S.; Ko, J.Y.; Gupta, M.; Shafrir, A.; Medina, J.E. Epigenetic reprogramming strategies to reverse global loss of 5-hydroxymethylcytosine, a prognostic factor for poor survival in high-grade serous ovarian cancer. Clin. Cancer Res. 2018, 24, 1389–1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodger, E.J.; Chatterjee, A.; Morison, I.M. 5-hydroxymethylcytosine: A potential therapeutic target in cancer. Epigenomics 2014, 6, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Spruijt, C.G.; Gnerlich, F.; Smits, A.H.; Pfaffeneder, T.; Jansen, P.W.; Bauer, C.; Münzel, M.; Wagner, M.; Müller, M.; Khan, F. Dynamic readers for 5-(hydroxy) methylcytosine and its oxidized derivatives. Cell 2013, 152, 1146–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llovet, J.M.; Villanueva, A.; Lachenmayer, A.; Finn, R.S. Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nat. Rev. Clin. Oncol. 2015, 12, 408–424. [Google Scholar] [CrossRef] [PubMed]
- Govaere, O.; Komuta, M.; Berkers, J.; Spee, B.; Janssen, C.; de Luca, F.; Katoonizadeh, A.; Wouters, J.; van Kempen, L.C.; Durnez, A. Keratin 19: A key role player in the invasion of human hepatocellular carcinomas. Gut 2014, 63, 674–685. [Google Scholar] [CrossRef] [Green Version]
- Gian Paolo, C.; Michela, C.; Antonella, O.; Patrizia, C.; Emanuela, R.; Chiara, R.; Maria Lorena, A.; Alessandra, R.; Davide Giuseppe, R.; Francesco, T. Prognostic Role of Serum Cytokeratin-19 Fragment (CYFRA 21-1) in Patients with Hepatocellular Carcinoma. Cancers 2020, 12, 2776. [Google Scholar]
- Matthias, W.; Liou, W.; Pulverer, W.; Singer, C.F.; Rappaport-Fuerhauser, C.; Kandioler, D.; Egger, G.; Weinhäusel, A. Cytosine 5-hydroxymethylation of the LZTS1 gene is reduced in breast cancer. Transl. Oncol. 2013, 6, 715–721, IN24–IN27. [Google Scholar] [CrossRef] [Green Version]
- Jeschke, J.; Collignon, E.; Fuks, F. Portraits of TET-mediated DNA hydroxymethylation in cancer. Curr. Opin. Genet. Dev. 2016, 36, 16–26. [Google Scholar] [CrossRef]
- Wang, K.C.; Kang, C.H.; Tsai, C.Y.; Chou, N.H.; Tu, Y.T.; Li, G.C.; Lam, H.C.; Liu, S.I.; Chang, P.M.; Lin, Y.H. Ten-eleven translocation 1 dysfunction reduces 5-hydroxymethylcytosine expression levels in gastric cancer cells. Oncol. Lett. 2018, 15, 278–284. [Google Scholar] [CrossRef]
- Sowers, J.L.; Johnson, K.M.; Conrad, C.; Patterson, J.T.; Sowers, L.C. The role of inflammation in brain cancer. Inflamm. Cancer 2014, 816, 75–105. [Google Scholar]
- Lewis, K.A.; Tollefsbol, T.O. The influence of an epigenetics diet on the cancer epigenome. Epigenomics 2017, 9, 1153–1155. [Google Scholar] [CrossRef]
- Lin, J.; Qin, H.; Wu, W.; He, S.; Xu, J.-h. Vitamin C protects against UV irradiation-induced apoptosis through reactivating silenced tumor suppressor genes p21 and p16 in a Tet-dependent DNA demethylation manner in human skin cancer cells. Cancer Biother. Radio 2014, 29, 257–264. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, J.; Mo, J.; Liu, D.; Cao, D.; Wang, H.; He, Y.; Wang, H. Global DNA 5-hydroxymethylcytosine and 5-formylcytosine contents are decreased in the early stage of hepatocellular carcinoma. Hepatology 2019, 69, 196–208. [Google Scholar] [CrossRef]
- Sajadian, S.O.; Ehnert, S.; Vakilian, H.; Koutsouraki, E.; Damm, G.; Seehofer, D.; Thasler, W.; Dooley, S.; Baharvand, H.; Sipos, B. Induction of active demethylation and 5hmC formation by 5-azacytidine is TET2 dependent and suggests new treatment strategies against hepatocellular carcinoma. Clin. Epigenetics 2015, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hlady, R.A.; Sathyanarayan, A.; Thompson, J.J.; Zhou, D.; Wu, Q.; Pham, K.; Lee, J.H.; Liu, C.; Robertson, K.D. Integrating the epigenome to identify drivers of hepatocellular carcinoma. Hepatology 2019, 69, 639–652. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.-C.; Gong, W.-D.; Zhao, Y.; Jiang, H.; Liu, Z.-X.; Yi, J. The influences of Tet system on activity and tissue specificity of HBV Cp. CN J. Cell Mol. Immunol. 2009, 25, 1103–1105. [Google Scholar]
- Ogura, N.; Watashi, K.; Noguchi, T.; Wakita, T. Formation of covalently closed circular DNA in Hep38. 7-Tet cells, a tetracycline inducible hepatitis B virus expression cell line. Biochem. Biophys Res. Commun. 2014, 452, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.J.; Lin, J.C.; Tu, S.P. Etiology and prevention of gastric cancer. Gastrointest Tumors 2016, 3, 25–36. [Google Scholar] [CrossRef]
- Afify, S.M.; Hassan, G.; Osman, A.; Calle, A.S.; Nawara, H.M.; Zahra, M.H.; El-Ghlban, S.; Mansour, H.; Alam, M.J.; Abu Quora, H.A. Metastasis of cancer stem cells developed in the microenvironment of hepatocellular carcinoma. Bioengineering 2019, 6, 73. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, B.; Lin, M.-H.; Chen, C.-C.; Peng, K.-L.; Wu, M.-S.; Tseng, M.-C.; Chen, Y.-J.; Shen, C.-K.J. DNA Demethylation by DNMT3A and DNMT3B in vitro and of Methylated Episomal DNA in Transiently Transfected Cells. BBA—Gene Regul. Mech. 2018, 1861, 1048–1061. [Google Scholar] [CrossRef] [PubMed]
- Vertino, P.M.; Wade, P.A. R loops: Lassoing DNA methylation at CpGi. Mol. Cell 2012, 45, 708–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasegawa, R.; Fujiwara, K.; Obinata, D.; Kawashima, H.; Shinojima, Y.; Igarashi, J.; Wang, X.; Ghosh, S.; Nagase, H.; Takahashi, S. Identification of frequent differentially methylated region in sporadic bladder cancers. Urol. Int. 2015, 94, 479–484. [Google Scholar] [CrossRef]
- Makise, N.; Sekimizu, M.; Kubo, T.; Wakai, S.; Watanabe, S.i.; Kato, T.; Kinoshita, T.; Hiraoka, N.; Fukayama, M.; Kawai, A. Extraskeletal osteosarcoma: MDM 2 and H3K27me3 analysis of 19 cases suggest disease heterogeneity. Histopathology 2018, 73, 147–156. [Google Scholar] [CrossRef]
- Katz, L.M.; Hielscher, T.; Liechty, B.; Silverman, J.; Zagzag, D.; Sen, R.; Wu, P.; Golfinos, J.G.; Reuss, D.; Neidert, M.C. Loss of histone H3K27me3 identifies a subset of meningiomas with increased risk of recurrence. Acta Neuropathol. 2018, 135, 955–963. [Google Scholar] [CrossRef] [Green Version]
- Iwagawa, T.; Watanabe, S. Molecular mechanisms of H3K27me3 and H3K4me3 in retinal development. Neurosci. Res. 2019, 138, 43–48. [Google Scholar] [CrossRef]
- Mallol, A.; Guirola, M.; Payer, B. PRDM14 controls X-chromosomal and global epigenetic reprogramming of H3K27me3 in migrating mouse primordial germ cells. Epigenetics Chromatin 2019, 12, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, E.; Wang, J.; Jung, Y.; Cackowski, F.C.; Taichman, R.S. Reduction of two histone marks, H3k9me3 and H3k27me3 by epidrug induces neuroendocrine differentiation in prostate cancer. J. Cell Biochem. 2018, 119, 3697–3705. [Google Scholar] [CrossRef]
- Hayashi, A.; Yamauchi, N.; Shibahara, J.; Kimura, H.; Morikawa, T.; Ishikawa, S.; Nagae, G.; Nishi, A.; Sakamoto, Y.; Kokudo, N. Concurrent activation of acetylation and tri-methylation of H3K27 in a subset of hepatocellular carcinoma with aggressive behavior. PLoS ONE 2014, 9, e91330. [Google Scholar] [CrossRef] [Green Version]
- Durnez, A.; Verslype, C.; Nevens, F.; Fevery, J.; Aerts, R.; Pirenne, J.; Lesaffre, E.; Libbrecht, L.; Desmet, V.; Roskams, T. The clinicopathological and prognostic relevance of cytokeratin 7 and 19 expression in hepatocellular carcinoma. A possible progenitor cell origin. Histopathology 2006, 49, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Roskams, T.; Katoonizadeh, A.; Komuta, M. Hepatic progenitor cells: An update. Clin. Liver Dis. 2010, 14, 705–718. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Choi, G.H.; Na, D.C.; Ahn, E.Y.; Kim, G.I.; Lee, J.E.; Cho, J.Y.; Yoo, J.E.; Choi, J.S.; Park, Y.N. Human hepatocellular carcinomas with “Stemness”-related marker expression: Keratin 19 expression and a poor prognosis. Hepatology 2011, 54, 1707–1717. [Google Scholar] [CrossRef]
- Takano, M.; Shimada, K.; Fujii, T.; Morita, K.; Takeda, M.; Nakajima, Y.; Nonomura, A.; Konishi, N.; Obayashi, C. Keratin 19 as a key molecule in progression of human hepatocellular carcinomas through invasion and angiogenesis. BMC Cancer 2016, 16, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoneda, N.; Sato, Y.; Kitao, A.; Ikeda, H.; Sawada-Kitamura, S.; Miyakoshi, M.; Harada, K.; Sasaki, M.; Matsui, O.; Nakanuma, Y. Epidermal growth factor induces cytokeratin 19 expression accompanied by increased growth abilities in human hepatocellular carcinoma. Lab. Investig. 2011, 91, 262–272. [Google Scholar] [CrossRef] [Green Version]
- Ku, N.O.; Strnad, P.; Bantel, H.; Omary, M.B. Keratins: Biomarkers and modulators of apoptotic and necrotic cell death in the liver. Hepatology 2016, 64, 966–976. [Google Scholar] [CrossRef] [Green Version]
- Kawai, T.; Yasuchika, K.; Ishii, T.; Katayama, H.; Yoshitoshi, E.Y.; Ogiso, S.; Kita, S.; Yasuda, K.; Fukumitsu, K.; Mizumoto, M. Keratin 19, a cancer stem cell marker in human hepatocellular carcinoma. Clin. Cancer Res. 2015, 21, 3081–3091. [Google Scholar] [CrossRef] [Green Version]
- Gillanders, W.E.; Mikhitarian, K.; Hebert, R.; Mauldin, P.D.; Palesch, Y.; Walters, C.; Urist, M.M.; Mann, G.B.; Doherty, G.; Herrmann, V.M. Molecular detection of micrometastatic breast cancer in histopathology-negative axillary lymph nodes correlates with traditional predictors of prognosis: An interim analysis of a prospective multi-institutional cohort study. Ann. Surg. 2004, 239, 828. [Google Scholar] [CrossRef]
- Lee, K.; Lee, K.; Jung, H.; Yi, N.; Lee, K.; Suh, K.; Jang, J. The correlation between poor prognosis and increased yes-associated protein 1 expression in keratin 19 expressing hepatocellular carcinomas and cholangiocarcinomas. BMC Cancer 2017, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Saloustros, E.; Mavroudis, D. Cytokeratin 19-positive circulating tumor cells in early breast cancer prognosis. Future Oncol. 2010, 6, 209–219. [Google Scholar] [CrossRef]
- Yoon, S.O.; Kim, Y.T.; Jung, K.C.; Jeon, Y.K.; Kim, B.-H.; Kim, C.-W. TTF-1 mRNA-positive circulating tumor cells in the peripheral blood predict poor prognosis in surgically resected non-small cell lung cancer patients. Lung Cancer 2011, 71, 209–216. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Value |
---|---|
Demographics | |
Patient No. | 63 |
Age (years) | |
≥50 | 40 |
<50 | 23 |
Gender (male/female) | 56/7 |
Tumor volume (cm) | |
≤2 | 26 |
2–3 | 37 |
AFP(mg/mL) | |
≤25 | 45 |
>25 | 18 |
CK19 index | |
<25% | 20 |
≥25% | 26 |
HBV DNA(IU/mL) | |
<103 | 36 |
≥103 | 27 |
Cirrhosis | |
Yes | 42 |
NO | 21 |
BCLC classification | |
0 | 18 |
A | 35 |
B | 10 |
Relapse | 29 |
Variable | DFS | OS | ||||
---|---|---|---|---|---|---|
Hazard Ratio | 95% CI | p Value | Hazard Ratio | 95% CI | p Value | |
5hmC (high vs. low) | 4.054 | 1.037–15.854 | 0.024 | 3.274 | 1.038–10.325 | 0.031 |
CK19 index (≥ 20% vs. < 20%) | 0.384 | 0.087–1.697 | 0.207 | 0.239 | 0.032–1.782 | 0.163 |
CK195hmC+ (high vs. low) | 0.056 | 0.012–0.267 | 0.000 | 0.152 | 0.051–0.449 | 0.001 |
Tumor size, cm (≤2 vs. 2–3) | 1.359 | 0.314–5.871 | 0.681 | 3.274 | 1.038–10.325 | 0.053 |
Age, years (≥50 vs. <50) | 1.429 | 0.432–4.211 | 0.198 | 1.824 | 0.745–2.984 | 0.277 |
AFP(mg/mL) (>25 vs.≤25) | 1.528 | 0.496–4.708 | 0.460 | 2.348 | 0.760–7.251 | 0.138 |
HBV DNA(IU/mL) (≥103 vs. <103) | 0.322 | 0.089–1.165 | 0.084 | 0.313 | 0.096–1.016 | 0.043 |
Cirrhosis (Yes vs. NO) | 0.243 | 0.072–0.818 | 0.022 | 4.131 | 1.158–14.740 | 0.029 |
BCLC staging(0 vs. B) | 0.109 | 0.009–1.307 | 0.180 | 1.219 | 0.230–6.462 | 0.816 |
Gender (male vs. female) | 1.347 | 0.641–5.679 | 0.487 | 1.743 | 0.719–6.857 | 0.697 |
Variable | DFS | OS | ||||
---|---|---|---|---|---|---|
Hazard Ratio | 95% CI | p Value | Hazard Ratio | 95% CI | p Value | |
5hmC (high vs. low) | 3.121 | 0.922–10.627 | 0.045 | 2.147 | 1.001–8.213 | 0.039 |
CK195hmC+ (high vs. low) | 0.029 | 0.009–0.254 | 0.021 | 0.123 | 0.016–0.327 | 0.035 |
Cirrhosis (Yes vs. NO) | 1.324 | 0.421–3.742 | 0.201 | 1.426 | 0.455–7.285 | 0.131 |
HBV DNA(IU/mL) (≥103 vs. <103) | 0.252 | 0.026–1.057 | 0.198 | 0.198 | 0.045–0.987 | 0.171 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Yan, T.; Guo, F. Global DNA 5hmC and CK195hmC+ Contents: A Promising Biomarker for Predicting Prognosis in Small Hepatocellular Carcinoma. Curr. Oncol. 2021, 28, 3758-3770. https://doi.org/10.3390/curroncol28050321
Jiang J, Yan T, Guo F. Global DNA 5hmC and CK195hmC+ Contents: A Promising Biomarker for Predicting Prognosis in Small Hepatocellular Carcinoma. Current Oncology. 2021; 28(5):3758-3770. https://doi.org/10.3390/curroncol28050321
Chicago/Turabian StyleJiang, Jinhua, Tinghua Yan, and Fang Guo. 2021. "Global DNA 5hmC and CK195hmC+ Contents: A Promising Biomarker for Predicting Prognosis in Small Hepatocellular Carcinoma" Current Oncology 28, no. 5: 3758-3770. https://doi.org/10.3390/curroncol28050321
APA StyleJiang, J., Yan, T., & Guo, F. (2021). Global DNA 5hmC and CK195hmC+ Contents: A Promising Biomarker for Predicting Prognosis in Small Hepatocellular Carcinoma. Current Oncology, 28(5), 3758-3770. https://doi.org/10.3390/curroncol28050321