Consensus Recommendations for MRD Testing in Adult B-Cell Acute Lymphoblastic Leukemia in Ontario
Abstract
:1. Introduction
2. Working Group and Methods
3. Recommendations from the Working Group
3.1. Ensuring Quality of MRD Testing
- MRD testing in Ontario should be centralized in an accredited laboratory. Until centralization is implemented, the standardization of testing approaches and the use of common quality metrics is mandatory among labs doing MRD testing.
- Bone marrow specimens should be used for MRD testing.
- The most sensitive methods of MRD detection should be chosen for routine clinical use. While both flow cytometric and molecular genetic approaches can deliver sensitivities of 10−4, this sensitivity is more consistently delivered by molecular analysis.
3.2. MRD Testing in Ph-Negative ALL
- Adult Ph-negative ALL patients should receive MRD testing after induction chemotherapy, and at least one additional time point later in treatment, around 12–16 weeks.
- Flow cytometry and analysis of Ig/TCR gene rearrangements are both acceptable approaches for MRD testing in adult Ph-negative ALL patients, provided that the laboratory can reliably meet the required sensitivity of at least 10−4. Standardized, accredited protocols with a validated quality assurance program must be used.
3.3. MRD Testing in Ph-Positive ALL
- Adult Ph-positive ALL patients should receive MRD testing after induction chemotherapy, with ongoing monitoring thereafter.
- At a minimum, MRD testing for Ph-positive ALL should be centralized in a laboratory using reverse transcription real-time quantitative PCR for both the p210 and p190 BCR-ABL1 transcripts, using standardized assays. MRD assessment using RQ-PCR/NGS assays evaluating Ig/TCR rearrangements should ideally also be used in parallel for Ph-positive patients, as this approach may provide additional, complementary clinical information.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Snodgrass, R.; Nguyen, L.T.; Guo, M.; Vaska, M.; Naugler, C.; Rashid-Kolvear, F. Incidence of acute lymphocytic leukemia in Calgary, Alberta, Canada: A retrospective cohort study. BMC Res. Notes 2018, 11, 104. [Google Scholar] [CrossRef] [Green Version]
- Surveillance, Epidemiology, and End Results (SEER) Program. SEER*Stat Database: Acute Lymphocytic Leukemia SEER Incidence Rates by Age at Diagnosis, 2013–2017, SEER 21. Available online: www.seer.cancer.gov (accessed on 26 November 2020).
- Terwilliger, T.; Abdul-Hay, M. Acute lymphoblastic leukemia: A comprehensive review and 2017 update. Blood Cancer J. 2017, 7, e577. [Google Scholar] [CrossRef] [Green Version]
- Faderl, S.; Jeha, S.; Kantarjian, H.M. The biology and therapy of adult acute lymphoblastic leukemia. Cancer 2003, 98, 1337–1354. [Google Scholar] [CrossRef] [PubMed]
- Maino, E.; Sancetta, R.; Viero, P.; Imbergamo, S.; Scattolin, A.M.; Vespignani, M.; Bassan, R. Current and future management of Ph/BCR-ABL positive ALL. Expert. Rev. Anticancer Ther. 2014, 14, 723–740. [Google Scholar] [CrossRef]
- Mullighan, C.G. How advanced are we in targeting novel subtypes of ALL? Best Pract. Res. Clin. Haematol. 2019, 32, 101095. [Google Scholar] [CrossRef]
- Thomas, X.; Heiblig, M. Diagnostic and treatment of adult Philadelphia chromosome-positive acute lymphoblastic leukemia. Int. J. Hematol. Oncol. 2016, 5, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.; Stein, A.; Gokbuget, N.; Fielding, A.K.; Schuh, A.C.; Ribera, J.M.; Wei, A.; Dombret, H.; Foa, R.; Bassan, R.; et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2017, 376, 836–847. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.M.; DeAngelo, D.J.; Stelljes, M.; Liedtke, M.; Stock, W.; Gokbuget, N.; O’Brien, S.M.; Jabbour, E.; Wang, T.; Liang White, J.; et al. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia: Final report and long-term survival follow-up from the randomized, phase 3 INO-VATE study. Cancer 2019, 125, 2474–2487. [Google Scholar] [CrossRef] [Green Version]
- Jain, N.; Roberts, K.G.; Jabbour, E.; Patel, K.; Eterovic, A.K.; Chen, K.; Zweidler-McKay, P.; Lu, X.; Fawcett, G.; Wang, S.A.; et al. Ph-like acute lymphoblastic leukemia: A high-risk subtype in adults. Blood 2017, 129, 572–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, L.J.; Enshaei, A.; Jones, L.; Erhorn, A.; Masic, D.; Bentley, H.; Laczko, K.S.; Fielding, A.K.; Goldstone, A.H.; Goulden, N.; et al. IGH@ translocations are prevalent in teenagers and young adults with acute lymphoblastic leukemia and are associated with a poor outcome. J. Clin. Oncol. 2014, 32, 1453–1462. [Google Scholar] [CrossRef]
- Fielding, A.K.; Richards, S.M.; Chopra, R.; Lazarus, H.M.; Litzow, M.R.; Buck, G.; Durrant, I.J.; Luger, S.M.; Marks, D.I.; Franklin, I.M.; et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL): An MRC UKALL12/ECOG 2993 study. Blood 2007, 109, 944–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gokbuget, N.; Stanze, D.; Beck, J.; Diedrich, H.; Horst, H.A.; Huttmann, A.; Kobbe, G.; Kreuzer, K.A.; Leimer, L.; Reichle, A.; et al. Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation. Blood 2012, 120, 2032–2041. [Google Scholar] [CrossRef] [PubMed]
- Beldjord, K.; Chevret, S.; Asnafi, V.; Huguet, F.; Boulland, M.L.; Leguay, T.; Thomas, X.; Cayuela, J.M.; Grardel, N.; Chalandon, Y.; et al. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia. Blood 2014, 123, 3739–3749. [Google Scholar] [CrossRef] [PubMed]
- Berry, D.A.; Zhou, S.; Higley, H.; Mukundan, L.; Fu, S.; Reaman, G.H.; Wood, B.L.; Kelloff, G.J.; Jessup, J.M.; Radich, J.P. Association of Minimal Residual Disease With Clinical Outcome in Pediatric and Adult Acute Lymphoblastic Leukemia: A Meta-analysis. JAMA Oncol. 2017, 3, e170580. [Google Scholar] [CrossRef] [PubMed]
- Bassan, R.; Bruggemann, M.; Radcliffe, H.S.; Hartfield, E.; Kreuzbauer, G.; Wetten, S. A systematic literature review and meta-analysis of minimal residual disease as a prognostic indicator in adult B-cell acute lymphoblastic leukemia. Haematologica 2019, 104, 2028–2039. [Google Scholar] [CrossRef] [Green Version]
- Ribera, J.M.; Oriol, A.; Morgades, M.; Montesinos, P.; Sarra, J.; Gonzalez-Campos, J.; Brunet, S.; Tormo, M.; Fernandez-Abellan, P.; Guardia, R.; et al. Treatment of high-risk Philadelphia chromosome-negative acute lymphoblastic leukemia in adolescents and adults according to early cytologic response and minimal residual disease after consolidation assessed by flow cytometry: Final results of the PETHEMA ALL-AR-03 trial. J. Clin. Oncol. 2014, 32, 1595–1604. [Google Scholar] [CrossRef] [PubMed]
- Dhedin, N.; Huynh, A.; Maury, S.; Tabrizi, R.; Beldjord, K.; Asnafi, V.; Thomas, X.; Chevallier, P.; Nguyen, S.; Coiteux, V.; et al. Role of allogeneic stem cell transplantation in adult patients with Ph-negative acute lymphoblastic leukemia. Blood 2015, 125, 2486–2496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bar, M.; Wood, B.L.; Radich, J.P.; Doney, K.C.; Woolfrey, A.E.; Delaney, C.; Appelbaum, F.R.; Gooley, T.A. Impact of minimal residual disease, detected by flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute lymphoblastic leukemia. Leuk. Res. Treat. 2014, 2014, 421723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logan, A.C.; Vashi, N.; Faham, M.; Carlton, V.; Kong, K.; Buno, I.; Zheng, J.; Moorhead, M.; Klinger, M.; Zhang, B.; et al. Immunoglobulin and T cell receptor gene high-throughput sequencing quantifies minimal residual disease in acute lymphoblastic leukemia and predicts post-transplantation relapse and survival. Biol. Blood Marrow Transplant. 2014, 20, 1307–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Garcia, J.; Serrano, J.; Serrano-Lopez, J.; Gomez-Garcia, P.; Martinez, F.; Garcia-Castellano, J.M.; Rojas, R.; Martin, C.; Rodriguez-Villa, A.; Molina-Hurtado, J.R.; et al. Quantification of minimal residual disease levels by flow cytometry at time of transplant predicts outcome after myeloablative allogeneic transplantation in ALL. Bone Marrow Transplant. 2013, 48, 396–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Slack, R.; Jorgensen, J.L.; Wang, S.A.; Rondon, G.; de Lima, M.; Shpall, E.; Popat, U.; Ciurea, S.; Alousi, A.; et al. The effect of peritransplant minimal residual disease in adults with acute lymphoblastic leukemia undergoing allogeneic hematopoietic stem cell transplantation. Clin. Lymphoma Myeloma Leuk. 2014, 14, 319–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gokbuget, N.; Kneba, M.; Raff, T.; Trautmann, H.; Bartram, C.R.; Arnold, R.; Fietkau, R.; Freund, M.; Ganser, A.; Ludwig, W.D.; et al. Adult patients with acute lymphoblastic leukemia and molecular failure display a poor prognosis and are candidates for stem cell transplantation and targeted therapies. Blood 2012, 120, 1868–1876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassan, R.; Spinelli, O.; Oldani, E.; Intermesoli, T.; Tosi, M.; Peruta, B.; Rossi, G.; Borlenghi, E.; Pogliani, E.M.; Terruzzi, E.; et al. Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL). Blood 2009, 113, 4153–4162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruggemann, M.; Kotrova, M. Minimal residual disease in adult ALL: Technical aspects and implications for correct clinical interpretation. Hematol. Am. Soc. Hematol. Educ. Program. 2017, 2017, 13–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meleveedu, K.S.; Lizow, M. Advances in measurable residual disease monitoring for adult acute lymphoblastic leukemia. Adv. Cell Gene Ther. 2019, 2, e67. [Google Scholar] [CrossRef]
- Pigneux, A.; Montesinos, P.; Cong, Z.; Zhang, X.; Pownell, A.K.; Wieffer, H.; McKendrick, J.; Bruggemann, M. Testing for minimal residual disease in adults with acute lymphoblastic leukemia in Europe: A clinician survey. BMC Cancer 2018, 18, 1100. [Google Scholar] [CrossRef] [PubMed]
- Sabloff, M.; Feilotter, H.; Sivajohanathan, D.; Howlett, C.; Ross, C.; Schuh, A. Minimal Residual Disease Testing in Acute Leukemia; Ontario Health (Cancer Care Ontario): Toronto, ON, Canada, 2020. [Google Scholar]
- Pfeifer, H.; Cazzaniga, G.; van der Velden, V.H.J.; Cayuela, J.M.; Schafer, B.; Spinelli, O.; Akiki, S.; Avigad, S.; Bendit, I.; Borg, K.; et al. Standardisation and consensus guidelines for minimal residual disease assessment in Philadelphia-positive acute lymphoblastic leukemia (Ph + ALL) by real-time quantitative reverse transcriptase PCR of e1a2 BCR-ABL1. Leukemia 2019, 33, 1910–1922. [Google Scholar] [CrossRef]
- Campana, D. Minimal residual disease in acute lymphoblastic leukemia. Hematol. Am. Soc. Hematol. Educ. Program 2010, 2010, 7–12. [Google Scholar] [CrossRef] [Green Version]
- DiGiuseppe, J.A.; Wood, B.L. Applications of Flow Cytometric Immunophenotyping in the Diagnosis and Posttreatment Monitoring of B and T Lymphoblastic Leukemia/Lymphoma. Cytom. B. Clin. Cytom. 2019, 96, 256–265. [Google Scholar] [CrossRef]
- van der Velden, V.H.; Jacobs, D.C.; Wijkhuijs, A.J.; Comans-Bitter, W.M.; Willemse, M.J.; Hahlen, K.; Kamps, W.A.; van Wering, E.R.; van Dongen, J.J. Minimal residual disease levels in bone marrow and peripheral blood are comparable in children with T cell acute lymphoblastic leukemia (ALL), but not in precursor-B-ALL. Leukemia 2002, 16, 1432–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conter, V.; Bartram, C.R.; Valsecchi, M.G.; Schrauder, A.; Panzer-Grumayer, R.; Moricke, A.; Arico, M.; Zimmermann, M.; Mann, G.; De Rossi, G.; et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: Results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood 2010, 115, 3206–3214. [Google Scholar] [CrossRef]
- Kotrova, M.; Volland, A.; Kehden, B.; Trautmann, H.; Ritgen, M.; Wasch, R.; Faul, C.; Viardot, A.; Schwartz, S.; Baldus, C.D.; et al. Comparison of minimal residual disease levels in bone marrow and peripheral blood in adult acute lymphoblastic leukemia. Leukemia 2020, 34, 1154–1157. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Inghirami, G.; Cheng, S.; Tam, W. Simple deep sequencing-based post-remission MRD surveillance predicts clinical relapse in B-ALL. J. Hematol. Oncol. 2018, 11, 105. [Google Scholar] [CrossRef]
- Cross, N.C.; White, H.E.; Colomer, D.; Ehrencrona, H.; Foroni, L.; Gottardi, E.; Lange, T.; Lion, T.; Machova Polakova, K.; Dulucq, S.; et al. Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia. Leukemia 2015, 29, 999–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gokbuget, N.; Dombret, H.; Giebel, S.; Bruggemann, M.; Doubek, M.; Foa, R.; Hoelzer, D.; Kim, C.; Martinelli, G.; Parovichnikova, E.; et al. Minimal residual disease level predicts outcome in adults with Ph-negative B-precursor acute lymphoblastic leukemia. Hematology 2019, 24, 337–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruggemann, M.; Raff, T.; Flohr, T.; Gokbuget, N.; Nakao, M.; Droese, J.; Luschen, S.; Pott, C.; Ritgen, M.; Scheuring, U.; et al. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood 2006, 107, 1116–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, P.A.; Shah, B.; Fathi, A.; Wieduwilt, M.; Advani, A.; Aoun, P.; Barta, S.K.; Boyer, M.W.; Bryan, T.; Burke, P.W.; et al. NCCN Guidelines Insights: Acute Lymphoblastic Leukemia, Version 1.2017. J. Natl. Compr. Cancer Netw. 2017, 15, 1091–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoelzer, D.; Bassan, R.; Dombret, H.; Fielding, A.; Ribera, J.M.; Buske, C.; Committee, E.G. Acute lymphoblastic leukaemia in adult patients: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2016, 27, v69–v82. [Google Scholar] [CrossRef] [PubMed]
- van Dongen, J.J.; van der Velden, V.H.; Bruggemann, M.; Orfao, A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: Need for sensitive, fast, and standardized technologies. Blood 2015, 125, 3996–4009. [Google Scholar] [CrossRef] [Green Version]
- Bruggemann, M.; Kotrova, M.; Knecht, H.; Bartram, J.; Boudjogrha, M.; Bystry, V.; Fazio, G.; Fronkova, E.; Giraud, M.; Grioni, A.; et al. Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study. Leukemia 2019, 33, 2241–2253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theunissen, P.; Mejstrikova, E.; Sedek, L.; van der Sluijs-Gelling, A.J.; Gaipa, G.; Bartels, M.; Sobral da Costa, E.; Kotrova, M.; Novakova, M.; Sonneveld, E.; et al. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood 2017, 129, 347–357. [Google Scholar] [CrossRef]
- Borowitz, M.J.; Wood, B.L.; Devidas, M.; Loh, M.L.; Raetz, E.A.; Salzer, W.L.; Nachman, J.B.; Carroll, A.J.; Heerema, N.A.; Gastier-Foster, J.M.; et al. Prognostic significance of minimal residual disease in high risk B-ALL: A report from Children’s Oncology Group study AALL0232. Blood 2015, 126, 964–971. [Google Scholar] [CrossRef] [PubMed]
- Wood, B.L. Principles of minimal residual disease detection for hematopoietic neoplasms by flow cytometry. Cytometry B. Clin. Cytom. 2016, 90, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Ravandi, F.; Jorgensen, J.L.; Thomas, D.A.; O’Brien, S.; Garris, R.; Faderl, S.; Huang, X.; Wen, S.; Burger, J.A.; Ferrajoli, A.; et al. Detection of MRD may predict the outcome of patients with Philadelphia chromosome-positive ALL treated with tyrosine kinase inhibitors plus chemotherapy. Blood 2013, 122, 1214–1221. [Google Scholar] [CrossRef] [PubMed]
- Short, N.J.; Jabbour, E.; Sasaki, K.; Patel, K.; O’Brien, S.M.; Cortes, J.E.; Garris, R.; Issa, G.C.; Garcia-Manero, G.; Luthra, R.; et al. Impact of complete molecular response on survival in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 2016, 128, 504–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalandon, Y.; Thomas, X.; Hayette, S.; Cayuela, J.M.; Abbal, C.; Huguet, F.; Raffoux, E.; Leguay, T.; Rousselot, P.; Lepretre, S.; et al. Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia. Blood 2015, 125, 3711–3719. [Google Scholar] [CrossRef] [Green Version]
- Lussana, F.; Intermesoli, T.; Gianni, F.; Boschini, C.; Masciulli, A.; Spinelli, O.; Oldani, E.; Tosi, M.; Grassi, A.; Parolini, M.; et al. Achieving Molecular Remission before Allogeneic Stem Cell Transplantation in Adult Patients with Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia: Impact on Relapse and Long-Term Outcome. Biol. Blood Marrow Transplant. 2016, 22, 1983–1987. [Google Scholar] [CrossRef] [Green Version]
- Nishiwaki, S.; Imai, K.; Mizuta, S.; Kanamori, H.; Ohashi, K.; Fukuda, T.; Onishi, Y.; Takahashi, S.; Uchida, N.; Eto, T.; et al. Impact of MRD and TKI on allogeneic hematopoietic cell transplantation for Ph+ALL: A study from the adult ALL WG of the JSHCT. Bone Marrow Transplant. 2016, 51, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Gleissner, B.; Gokbuget, N.; Bartram, C.R.; Janssen, B.; Rieder, H.; Janssen, J.W.; Fonatsch, C.; Heyll, A.; Voliotis, D.; Beck, J.; et al. Leading prognostic relevance of the BCR-ABL translocation in adult acute B-lineage lymphoblastic leukemia: A prospective study of the German Multicenter Trial Group and confirmed polymerase chain reaction analysis. Blood 2002, 99, 1536–1543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabert, J.; Beillard, E.; van der Velden, V.H.; Bi, W.; Grimwade, D.; Pallisgaard, N.; Barbany, G.; Cazzaniga, G.; Cayuela, J.M.; Cave, H.; et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—A Europe Against Cancer program. Leukemia 2003, 17, 2318–2357. [Google Scholar] [CrossRef] [PubMed]
- Kruse, A.; Abdel-Azim, N.; Kim, H.N.; Ruan, Y.; Phan, V.; Ogana, H.; Wang, W.; Lee, R.; Gang, E.J.; Khazal, S.; et al. Minimal Residual Disease Detection in Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2020, 21, 1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Velden, V.H.; Cazzaniga, G.; Schrauder, A.; Hancock, J.; Bader, P.; Panzer-Grumayer, E.R.; Flohr, T.; Sutton, R.; Cave, H.; Madsen, H.O.; et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: Guidelines for interpretation of real-time quantitative PCR data. Leukemia 2007, 21, 604–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cazzaniga, G.; De Lorenzo, P.; Alten, J.; Rottgers, S.; Hancock, J.; Saha, V.; Castor, A.; Madsen, H.O.; Gandemer, V.; Cave, H.; et al. Predictive value of minimal residual disease in Philadelphia-chromosome-positive acute lymphoblastic leukemia treated with imatinib in the European intergroup study of post-induction treatment of Philadelphia-chromosome-positive acute lymphoblastic leukemia, based on immunoglobulin/T-cell receptor and BCR/ABL1 methodologies. Haematologica 2018, 103, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Clappier, E.; Kim, R.; Cayuela, J.M.; Rousselot, P.; Chalandon, Y.; Passet, M.; Thomas, X.; Havelange, V.; Chevallier, P.; Huguet, F.; et al. Persistent BCR-ABL1 clonal hematopoiesis after blast clearance identifies a CML-like subgroup of patients with Philadelphia chromosome-positive (Ph+) ALL: Interim results from the GRAAPH-2014 trial. In Proceedings of the 23th EHA Annual Congress, Stockholm, Sweden, 14–17 June 2018. [Google Scholar]
- Hovorkova, L.; Zaliova, M.; Venn, N.C.; Bleckmann, K.; Trkova, M.; Potuckova, E.; Vaskova, M.; Linhartova, J.; Machova Polakova, K.; Fronkova, E.; et al. Monitoring of childhood ALL using BCR-ABL1 genomic breakpoints identifies a subgroup with CML-like biology. Blood 2017, 129, 2771–2781. [Google Scholar] [CrossRef]
- Wang, W.J.; Zheng, C.F.; Liu, Z.; Tan, Y.H.; Chen, X.H.; Zhao, B.L.; Li, G.X.; Xu, Z.F.; Ren, F.G.; Zhang, Y.F.; et al. Droplet digital PCR for BCR/ABL(P210) detection of chronic myeloid leukemia: A high sensitive method of the minimal residual disease and disease progression. Eur. J. Haematol. 2018, 101, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Maier, J.; Lange, T.; Cross, M.; Wildenberger, K.; Niederwieser, D.; Franke, G.N. Optimized Digital Droplet PCR for BCR-ABL. J. Mol. Diagn. 2019, 21, 27–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Method | Sensitivity | Applicability |
---|---|---|
Flow cytometry | 10−3–10−4 | Ph-negative B-ALL Ph-positive B-ALL |
RQ-PCR of Ig/TCR rearrangements | 10−4–10−5 | Ph-negative B-ALL Ph-positive B-ALL |
RT-qPCR of BCR-ABL1 transcripts | 10−4–10−5 | Ph-positive B-ALL |
NGS analysis of Ig/TCR rearrangements | 10−4–10−5 | Ph-negative B-ALL Ph-positive B-ALL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tierens, A.; Stockley, T.L.; Campbell, C.; Fulcher, J.; Leber, B.; McCready, E.; Sabatini, P.J.B.; Sadikovic, B.; Schuh, A.C. Consensus Recommendations for MRD Testing in Adult B-Cell Acute Lymphoblastic Leukemia in Ontario. Curr. Oncol. 2021, 28, 1376-1387. https://doi.org/10.3390/curroncol28020131
Tierens A, Stockley TL, Campbell C, Fulcher J, Leber B, McCready E, Sabatini PJB, Sadikovic B, Schuh AC. Consensus Recommendations for MRD Testing in Adult B-Cell Acute Lymphoblastic Leukemia in Ontario. Current Oncology. 2021; 28(2):1376-1387. https://doi.org/10.3390/curroncol28020131
Chicago/Turabian StyleTierens, Anne, Tracy L. Stockley, Clinton Campbell, Jill Fulcher, Brian Leber, Elizabeth McCready, Peter J. B. Sabatini, Bekim Sadikovic, and Andre C. Schuh. 2021. "Consensus Recommendations for MRD Testing in Adult B-Cell Acute Lymphoblastic Leukemia in Ontario" Current Oncology 28, no. 2: 1376-1387. https://doi.org/10.3390/curroncol28020131
APA StyleTierens, A., Stockley, T. L., Campbell, C., Fulcher, J., Leber, B., McCready, E., Sabatini, P. J. B., Sadikovic, B., & Schuh, A. C. (2021). Consensus Recommendations for MRD Testing in Adult B-Cell Acute Lymphoblastic Leukemia in Ontario. Current Oncology, 28(2), 1376-1387. https://doi.org/10.3390/curroncol28020131