Total Body Irradiation for Hematopoietic Stem Cell Transplantation: What Can We Agree on?
Abstract
:1. History
2. Challenges in TBI Delivery Over the Years
2.1. Patient Factors
2.2. Positioning
2.3. Source of Radiation
2.4. Fractionations
2.4.1. Single Fraction
2.4.2. Multiple Fractions
2.5. Modulation of the Delivered Dose
2.6. Dose “Delivered”
3. TBI Toxicities
4. Role of TBI in HSCT: How Does It Compare to Other Regimens?
Methods to Minimize the Dose of TBI
5. Summary and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations. Sources and Effects of Ionizing Radiation:... Report to the General Assembly, with Annexes; United Nations: New York, NY, USA, 1977; Volume I. [Google Scholar]
- Adams, G.E. Lethality from Acute and Protracted Radiation Exposure in Man. Int. J. Radiat. Biol. Relat. Stud. Physics Chem. Med. 1984, 46, 209–217. [Google Scholar] [CrossRef]
- Coggle, J.E. Medical Effects of Ionizing Radiation; Grune & Stratton: Wauwatosa, WI, USA, 1986; Volume 50. [Google Scholar] [CrossRef]
- Cole, L.J.; Fishler, M.C.; Ellis, M.E.; Bond, V.P. Protection of Mice against X-Irradiation by Spleen Homogenates Administered after Exposure. Proc. Soc. Exp. Biol. Med. 1952, 80, 112–117. [Google Scholar] [CrossRef]
- Cole, L.J.; Habermeyer, J.G.; Bond, V.P. Recovery from Acute Radiation Injury in Mice Following Administration of Rat Bone Marrow. J. Natl. Cancer Inst. 1955, 16, 1–9. [Google Scholar]
- Lorenz, E.; Uphoff, D.; Reid, T.R.; Shelton, E. Modification of Irradiation Injury in Mice and Guinea Pigs by Bone Marrow Injections. J. Natl. Cancer Inst. 1951, 12, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, L. Evidence for a Humoral Factor (or Factors) Concerned in Recovery from Radiation Injury: A Review. Cancer Res. 1952, 12, 315–325. [Google Scholar]
- Sornberger, J. Dreams and Due Diligence: The Discovery and Development of Stem Cell Science by Till and McCulloch; University of Toronto Press: Toronto, ON, Canada, 2011. [Google Scholar]
- Gale, R. The Role of Bone Marrow Transplantation Following Nuclear Accidents. Bone Marrow Transpl. 1987, 2, 1–6. [Google Scholar]
- Till, J.E.; McCulloch, E.A. A Direct Measurement of the Radiation Sensitivity of Normal Mouse Bone Marrow Cells. Radiat. Res. 1961, 14, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.; Storb, R.; Clift, R.A.; Fefer, A.; Johnson, F.L.; Neiman, P.E.; Lerner, K.G.; Glucksberg, H.; Buckner, C.D. Bone-Marrow Transplantation (First of Two Parts). N. Engl. J. Med. 1975, 292, 832–843. [Google Scholar] [CrossRef]
- Thomas, E.D.; Buckner, C.D.; Banaji, M.; Clift, R.A.; Fefer, A.; Flournoy, N.; Goodell, B.W.; Hickman, R.O.; Lerner, K.G.; Neiman, P.E.; et al. One Hundred Patients with Acute Leukemia Treated by Chemotherapy, Total Body Irradiation, and Allogenic Marrow Transplantation. Blood 1977, 49, 511–533. [Google Scholar] [CrossRef] [Green Version]
- Thomas, E.D.; Sanders, J.E.; Flournoy, N.; Johnson, F.L.; Buckner, C.D.; Clift, R.A.; Fefer, A.; Goodell, B.W.; Storb, R.; Weiden, P.L. Marrow Transplantation for Patients with Acute Lymphoblastic Leukemia in Remission. Blood 1979, 54, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.D. The Use and Potential of Bone Marrow Allograft and Whole-Body Irradiation in the Treatment of Leukemia. Cancer 1982, 50, 1449–1454. [Google Scholar] [CrossRef]
- Thomas, E.D.; Storb, R.; Clift, R.A.; Fefer, A.; Johnson, F.L.; Neiman, P.E.; Lerner, K.G.; Glucksberg, H.; Buckner, C.D. Bone-Marrow Transplantation (Second of Two Parts). N. Engl. J. Med. 1975, 292, 895–902. [Google Scholar] [CrossRef]
- Thomas, E.D.; Lochte, H.L.; Cannon, J.H.; Sahler, O.D.; Ferrebee, J.W. Supralethal Whole Body Irradiation and Isologous Marrow Transplantation in Man. J. Clin. Invest. 1959, 38, 1709–1716. [Google Scholar] [CrossRef] [PubMed]
- Helenglass, G.; Powles, R.L.; McElwain, T.J.; Lakhani, A.; Milan, S.; Gore, M.; Nandi, A.; Zuiable, A.; Perren, T.; Forgeson, G. Melphalan and Total Body Irradiation (TBI) versus Cyclophosphamide and TBI as Conditioning for Allogeneic Matched Sibling Bone Marrow Transplants for Acute Myeloblastic Leukaemia in First Remission. Bone Marrow Transplant. 1988, 3, 21–29. [Google Scholar] [PubMed]
- Blaise, D.; Maraninchi, D.; Archimbaud, E.; Reiffers, J.; Devergie, A.; Jouet, J.P.; Milpied, N.; Attal, M.; Michallet, M.; Ifrah, N. Allogeneic Bone Marrow Transplantation for Acute Myeloid Leukemia in First Remission: A Randomized Trial of a Busulfan-Cytoxan versus Cytoxan-Total Body Irradiation as Preparative Regimen: A Report from the Group d’Etudes de La Greffe de Moelle Osseuse. Blood 1992, 79, 2578–2582. [Google Scholar] [CrossRef] [PubMed]
- Riddell, S.; Appelbaum, F.R.; Buckner, C.D.; Stewart, P.; Clift, R.; Sanders, J.; Storb, R.; Sullivan, K.; Thomas, E.D. High-Dose Cytarabine and Total Body Irradiation with or without Cyclophosphamide as a Preparative Regimen for Marrow Transplantation for Acute Leukemia. J. Clin. Oncol. 1988, 6, 576–582. [Google Scholar] [CrossRef]
- Horning, S.J.; Chao, N.J.; Negrin, R.S.; Hoppe, R.T.; Kwak, L.W.; Long, G.D.; Stallbaum, B.; O’Connor, P.; Blume, K.G. The Stanford Experience with High-Dose Etoposide Cytoreductive Regimens and Autologous Bone Marrow Transplantation in Hodgkin’s Disease and Non-Hodgkin’s Lymphoma: Preliminary Data. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 1991, 2 (Suppl. 1), 47–50. [Google Scholar] [CrossRef]
- Jonathan, E.C.; Bernhard, E.J.; McKenna, W.G. How Does Radiation Kill Cells? Curr. Opin. Chem. Biol. 1999, 3, 77–83. [Google Scholar] [CrossRef]
- Kimler, B.F.; Park, C.H.; Yakar, D.; Mies, R.M. Radiation Response of Human Normal and Leukemic Hemopoietic Cells Assayed by in Vitro Colony Formation. Int. J. Radiat. Oncol. Biol. Phys. 1985, 11, 809–816. [Google Scholar] [CrossRef]
- McMahon, S.J.; Schuemann, J.; Paganetti, H.; Prise, K.M. Mechanistic Modelling of DNA Repair and Cellular Survival Following Radiation-Induced DNA Damage. Sci. Rep. 2016, 6, 33290. [Google Scholar] [CrossRef] [Green Version]
- Harden, S.V.; Routsis, D.S.; Geater, A.R.; Thomas, S.J.; Coles, C.; Taylor, P.J.; Marcus, R.E.; Williams, M.V. Total Body Irradiation Using a Modified Standing Technique: A Single Institution 7 Year Experience. Br. J. Radiol. 2001, 74, 1041–1047. [Google Scholar] [CrossRef]
- van Kempen-Harteveld, M.L.; Brand, R.; Kal, H.B.; Verdonck, L.F.; Hofman, P.; Schattenberg, A.V.; van der Maazen, R.W.; Cornelissen, J.J.; Eijkenboom, W.M.H.; van der Lelie, J.P.; et al. Results of Hematopoietic Stem Cell Transplantation after Treatment with Different High-Dose Total-Body Irradiation Regimens in Five Dutch Centers. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 1444–1454. [Google Scholar] [CrossRef] [PubMed]
- Polednik, M.; Lohr, F.; Ehmann, M.; Wenz, F. Accelerating Total Body Irradiation with Large Field Modulated Arc Therapy in Standard Treatment Rooms without Additional Equipment. Strahlenther. Onkol. 2015, 191, 869–874. [Google Scholar] [CrossRef]
- Härtl, P.M.; Treutwein, M.; Hautmann, M.G.; März, M.; Pohl, F.; Kölbl, O.; Dobler, B. Total Body Irradiation-an Attachment Free Sweeping Beam Technique. Radiat. Oncol. 2016, 11, 81. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Brown, D.; Ahmed, S.B.S.; Kakakhel, M.B.; Muhammad, W.; Hussain, A. Translating Bed Total Body Irradiation Lung Shielding and Dose Optimization Using Asymmetric MLC Apertures. J. Appl. Clin. Med. Phys. 2016, 17, 5951. [Google Scholar] [CrossRef]
- Springer, A.; Hammer, J.; Winkler, E.; Track, C.; Huppert, R.; Böhm, A.; Kasparu, H.; Weltermann, A.; Aschauer, G.; Petzer, A.L.; et al. Total Body Irradiation with Volumetric Modulated Arc Therapy: Dosimetric Data and First Clinical Experience. Radiat. Oncol. 2016, 11, 46. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Nieto, B.; Sánchez-Doblado, F.; Terrón, J.A. A CT-Aided PC-Based Physical Treatment Planning of TBI: A Method for Dose Calculation. Radiother. Oncol. 1997, 42, 77–85. [Google Scholar] [CrossRef]
- Hui, S.K.; Das, R.K.; Thomadsen, B.; Henderson, D. CT-Based Analysis of Dose Homogeneity in Total Body Irradiation Using Lateral Beam. J. Appl. Clin. Med. Phys. 2004, 5, 71–79. [Google Scholar] [CrossRef]
- Hussain, A.; Dunscombe, P.; Villarreal-Barajas, J.E.; Brown, D. Total Body Irradiation Dose Optimization Based on Radiological Depth. J. Appl. Clin. Med. Phys. 2012, 13, 152–165. [Google Scholar] [CrossRef]
- Lavallée, M.C.; Aubin, S.; Larochelle, M.; Vallières, I.; Beaulieu, L. 3D Heterogeneous Dose Distributions for Total Body Irradiation Patients. J. Appl. Clin. Med. Phys. 2011, 12, 205–214. [Google Scholar] [CrossRef]
- Hui, S.K.; Kapatoes, J.; Fowler, J.; Henderson, D.; Olivera, G.; Manon, R.R.; Gerbi, B.; Mackie, T.R.; Welsh, J.S. Feasibility Study of Helical Tomotherapy for Total Body or Total Marrow Irradiation. Med. Phys. 2005, 32, 3214–3224. [Google Scholar] [CrossRef]
- Wong, J.Y.C.; Filippi, A.R.; Scorsetti, M.; Hui, S.; Muren, L.P.; Mancosu, P. Total Marrow and Total Lymphoid Irradiation in Bone Marrow Transplantation for Acute Leukaemia. Lancet Oncol. 2020, e477–e487. [Google Scholar] [CrossRef]
- Quast, U. Physical Treatment Planning of Total-Body Irradiation: Patient Translation and Beam-Zone Method. Med. Phys. 1985, 12, 567–574. [Google Scholar] [CrossRef]
- Jahnke, A.; Jahnke, L.; Molina-Duran, F.; Ehmann, M.; Kantz, S.; Steil, V.; Wenz, F.; Glatting, G.; Lohr, F.; Polednik, M. Arc Therapy for Total Body Irradiation-a Robust Novel Treatment Technique for Standard Treatment Rooms. Radiother. Oncol. 2014, 110, 553–557. [Google Scholar] [CrossRef]
- Gerig, L.H.; Szanto, J.; Bichay, T.; Genest, P. A Translating-Bed Technique for Total-Body Irradiation. Phys. Med. Biol. 1994, 39, 19–35. [Google Scholar] [CrossRef]
- Johns, H.E.; Bates, L.M.; Epp, E.R.; Cormack, D.V.; Fedorux, S.O.; Morrison, A.; Dixon, W.R.; Garrett, C. 1,000-Curie Cobalt 60 Units for Radiation Therapy. Nature 1951, 168, 1035–1036. [Google Scholar] [CrossRef]
- Giebel, S.; Miszczyk, L.; Slosarek, K.; Moukhtari, L.; Ciceri, F.; Esteve, J.; Gorin, N.C.; Labopin, M.; Nagler, A.; Schmid, C.; et al. Extreme Heterogeneity of Myeloablative Total Body Irradiation Techniques in Clinical Practice: A Survey of the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Cancer 2014, 120, 2760–2765. [Google Scholar] [CrossRef] [PubMed]
- Studinski, R.; Fraser, D.; Samant, R.; MacPherson, M. Sci-Fri PM: Radiation Therapy, Planning, Imaging, and Special Techniques - 10: Results from Canada Wide Survey on Total Body Irradiation Practice. Med. Phys. 2016, 43, 4957–4958. [Google Scholar] [CrossRef]
- Malicki, J.; Kosicka, G.; Stryczyńska, G.; Wachowiak, J. Cobalt 60 versus 15 MeV Photons during Total Body Irradiation: Doses in the Critical Organs and Complexicity of the Procedure. Ann. Transplant. 2001, 6, 18–22. [Google Scholar]
- Chiang, Y.; Tsai, C.H.; Kuo, S.H.; Liu, C.Y.; Yao, M.; Li, C.C.; Huang, S.Y.; Ko, B.S.; Lin, C.T.; Hou, H.A.; et al. Reduced Incidence of Interstitial Pneumonitis after Allogeneic Hematopoietic Stem Cell Transplantation Using a Modified Technique of Total Body Irradiation. Sci. Rep. 2016, 6, 36730. [Google Scholar] [CrossRef] [Green Version]
- Yeginer, M.; Roeske, J.C.; Radosevich, J.A.; Aydogan, B. Linear Accelerator-Based Intensity-Modulated Total Marrow Irradiation Technique for Treatment of Hematologic Malignancies: A Dosimetric Feasibility Study. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 1256–1265. [Google Scholar] [CrossRef]
- Ahmed, K.A.; Correa, C.R.; Dilling, T.J.; Rao, N.G.; Shridhar, R.; Trotti, A.M.; Wilder, R.B.; Caudell, J.J. Altered Fractionation Schedules in Radiation Treatment: A Review. Semin. Oncol. 2014, 41, 730–750. [Google Scholar] [CrossRef]
- Wheldon, T.E. The Radiobiological Basis of Total Body Irradiation. Br. J. Radiol. 1997, 70, 1204–1207. [Google Scholar] [CrossRef]
- Cosset, J.M.; Girinsky, T.; Malaise, E.; Chaillet, M.P.; Dutreix, J. Clinical Basis for TBI Fractionation. Radiother. Oncol. 1990, 18 (Suppl. 1), 60–67. [Google Scholar] [CrossRef]
- Cosset, J.M.; Socie, G.; Dubray, B.; Girinsky, T.; Fourquet, A.; Gluckman, E. Single Dose versus Fractionated Total Body Irradiation before Bone Marrow Transplantation: Radiobiological and Clinical Considerations. Int. J. Radiat. Oncol. Biol. Phys. 1994, 30, 477–492. [Google Scholar] [CrossRef]
- Thomas, E.D.; Clift, R.A.; Hersman, J.; Sanders, J.E.; Stewart, P.; Buckner, C.D.; Fefer, A.; McGuffin, R.; Smith, J.W.; Storb, R. Marrow Transplantation for Acute Nonlymphoblastic Leukemia in First Remission Using Fractionated or Single-Dose Irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1982, 8, 817–821. [Google Scholar] [CrossRef]
- Shank, B.; Chu, F.C.; Dinsmore, R.; Kapoor, N.; Kirkpatrick, D.; Teitelbaum, H.; Reid, A.; Bonfiglio, P.; Simpson, L.; O’Reilly, R.J. Hyperfractionated Total Body Irradiation for Bone Marrow Transplantation. Results in Seventy Leukemia Patients with Allogeneic Transplants. Int. J. Radiat. Oncol. Biol. Phys. 1983, 9, 1607–1611. [Google Scholar] [CrossRef]
- Deeg, H.J.; Sullivan, K.M.; Buckner, C.D.; Storb, R.; Appelbaum, F.R.; Clift, R.A.; Doney, K.; Sanders, J.E.; Witherspoon, R.P.; Thomas, E.D. Marrow Transplantation for Acute Nonlymphoblastic Leukemia in First Remission: Toxicity and Long-Term Follow-up of Patients Conditioned with Single Dose or Fractionated Total Body Irradiation. Bone Marrow Transplant. 1986, 1, 151–157. [Google Scholar]
- Altschuler, C.; Resbeut, M.; Blaise, D.; Maraninchi, D.; Stoppa, A.M.; Lagrange, J.L.; Guillet, J.P.; Carcassonne, Y. Fractionated Total Body Irradiation and Bone Marrow Transplantation in Acute Lymphoblastic Leukemia. Int. J. Radiat. Oncol. Biol. Phys. 1990, 19, 1151–1154. [Google Scholar] [CrossRef]
- Gopal, R.; Ha, C.S.; Tucker, S.L.; Khouri, I.F.; Giralt, S.A.; Gajewski, J.L.; Andersson, B.S.; Cox, J.D.; Champlin, R.E. Comparison of Two Total Body Irradiation Fractionation Regimens with Respect to Acute and Late Pulmonary Toxicity. Cancer 2001, 92, 1949–1958. [Google Scholar] [CrossRef]
- Cheng, J.C.; Schultheiss, T.E.; Wong, J.Y.C. Impact of Drug Therapy, Radiation Dose, and Dose Rate on Renal Toxicity Following Bone Marrow Transplantation. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 1436–1443. [Google Scholar] [CrossRef]
- Graves, S.S.; Storer, B.E.; Butts, T.M.; Storb, R. Comparing High and Low Total Body Irradiation Dose Rates for Minimum-Intensity Conditioning of Dogs for Dog Leukocyte Antigen-Identical Bone Marrow Grafts. Biol. Blood Marrow Transplant. 2013, 19, 1650–1654. [Google Scholar] [CrossRef] [Green Version]
- Gore, E.M.; Lawton, C.A.; Ash, R.C.; Lipchik, R.J. Pulmonary Function Changes in Long-Term Survivors of Bone Marrow Transplantation. Int. J. Radiat. Oncol. Biol. Phys. 1996, 36, 67–75. [Google Scholar] [CrossRef]
- Gogna, N.K.; Morgan, G.; Downs, K.; Atkinson, K.; Biggs, J. Lung Dose Rate and Interstitial Pneumonitis in Total Body Irradiation for Bone Marrow Transplantation. Australas. Radiol. 1992, 36, 317–320. [Google Scholar] [CrossRef]
- Kim, T.H.; Rybka, W.B.; Lehnert, S.; Podgorsak, E.B.; Freeman, C.R. Interstitial Pneumonitis Following Total Body Irradiation for Bone Marrow Transplantation Using Two Different Dose Rates. Int. J. Radiat. Oncol. Biol. Phys. 1985, 11, 1285–1291. [Google Scholar] [CrossRef]
- Storb, R.; Raff, R.F.; Appelbaum, F.R.; Deeg, H.J.; Graham, T.C.; Schuening, F.G.; Sale, G.; Bryant, E.; Seidel, K. Fractionated versus Single-Dose Total Body Irradiation at Low and High Dose Rates to Condition Canine Littermates for DLA-Identical Marrow Grafts. Blood 1994, 83, 3384–3389. [Google Scholar] [CrossRef] [Green Version]
- Ujaimi, R.K.; Isfahanian, N.; Russa, D.J.L.; Samant, R.; Bredeson, C.; Genest, P. Pulmonary Toxicity Following Total Body Irradiation for Acute Lymphoblastic Leukaemia: The Ottawa Hospital Cancer Centre (TOHCC) Experience. J. Radiother. Pract. 2016, 15, 54–60. [Google Scholar] [CrossRef]
- Soule, B.P.; Simone, N.L.; Savani, B.N.; Ning, H.; Albert, P.S.; Barrett, A.J.; Singh, A.K. Pulmonary Function Following Total Body Irradiation (with or without Lung Shielding) and Allogeneic Peripheral Blood Stem Cell Transplant. Bone Marrow Transplant. 2007, 40, 573–578. [Google Scholar] [CrossRef] [Green Version]
- Ravichandran, R.; Binukumar, J.P.; Davis, C.A.; Sivakumar, S.S.; Krishnamurthy, K.; Mandhari, Z.A.; Rajan, B. Beam Configuration and Physical Parameters of Clinical High Energy Photon Beam for Total Body Irradiation (TBI). Phys. Med. 2011, 27, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Schultheiss, T.E.; Wong, J.; Liu, A.; Olivera, G.; Somlo, G. Image-Guided Total Marrow and Total Lymphatic Irradiation Using Helical Tomotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 1259–1267. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, A.; Samant, R.; McCurdy, A.; Kew, A.; Tay, J.; Huebsch, L.B.; Bredeson, C.; Sabloff, M.; Altouri, S.; Kekre, N.; et al. A Dose Escalation Study of Total Marrow Irradiation and Autologous Stem-Cell Transplantation for Relapsed Multiple Myeloma Patients. Biol. Blood Marrow Transplant. 2018, 24, S127. [Google Scholar] [CrossRef]
- Hill-Kayser, C.E.; Plastaras, J.P.; Tochner, Z.; Glatstein, E. TBI during BM and SCT: Review of the Past, Discussion of the Present and Consideration of Future Directions. Bone Marrow Transplant. 2011, 46, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Dalle, J.H.; Giralt, S.A. Hepatic Veno-Occlusive Disease after Hematopoietic Stem Cell Transplantation: Risk Factors and Stratification, Prophylaxis, and Treatment. Biol. Blood Marrow Transplant. 2016, 22, 400–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tisseverasinghe, S.A.; Samant, R.; Sabloff, M.; Xu, Y.; Bredeson, C.; Huebsch, L.; Genest, P.R. Total Body Irradiation in Relapsed Follicular Lymphoma: Outcomes and Early Toxicity. Int. J. Radiat. Oncol. 2016, 96, E498–E499. [Google Scholar] [CrossRef]
- Tisseverasinghe, S.; Samant, R.; Sabloff, M.; Xu, Y.; Bredeson, C.; Huebsch, L.; Genest, P. 83: Late Toxicity after TBI in AHCT for Relapsed Follicular Lymphoma. Radiother. Oncol. 2016, 120, S32–S33. [Google Scholar] [CrossRef] [Green Version]
- Tisseverasinghe, S.; Samant, R.; Sabloff, M.; Xu, Y.; Bredeson, C.; Huebsch, L.; Genest, P.; Cross, P. PO-0667: Second Malignancies after TBI in AHCT for Relapsed Follicular Lymphoma. Radiother. Oncol. 2016, 119, S311. [Google Scholar] [CrossRef] [Green Version]
- Inamoto, Y.; Shah, N.N.; Savani, B.N.; Shaw, B.E.; Abraham, A.A.; Ahmed, I.A.; Akpek, G.; Atsuta, Y.; Baker, K.S.; Basak, G.W.; et al. Secondary Solid Cancer Screening Following Hematopoietic Cell Transplantation. Bone Marrow Transplant. 2015, 50, 1013–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tutschka, P.J.; Copelan, E.A.; Klein, J.P. Bone Marrow Transplantation for Leukemia Following a New Busulfan and Cyclophosphamide Regimen. Blood 1987, 70, 1382–1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copelan, E.A.; Hamilton, B.K.; Avalos, B.; Ahn, K.W.; Bolwell, B.J.; Zhu, X.; Aljurf, M.; Van Besien, K.; Bredeson, C.; Cahn, J.Y.; et al. Better Leukemia-Free and Overall Survival in AML in First Remission Following Cyclophosphamide in Combination with Busulfan Compared with TBI. Blood 2013, 122, 3863–3870. [Google Scholar] [CrossRef] [Green Version]
- Bredeson, C.; LeRademacher, J.; Kato, K.; Dipersio, J.F.; Agura, E.; Devine, S.M.; Appelbaum, F.R.; Tomblyn, M.R.; Laport, G.G.; Zhu, X.; et al. Prospective Cohort Study Comparing Intravenous Busulfan to Total Body Irradiation in Hematopoietic Cell Transplantation. Blood 2013, 122, 3871–3878. [Google Scholar] [CrossRef] [Green Version]
- Nagler, A.; Rocha, V.; Labopin, M.; Unal, A.; Ben Othman, T.; Campos, A.; Volin, L.; Poire, X.; Aljurf, M.; Masszi, T.; et al. Allogeneic Hematopoietic Stem-Cell Transplantation for Acute Myeloid Leukemia in Remission: Comparison of Intravenous Busulfan plus Cyclophosphamide (Cy) versus Total-Body Irradiation plus Cy as Conditioning Regimen--a Report from the Acute Leukemia Worki. J. Clin. Oncol. 2013, 31, 3549–3556. [Google Scholar] [CrossRef]
- Kebriaei, P.; Anasetti, C.; Zhang, M.J.; Wang, H.L.; Aldoss, I.; de Lima, M.; Khoury, H.J.; Sandmaier, B.M.; Horowitz, M.M.; Artz, A.; et al. Intravenous Busulfan Compared with Total Body Irradiation Pretransplant Conditioning for Adults with Acute Lymphoblastic Leukemia. Biol. Blood Marrow Transplant. 2018, 24, 726–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeFilipp, Z.; Advani, A.S.; Bachanova, V.; Cassaday, R.D.; Deangelo, D.J.; Kebriaei, P.; Rowe, J.M.; Seftel, M.D.; Stock, W.; Tallman, M.S.; et al. Hematopoietic Cell Transplantation in the Treatment of Adult Acute Lymphoblastic Leukemia: Updated 2019 Evidence-Based Review from the American Society for Transplantation and Cellular Therapy. Biol. Blood Marrow Transplant. 2019, 2113–2123. [Google Scholar] [CrossRef]
- Peters, C.; Dalle, J.H.; Locatelli, F.; Poetschger, U.; Sedlacek, P.; Buechner, J.; Shaw, P.J.; Staciuk, R.; Ifversen, M.; Pichler, H.; et al. Total Body Irradiation or Chemotherapy Conditioning in Childhood ALL: A Multinational, Randomized, Noninferiority Phase III Study. J. Clin. Oncol. 2020, 39, 295–307. [Google Scholar] [CrossRef]
- Sorror, M.L.; Sandmaier, B.M.; Storer, B.E.; Franke, G.N.; Laport, G.G.; Chauncey, T.R.; Agura, E.; Maziarz, R.T.; Langston, A.; Hari, P.; et al. Long-Term Outcomes among Older Patients Following Nonmyeloablative Conditioning and Allogeneic Hematopoietic Cell Transplantation for Advanced Hematologic Malignancies. JAMA 2011, 306, 1874–1883. [Google Scholar] [CrossRef]
- Kornblit, B.; Maloney, D.G.; Storb, R.; Storek, J.; Hari, P.; Vucinic, V.; Maziarz, R.T.; Chauncey, T.R.; Pulsipher, M.A.; Bruno, B.; et al. Fludarabine and 2-Gy TBI Is Superior to 2 Gy TBI as Conditioning for HLA-Matched Related Hematopoietic Cell Transplantation: A Phase III Randomized Trial. Biol. Blood Marrow Transplant. 2013, 19, 1340–1347. [Google Scholar] [CrossRef] [Green Version]
- Pingali, S.R.; Champlin, R.E. Pushing the Envelope-Nonmyeloablative and Reduced Intensity Preparative Regimens for Allogeneic Hematopoietic Transplantation. Bone Marrow Transplant. 2015, 50, 1157–1167. [Google Scholar] [CrossRef] [Green Version]
- Adkins, D.R.; DiPersio, J.F. Total Body Irradiation before an Allogeneic Stem Cell Transplantation: Is There a Magic Dose? Curr. Opin Hematol. 2008, 15, 555–560. [Google Scholar] [CrossRef]
- Davies, J.K.; Taussig, D.; Oakervee, H.; Smith, M.; Agrawal, S.; Cavenagh, J.D.; Gribben, J.G. Long-Term Survival with Low Toxicity after Allogeneic Transplantation for Acute Myeloid Leukaemia and Myelodysplasia Using Non-Myeloablative Conditioning without T Cell Depletion. Br. J. Haematol. 2013, 162, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Marks, D.I.; Wang, T.; Pérez, W.S.; Antin, J.H.; Copelan, E.; Gale, R.P.; George, B.; Gupta, V.; Halter, J.; Khoury, H.J.; et al. The Outcome of Full-Intensity and Reduced-Intensity Conditioning Matched Sibling or Unrelated Donor Transplantation in Adults with Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia in First and Second Complete Remission. Blood 2010, 116, 366–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahl, C.; Storer, B.E.; Sandmaier, B.M.; Mielcarek, M.; Maris, M.B.; Blume, K.G.; Niederwieser, D.; Chauncey, T.R.; Forman, S.J.; Agura, E.; et al. Relapse Risk in Patients with Malignant Diseases given Allogeneic Hematopoietic Cell Transplantation after Nonmyeloablative Conditioning. Blood 2007, 110, 2744–2748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomblyn, M.; Brunstein, C.; Burns, L.J.; Miller, J.S.; MacMillan, M.; DeFor, T.E.; Weisdorf, D.J. Similar and Promising Outcomes in Lymphoma Patients Treated with Myeloablative or Nonmyeloablative Conditioning and Allogeneic Hematopoietic Cell Transplantation. Biol. Blood Marrow Transplant. 2008, 14, 538–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hari, P.; Carreras, J.; Zhang, M.J.; Gale, R.P.; Bolwell, B.J.; Bredeson, C.N.; Burns, L.J.; Cairo, M.S.; Freytes, C.O.; Goldstein, S.C.; et al. Allogeneic Transplants in Follicular Lymphoma: Higher Risk of Disease Progression after Reduced-Intensity Compared to Myeloablative Conditioning. Biol. Blood Marrow Transplant. 2008, 14, 236–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballen, K.K.; Colvin, G.; Porter, D.; Quesenberry, P.J. Low Dose Total Body Irradiation Followed by Allogeneic Lymphocyte Infusion for Refractory Hematologic Malignancy-an Updated Review. Leuk. Lymphoma 2004, 45, 905–910. [Google Scholar] [CrossRef] [PubMed]
- McSweeney, P.A.; Niederwieser, D.; Shizuru, J.A.; Sandmaier, B.M.; Molina, A.J.; Maloney, D.G.; Chauncey, T.R.; Gooley, T.A.; Hegenbart, U.; Nash, R.A.; et al. Hematopoietic Cell Transplantation in Older Patients with Hematologic Malignancies: Replacing High-Dose Cytotoxic Therapy with Graft-versus-Tumor Effects. Blood 2001, 97, 3390–3400. [Google Scholar] [CrossRef] [Green Version]
- Bornhäuser, M.; Kienast, J.; Trenschel, R.; Burchert, A.; Hegenbart, U.; Stadler, M.; Baurmann, H.; Schäfer-Eckart, K.; Holler, E.; Kröger, N.; et al. Reduced-Intensity Conditioning versus Standard Conditioning before Allogeneic Haemopoietic Cell Transplantation in Patients with Acute Myeloid Leukaemia in First Complete Remission: A Prospective, Open-Label Randomised Phase 3 Trial. Lancet. Oncol. 2012, 13, 1035–1044. [Google Scholar] [CrossRef]
- Scott, B.L.; Pasquini, M.C.; Logan, B.R.; Wu, J.; Devine, S.M.; Porter, D.L.; Maziarz, R.T.; Warlick, E.D.; Fernandez, H.F.; Alyea, E.P.; et al. Myeloablative versus Reduced-Intensity Hematopoietic Cell Transplantation for Acute Myeloid Leukemia and Myelodysplastic Syndromes. J. Clin. Oncol. 2017, 35, 1154–1161. [Google Scholar] [CrossRef] [Green Version]
- Kharfan-Dabaja, M.A.; Kumar, A.; Hamadani, M.; Stilgenbauer, S.; Ghia, P.; Anasetti, C.; Dreger, P.; Montserrat, E.; Perales, M.A.; Alyea, E.P.; et al. Clinical Practice Recommendations for Use of Allogeneic Hematopoietic Cell Transplantation in Chronic Lymphocytic Leukemia on Behalf of the Guidelines Committee of the American Society for Blood and Marrow Transplantation. Biol. Blood Marrow Transplant. 2016, 22, 2117–2125. [Google Scholar] [CrossRef] [PubMed]
- Song, K.W.; Lipton, J. Is It Appropriate to Offer Allogeneic Hematopoietic Stem Cell Transplantation to Patients with Primary Refractory Acute Myeloid Leukemia? Bone Marrow Transplant. 2005, 36, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Shimoni, A.; Nagler, A. Optimizing the Conditioning Regimen for Allogeneic Stem-Cell Transplantation in Acute Myeloid Leukemia; Dose Intensity Is Still in Need. Best Pract. Res. Clin. Haematol. 2011, 24, 369–379. [Google Scholar] [CrossRef]
- Russell, J.; Kangarloo, S. Therapeutic Drug Monitoring of Busulfan in Transplantation. Curr. Pharm. Des. 2008, 14, 1936–1949. [Google Scholar] [CrossRef]
- McDonald, G.B.; Slattery, J.T.; Bouvier, M.E.; Ren, S.; Batchelder, A.L.; Kalhorn, T.F.; Schoch, H.G.; Anasetti, C.; Gooley, T. Cyclophosphamide Metabolism, Liver Toxicity, and Mortality Following Hematopoietic Stem Cell Transplantation. Blood 2003, 101, 2043–2048. [Google Scholar] [CrossRef] [Green Version]
- Rezvani, A.R.; McCune, J.S.; Storer, B.E.; Batchelder, A.; Kida, A.; Deeg, H.J.; McDonald, G.B. Cyclophosphamide Followed by Intravenous Targeted Busulfan for Allogeneic Hematopoietic Cell Transplantation: Pharmacokinetics and Clinical Outcomes. Biol. Blood Marrow Transplant. 2013, 19, 1033–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, J.; McCune, J.S.; Perales, M.A.; Marks, D.; Bubalo, J.; Mohty, M.; Wingard, J.R.; Paci, A.; Hassan, M.; Bredeson, C.; et al. Personalizing Busulfan-Based Conditioning: Considerations from the American Society for Blood and Marrow Transplantation Practice Guidelines Committee. Biol. Blood Marrow Transplant. 2016, 22, 1915–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozawa, K.; Miura, Y.; Suda, T.; Motoyoshi, K.; Takaku, F. Radiation Sensitivity of Leukemic Progenitor Cells in Acute Nonlymphocytic Leukemia. Cancer Res. 1983, 43, 2339–2341. [Google Scholar]
- Sobecks, R.M.; Daugherty, C.K.; Hallahan, D.E.; Laport, G.F.; Wagner, N.D.; Larson, R.A. A Dose Escalation Study of Total Body Irradiation Followed by High-Dose Etoposide and Allogeneic Blood Stem Cell Transplantation for the Treatment of Advanced Hematologic Malignancies. Bone Marrow Transplant. 2000, 25, 807–813. [Google Scholar] [CrossRef] [Green Version]
- Petersen, F.B.; Deeg, H.J.; Buckner, C.D.; Appelbaum, F.R.; Storb, R.; Clift, R.A.; Sanders, J.E.; Bensinger, W.I.; Witherspoon, R.P.; Sullivan, K.M.; et al. Marrow Transplantation Following Escalating Doses of Fractionated Total Body Irradiation and Cyclophosphamide-a Phase I Trial. Int. J. Radiat. Oncol. Biol. Phys. 1992, 23, 1027–1032. [Google Scholar] [CrossRef]
- Altouri, S.; Allan, D.; Atkins, H.; Fulcher, J.; Huebsch, L.; Kekre, N.; Maze, D.; Ramsay, T.; Samant, R.; Bredeson, C.; et al. Total Body Irradiation (18 Gy) without Chemotherapy as Conditioning for Allogeneic Hematopoietic Cell Transplantation in Refractory Acute Myeloid Leukemia. Bone Marrow Transplant. 2020, 1454–1456. [Google Scholar] [CrossRef] [PubMed]
- Sabloff, M.; Chhabra, S.; Wang, T.; Fretham, C.; Kekre, N.; Abraham, A.; Adekola, K.; Auletta, J.J.; Barker, C.; Beitinjaneh, A.M.; et al. Comparison of High Doses of Total Body Irradiation in Myeloablative Conditioning before Hematopoietic Cell Transplantation. Biol. Blood Marrow Transplant. 2019, 25, 2398–2407. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.Y.C.; Forman, S.; Somlo, G.; Rosenthal, J.; Liu, A.; Schultheiss, T.; Radany, E.; Palmer, J.; Stein, A. Dose Escalation of Total Marrow Irradiation with Concurrent Chemotherapy in Patients with Advanced Acute Leukemia Undergoing Allogeneic Hematopoietic Cell Transplantation. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Somlo, G.; Spielberger, R.; Frankel, P.; Karanes, C.; Krishnan, A.; Parker, P.; Popplewell, L.; Sahebi, F.; Kogut, N.; Snyder, D.; et al. Total Marrow Irradiation: A New Ablative Regimen as Part of Tandem Autologous Stem Cell Transplantation for Patients with Multiple Myeloma. Clin. Cancer Res. 2011, 17, 174–182. [Google Scholar] [CrossRef] [Green Version]
- Magome, T.; Froelich, J.; Takahashi, Y.; Arentsen, L.; Holtan, S.; Verneris, M.R.; Brown, K.; Haga, A.; Nakagawa, K.; Holter Chakrabarty, J.L.; et al. Evaluation of Functional Marrow Irradiation Based on Skeletal Marrow Composition Obtained Using Dual-Energy Computed Tomography. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 679–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.M.; Dehdashti, F.; DiPersio, J.F.; Cashen, A.F. Radioimmunotherapy-Based Conditioning for Hematopoietic Stem Cell Transplantation: Another Step Forward. Blood Rev. 2016, 30, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Gyurkocza, B.; Nath, R.; Choe, H.; Seropian, S.; Stiff, P.J.; Abhyankar, S.; Agura, E.; Litzow, M.; Tomlinson, B.K.; Chen, G.L.; et al. Personalized Targeted Radioimmunotherapy with Anti-CD45 Iodine (131I) Apamistamab [Iomab-B] in Patients with Active Relapsed or Refractory Acute Myeloid Leukemia Results in Successful Donor Hematopoietic Cells Engraftment with the Timing of Engraftment Not Related to the Radiation Dose Delivered. Blood 2020, 42–44. [Google Scholar] [CrossRef]
- Gyurkocza, B.; Nath, R.; Choe, H.; Seropian, S.; Stiff, P.J.; Abhyankar, S.; Agura, E.; Litzow, M.; Tomlinson, B.K.; Chen, G.L.; et al. High Doses of Targeted Radiation with Anti-CD45 Iodine (131I) Apamistamab [Iomab-B] Do Not Correlate with Incidence of Mucositis, Febrile Neutropenia or Sepsis in the Prospective, Randomized Phase 3 Sierra Trial for Patients with Relapsed or Refractory Ac. Blood 2020, 136, 30–31. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabloff, M.; Tisseverasinghe, S.; Babadagli, M.E.; Samant, R. Total Body Irradiation for Hematopoietic Stem Cell Transplantation: What Can We Agree on? Curr. Oncol. 2021, 28, 903-917. https://doi.org/10.3390/curroncol28010089
Sabloff M, Tisseverasinghe S, Babadagli ME, Samant R. Total Body Irradiation for Hematopoietic Stem Cell Transplantation: What Can We Agree on? Current Oncology. 2021; 28(1):903-917. https://doi.org/10.3390/curroncol28010089
Chicago/Turabian StyleSabloff, Mitchell, Steven Tisseverasinghe, Mustafa Ege Babadagli, and Rajiv Samant. 2021. "Total Body Irradiation for Hematopoietic Stem Cell Transplantation: What Can We Agree on?" Current Oncology 28, no. 1: 903-917. https://doi.org/10.3390/curroncol28010089
APA StyleSabloff, M., Tisseverasinghe, S., Babadagli, M. E., & Samant, R. (2021). Total Body Irradiation for Hematopoietic Stem Cell Transplantation: What Can We Agree on? Current Oncology, 28(1), 903-917. https://doi.org/10.3390/curroncol28010089