Longitudinal Symptom Burden Trajectories in a Population-Based Cohort of Women with Metastatic Breast Cancer: A Group-Based Trajectory Modeling Analysis
Abstract
:1. Introduction
2. Methods
2.1. Participants and Procedure
2.2. Measures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Canadian Cancer Statistics Advisory Committee. Canadian Cancer Statistics 2018; Canadian Cancer Society: Toronto, ON, Canada, 2018; Available online: http://www.cancer.ca/Canadian-Cancer-Statistics-2018-EN (accessed on 26 August 2018).
- Reed, E.; Simmonds, P.; Haviland, J.; Corner, J. Quality of life and experience of care in women with metastatic breast cancer: A cross-sectional survey. J. Pain Symptom Manag. 2012, 43, 747–758. [Google Scholar] [CrossRef]
- Mittmann, N.; Isogai, P.K.; Saskin, R.; Liu, N.; Porter, J.M.; Cheung, M.C.; Leighl, N.B.; Hoch, J.S.; Trudeau, M.E.; Evans, W.K.; et al. Population-based home care services in breast cancer: Utilization and costs. Curr. Oncol. 2012, 19, 383–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittmann, N.; Porter, J.M.; Rangrej, J.; Seung, S.J.; Liu, N.; Saskin, R.; Cheung, M.C.; Leighl, N.B.; Hoch, J.S.; Trudeau, M.; et al. Health system costs for stage-specific breast cancer: A population-based approach. Curr. Oncol. 2014, 21, 281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, E.; Corner, J. Defining the illness trajectory of metastatic breast cancer. BMJ Support 2015, 5, 358–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamer, J.; McDonald, R.; Zhang, L.; Verma, S.; Leahey, A.; Ecclestone, C.; Bedard, G.; Pulenzas, N.; Bhatia, A.; Chow, R.; et al. Quality of life (QOL) and symptom burden (SB) in patients with breast cancer. Support Care Cancer 2017, 25, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Andre, F.; Slimane, K.; Bachelot, T.; Dunant, A.; Namer, M.; Barrelier, A.; Kabbaj, O.; Spano, J.P.; Marsiglia, H.; Rouzier, R.; et al. Breast cancer with synchronous metastases: Trends in survival during a 14-year period. J. Clin. Oncol. 2004, 22, 3302–3308. [Google Scholar] [CrossRef]
- Thomas, A.; Khan, S.A.; Chrischilles, E.A.; Schroeder, M.C. Initial Surgery and Survival in Stage IV Breast Cancer in the United States, 1988–2011. JAMA Surg. 2016, 151, 424–431. [Google Scholar] [CrossRef]
- Cancer Care Ontario. Survival Improving for the Four Most Common Cancers in Ontario; Cancer Care Ontario: Toronto, ON, Canada, 2016; Available online: https://archive.cancercare.on.ca/common/pages/UserFile.aspx?fileId=361287 (accessed on 14 January 2019).
- Cancer Care Ontario. Ontario Cancer Statistics 2018; Cancer Care Ontario: Toronto, ON, Canada, 2018; Available online: https://www.cancercareontario.ca/en/statistical-reports/ontario-cancer-statistics-2018-report (accessed on 26 August 2018).
- Mosher, C.E.; Johnson, C.; Dickler, M.; Norton, L.; Massie, M.J.; DuHamel, K. Living with metastatic breast cancer: A qualitative analysis of physical, psychological, and social sequelae. Breast J. 2013, 19, 285–292. [Google Scholar] [CrossRef] [Green Version]
- Park, E.M.; Rosenstein, D.L. Living with Advanced Cancer Unmet Survivorship Needs. North Carol. Med. J. 2014, 75, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Gomes, B.; Higginson, I.J.; McCrone, P. Effectiveness and cost-effectiveness of home palliative care services for adults with advanced illness and their caregivers. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef] [Green Version]
- Brumley, R.; Enguidanos, S.; Jamison, P.; Seitz, R.; Morgenstern, N.; Saito, S.; McIlwane, J.; Hillary, K.; Gonzalez, J. Increased satisfaction with care and lower costs: Results of a randomized trial of in-home palliative care. J. Am. Geriatr. Soc. 2007, 55, 993–1000. [Google Scholar] [CrossRef]
- Tanuseputro, P.; Budhwani, S.; Bai, Y.Q.; Wodchis, W.P. Palliative care delivery across health sectors: A population-level observational study. Palliat Med. 2017, 31, 247–257. [Google Scholar] [CrossRef] [Green Version]
- Budhwani, S.; Wodchis, W.P.; Zimmermann, C.; Moineddin, R.; Howell, D. Self-management, self-management support needs and interventions in advanced cancer: A scoping review. BMJ Support 2018. [Google Scholar] [CrossRef]
- Harley, C.; Pini, S.; Bartlett, Y.K.; Velikova, G. Defining chronic cancer: Patient experiences and self-management needs. BMJ Support 2015, 5, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Lam, W.W.T.; Tsang, J.; Yeo, W.; Suen, J.; Ho, W.M.; Yau, T.K.; Soong, I.; Wong, K.Y.; Kwong, A.; Suen, D.; et al. The evolution of supportive care needs trajectories in women with advanced breast cancer during the 12 months following diagnosis. Support Care Cancer 2014, 22, 635–644. [Google Scholar] [CrossRef]
- Schulman-Green, D.; Bradley, E.H.; Knobf, M.; Prigerson, H.; DiGiovanna, M.P.; McCorkle, R. Self-management and transitions in women with advanced breast cancer. J. Pain Symptom Manag. 2011, 42, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Aranda, S.; Schofield, P.; Weih, L.; Yates, P.; Milne, D.; Faulkner, R.; Voudouris, N. Mapping the quality of life and unmet needs of urban women with metastatic breast cancer. Eur. J. Cancer Care (Engl.) 2005, 14, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Mayer, D.K.; Alfano, C.M. Personalized Risk-Stratified Cancer Follow-Up Care: Its Potential for Healthier Survivors, Happier Clinicians, and Lower Costs. JNCI J. Natl. Cancer Inst. 2019, 111, 442–448. [Google Scholar] [CrossRef]
- Barbera, L.; Seow, H.; Howell, D.; Sutradhar, R.; Earle, C.; Liu, Y.; Stitt, A.; Husain, A.; Sussman, J.; Dudgeon, D. Symptom burden and performance status in a population-based cohort of ambulatory cancer patients. Cancer 2010, 116, 5767–5776. [Google Scholar] [CrossRef] [PubMed]
- Bubis, L.D.; Davis, L.; Mahar, A.; Barbera, L.; Li, Q.; Moody, L.; Karanicolas, P.; Sutradhar, R.; Coburn, N.G. Symptom burden in the first year after cancer diagnosis: An analysis of patient-reported outcomes. J. Clin. Oncol. 2018, 36, 1103–1111. [Google Scholar] [CrossRef]
- Deshields, T.L.; Potter, P.; Olsen, S.; Liu, J. The persistence of symptom burden: Symptom experience and quality of life of cancer patients across one year. Support Care Cancer 2014, 22, 1089–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Q.; Smith, T.G.; Michonski, J.D.; Stein, K.D.; Kaw, C.; Cleeland, C.S. Symptom burden in cancer survivors 1 year after diagnosis: A report from the American Cancer Society’s Studies of Cancer Survivors. Cancer 2011, 117, 2779–2790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seow, H.; Barbera, L.; Sutradhar, R.; Howell, D.; Dudgeon, D.; Atzema, C.; Liu, Y.; Husain, A.; Sussman, J.; Earle, C. Trajectory of performance status and symptom scores for patients with cancer during the last six months of life. J. Clin. Oncol. 2011, 29, 1151–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tai, S.-Y.; Lee, C.-Y.; Wu, C.-Y.; Hsieh, H.-Y.; Huang, J.-J.; Huang, C.-T.; Chien, C.-Y. Symptom severity of patients with advanced cancer in palliative care unit: Longitudinal assessments of symptoms improvement. BMC Palliat. Care 2016, 15, 32. [Google Scholar] [CrossRef] [Green Version]
- Hui, D.; dos Santos, R.; Chisholm, G.B.; Bruera, E. Symptom expression in the last seven days of life among cancer patients admitted to acute palliative care units. J. Pain Symptom Manag. 2015, 50, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Kwon, J.H.; Hui, D.; Yennurajalingam, S.; Bruera, E. Changes in symptom intensity among cancer patients receiving outpatient palliative care. J. Pain Symptom Manag. 2013, 46, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Ekström, M.; Johnson, M.; Schiöler, L.; Kaasa, S.; Hjermstad, M.; Currow, D. Who experiences higher and increasing breathlessness in advanced cancer? The longitudinal EPCCS Study. Support Care Cancer 2016, 24, 3803–3811. [Google Scholar] [CrossRef] [PubMed]
- Bidstrup, P.E.; Christensen, J.; Mertz, B.G.; Rottmann, N.; Dalton, S.O.; Johansen, C. Trajectories of distress, anxiety, and depression among women with breast cancer: Looking beyond the mean. Acta Oncol. 2015, 54, 789–796. [Google Scholar] [CrossRef] [Green Version]
- Davis, L.E.; Bubis, L.D.; Mahar, A.L.; Li, Q.; Sussman, J.; Moody, L.; Barbera, L.; Holloway, C.M.; Coburn, N.G. Patient-reported symptoms after breast cancer diagnosis and treatment: A retrospective cohort study. Eur. J. Cancer 2018, 101, 1–11. [Google Scholar] [CrossRef]
- Dunn, L.B.; Cooper, B.A.; Neuhaus, J.; West, C.; Paul, S.; Aouizerat, B.; Abrams, G.; Edrington, J.; Hamolsky, D.; Miaskowski, C. Identification of distinct depressive symptom trajectories in women following surgery for breast cancer. Health Psychol. 2011, 30, 683. [Google Scholar] [CrossRef] [Green Version]
- Avis, N.E.; Levine, B.J.; Case, L.D.; Naftalis, E.Z.; Van Zee, K.J. Trajectories of depressive symptoms following breast cancer diagnosis. Cancer Epidemiol. Prev. Biomark. 2015, 24, 1789–1795. [Google Scholar] [CrossRef] [Green Version]
- Donovan, K.A.; Gonzalez, B.D.; Small, B.J.; Andrykowski, M.A.; Jacobsen, P.B. Depressive symptom trajectories during and after adjuvant treatment for breast cancer. Ann. Behav. Med. 2013, 47, 292–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ecclestone, C.; Chow, R.; Pulenzas, N.; Zhang, L.; Leahey, A.; Hamer, J.; DeAngelis, C.; Bedard, G.; McDonald, R.; Bhatia, A.; et al. Quality of life and symptom burden in patients with metastatic breast cancer. Support Care Cancer 2016, 24, 4035–4043. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Yen, I.H.; Rabow, M.W. Comparing symptom burden in patients with metastatic and nonmetastatic cancer. J. Palliat Med. 2016, 19, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Bower, J.E.; Wiley, J.; Petersen, L.; Irwin, M.R.; Cole, S.W.; Ganz, P.A. Fatigue after breast cancer treatment: Biobehavioral predictors of fatigue trajectories. Health Psychol. 2018, 37, 1025. [Google Scholar] [CrossRef]
- Stanton, A.L.; Wiley, J.F.; Krull, J.L.; Crespi, C.M.; Hammen, C.; Allen, J.J.B.; Barrón, M.L.; Jorge, A.; Weihs, K.L. Depressive episodes, symptoms, and trajectories in women recently diagnosed with breast cancer. Breast Cancer Res. Treat. 2015, 154, 105–115. [Google Scholar] [CrossRef]
- Cleeland, C.; von Moos, R.; Walker, M.S.; Wang, Y.; Gao, J.; Chavez-MacGregor, M.; Liede, A.; Arellano, J.; Balakumaran, A.; Qian, Y. Burden of symptoms associated with development of metastatic bone disease in patients with breast cancer. Support Care Cancer 2016, 24, 3557–3565. [Google Scholar] [CrossRef] [Green Version]
- Walker, M.S.; Hasan, M.; Yim, Y.M.; Yu, E.; Stepanski, E.J.; Schwartzberg, L.S. Retrospective study of the effect of disease progression on patient reported outcomes in HER-2 negative metastatic breast cancer patients. Health Qual. Life Outcomes 2011, 9, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cancer Care Ontario. Ontario Cancer Registry; Cancer Care Ontario: Toronto, ON, Canada; Available online: https://www.cancercareontario.ca/en/cancer-care-ontario/programs/data-research/ontario-cancer-registry (accessed on 24 August 2018).
- Bruera, E.; Kuehn, N.; Miller, M.J.; Selmser, P.; Macmillan, K. The Edmonton Symptom Assessment System (ESAS): A simple method for the assessment of palliative care patients. J. Palliat Care 1991, 7, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Chang, V.T.; Hwang, S.S.; Feuerman, M. Validation of the Edmonton symptom assessment scale. Cancer 2000, 88, 2164–2171. [Google Scholar] [CrossRef]
- Ontario Ministry of Health and Long-Term Care. The Ontario Cancer Symptom Management Collaborative (OCSMC); Ontario Ministry of Health and Long-Term Care: Toronto, ON, Canada, 2014.
- Cancer Care Ontario. Symptom Assessment Tools: Your Symptoms Matter; Cancer Care Ontario: Toronto, ON, Canada; Available online: https://www.cancercareontario.ca/en/guidelines-advice/symptom-side-effect-management/symptom-assessment-tool (accessed on 20 March 2019).
- Zimmermann, C.; Swami, N.; Krzyzanowska, M.; Hannon, B.; Leighl, N.; Oza, A.; Moore, M.; Rydall, A.; Rodin, G.; Tannock, I.; et al. Early palliative care for patients with advanced cancer: A cluster-randomised controlled trial. Lancet 2014, 383, 1721–1730. [Google Scholar] [CrossRef]
- Bakitas, M.; Lyons, K.D.; Hegel, M.T.; Balan, S.; Barnett, K.N.; Brokaw, F.C.; Byock, I.R.; Hull, J.G.; Li, Z.; McKinstry, E.; et al. The project ENABLE II randomized controlled trial to improve palliative care for rural patients with advanced cancer: Baseline findings, methodological challenges, and solutions. Palliat Support Care 2009, 7, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Box, G.E.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B (Methodol.) 1964, 26, 211–252. [Google Scholar] [CrossRef]
- SAS Institute Inc. Box Cox Transformations; SAS Institute Inc.: Cary, NC, USA, 2015. [Google Scholar]
- Osborne, J.W. Improving your data transformations: Applying the Box-Cox transformation. Pract. Assess. Res. Eval. 2010, 15, 2. [Google Scholar]
- Statistics Canada. Postal Code Conversion File; Statistics Canada: Ottawa, ON, Canada, 2018; Available online: http://www5.statcan.gc.ca/olc-cel/olc.action?objId=92-154-X&objType=2&lang=en&limit=0 (accessed on 31 August 2018).
- Statistics Canada. Census Metropolitan Influenced Zone (MIZ); Statistics Canada: Ottawa, ON, Canada, 2015; Available online: https://www12.statcan.gc.ca/census-recensement/2011/ref/dict/geo010-eng.cfm (accessed on 31 August 2018).
- Statistics Canada. Postal CodeOM Conversion File Plus (PCCF+) Version 6B, Reference Guide; Statistics Canada: Ottawa, ON, Canada, 2014; Available online: https://mdl.library.utoronto.ca/sites/default/files/mdldata/open/canada/national/statcan/postalcodes/pccfplus/2011/2014nov/82-F0086-XDB-2014v6b-eng.pdf (accessed on 31 August 2018).
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Lix, L.; Smith, M.; Pitz, M.; Ahmed, R.; Quon, H.; Griffith, J.; Turner, D.; Hong, S.; Prior, H.; Banerjee, A.; et al. Cancer Data Linkage in Manitoba: Expanding the Infrastructure for Research; Manitoba Centre for Health Policy: Winnipeg, MB, Canada, 2016; Available online: http://mchp-appserv.cpe.umanitoba.ca/reference//Candata_web_final.pdf (accessed on 27 August 2018).
- Manitoba Centre for Health Policy. Concept: Charlson Comorbidity Index; Manitoba Centre for Health Policy: Winnipeg, MB, Canada, 2010; Available online: http://mchp-appserv.cpe.umanitoba.ca/viewConcept.php?conceptID=1098 (accessed on 22 March 2019).
- Barbera, L.; Atzema, C.; Sutradhar, R.; Seow, H.; Howell, D.; Husain, A.; Sussman, J.; Earle, C.; Liu, Y.; Dudgeon, D. Do patient-reported symptoms predict emergency department visits in cancer patients? A population-based analysis. Ann. Emerg. Med. 2013, 61, 427–437.e5. [Google Scholar] [CrossRef] [PubMed]
- Azim, H.A.; De Azambuja, E.; Colozza, M.; Bines, J.; Piccart, M. Long-term toxic effects of adjuvant chemotherapy in breast cancer. Ann. Oncol. 2011, 22, 1939–1947. [Google Scholar] [CrossRef] [PubMed]
- Canadian Cancer Society. Side Effects of Chemotherapy; Canadian Cancer Society: Toronto, ON, Canada, 2019; Available online: http://www.cancer.ca/en/cancer-information/diagnosis-and-treatment/chemotherapy-and-other-drug-therapies/chemotherapy/side-effects-of-chemotherapy/?region=on (accessed on 21 March 2019).
- Canadian Cancer Society. Side Effects of Radiation Therapy; Canadian Cancer Society: Toronto, ON, Canada, 2019; Available online: http://www.cancer.ca/en/cancer-information/diagnosis-and-treatment/radiation-therapy/side-effects-of-radiation-therapy/?region=on (accessed on 21 March 2019).
- Jones, B.L.; Nagin, D.S. Proc TRAJ: A SAS Procedure for Group-Based Modeling of Longitudinal Data. In Proceedings of the 135st APHA Annual Meeting and Exposition 2007, Washington, DC, USA, 3–7 November 2007. [Google Scholar]
- Jones, B.L.; Nagin, D.S. Advances in group-based trajectory modeling and an SAS procedure for estimating them. Sociol. Methods Res. 2007, 35, 542–571. [Google Scholar] [CrossRef] [Green Version]
- Nagin, D.S. Group-Based Modeling of Development; Harvard University Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Nagin, D.S. Analyzing developmental trajectories: A semiparametric, group-based approach. Psychol. Methods 1999, 4, 139. [Google Scholar] [CrossRef]
- Andruff, H.; Carraro, N.; Thompson, A.; Gaudreau, P.; Louvet, B. Latent class growth modelling: A tutorial. Tutor. Quant. Methods Psychol. 2009, 5, 11–24. [Google Scholar] [CrossRef]
- Raudenbush, S.W. Comparing personal trajectories and drawing causal inferences from longitudinal data. Annu. Rev. Psychol. 2001, 52, 501–525. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.E.; Katz, J.N.; Dervan, E.E.; Losina, E. Trajectories and risk profiles of pain in persons with radiographic, symptomatic knee osteoarthritis: Data from the osteoarthritis initiative. Osteoarthr. Cartil. 2014, 22, 622–630. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.L.; Nagin, D.S.; Roeder, K. A SAS procedure based on mixture models for estimating developmental trajectories. Sociol. Methods Res. 2001, 29, 374–393. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS 9.4; SAS Institute Inc.: Cary, NC, USA, 2018. [Google Scholar]
- Jones, B. Traj Group-Based Modelling of Longitudinal Data—SAS Examples; Carnegie Mellon University: Pittsburgh, PA, USA, 2017; Available online: https://www.andrew.cmu.edu/user/bjones/example.htm (accessed on 6 June 2018).
- Jones, B. Traj Group-Based Modelling of Longitudinal Data—SAS Download; Carnegie Mellon University: Pittsburgh, PA, USA, 2017; Available online: https://www.andrew.cmu.edu/user/bjones/download.htm (accessed on 6 June 2018).
- Arrandale, V.; Koehoorn, M.; MacNab, Y.; Kennedy, S.M. How to Use SAS® Proc Traj and SAS® Proc Glimmix in Respiratory Epidemiology; University of British Columbia: Vancouver, BC, Canada, 2006. [Google Scholar]
- Gilmour, H.; Stranges, S.; Kaplan, M.; Feeny, D.; McFarland, B.; Huguet, N.; Bernier, J. Longitudinal trajectories of sleep duration in the general population. Health Rep. 2013, 24, 14–20. [Google Scholar] [PubMed]
- Kaup, A.R.; Byers, A.L.; Falvey, C.; Simonsick, E.M.; Satterfield, S.; Ayonayon, H.N.; Smagula, S.F.; Rubin, S.M.; Yaffe, K. Trajectories of depressive symptoms in older adults and risk of dementia. JAMA Psychiatry 2016, 73, 525–531. [Google Scholar] [CrossRef]
- Vahabi, M.; Lofters, A.; Kumar, M.; Glazier, R.H. Breast cancer screening disparities among urban immigrants: A population-based study in Ontario, Canada. BMC Public Health 2015, 15, 679. [Google Scholar] [CrossRef] [Green Version]
- Borugian, M.J.; Spinelli, J.J.; Abanto, Z.; Xu, C.L.; Wilkins, R. Breast cancer incidence and neighbourhood income. Health Rep. 2011, 22, 7. [Google Scholar] [PubMed]
- Hurvitz, S.; Guerin, A.; Brammer, M.; Guardino, E.; Zhou, Z.Y.; Viau, D.L.; Wu, E.Q.; Lalla, D. Investigation of adverse-event-related costs for patients with metastatic breast cancer in a real-world setting. Oncologist 2014, 19, 901–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmermann, C.; Cheung, W.Y.; Lo, C.; Rodin, G. Edmonton Symptom Assessment System Screening and Depression at the End of Life. J. Clin. Oncol. 2011, 29, 3107–3108. [Google Scholar] [CrossRef]
- Baumgartner, S.E.; Leydesdorff, L. Group-based trajectory modeling (GBTM) of citations in scholarly literature: Dynamic qualities of “transient” and “sticky knowledge claims”. J. Assoc. Inf. Sci. Technol. 2014, 65, 797–811. [Google Scholar] [CrossRef]
- Howell, D. It is unclear whether specialist palliative care teleconsultation leads to an improvement in patient symptom scores. Evid. Based Nurs. 2018, 21, 1. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.E., Jr.; Steinhauser, K.; Hendrix, C.; Tulsky, J.A. Editorial: Pairing self-management with Palliative Care: Intervening in life-limiting illness. J. Nurs. Healthc. Chronic Illn. 2011, 3, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Kirsten, L.; Hobbs, K. Supportive care in advanced breast cancer. In Cancer Forum; The Cancer Council Australia: Sydney, Australia, 2017; p. 20. [Google Scholar]
All Patients in Cohort (n = 995) | ||
---|---|---|
n | % | |
Age Group a | ||
18–39 | 71 | 7.14% |
40–49 | 172 | 17.29% |
50–59 | 254 | 25.53% |
60–69 | 241 | 24.22% |
70–79 | 170 | 17.09% |
80–99 | 87 | 8.74% |
Neighborhood Income Quintile a | ||
Quintile 1 (Low Income) | 195 | 19.60% |
Quintile 2 | 196 | 19.70% |
Quintile 3 | 193 | 19.40% |
Quintile 4 | 212 | 21.31% |
Quintile 5 (High Income) | 199 | 20.00% |
Rurality a | ||
Urban | 880 | 88.44% |
Rural | 115 | 11.56% |
Diagnosis Year | ||
2010 | 196 | 19.70% |
2011 | 194 | 19.50% |
2012 | 204 | 20.50% |
2013 | 213 | 21.41% |
2014 | 188 | 18.89% |
Charlson Comorbidity Index a | ||
0 | 949 | 95.38% |
1–3 | 46 | 4.62% |
Receiving Treatment—Chemotherapy b | ||
No | 149 | 14.97% |
Yes | 846 | 85.03% |
Receiving Treatment—Radiotherapy b | ||
No | 544 | 54.67% |
Yes | 451 | 45.33% |
Receiving Care—Home Care b | ||
No | 485 | 48.74% |
Yes | 510 | 51.26% |
Receiving Care—Palliative Care b | ||
No | 307 | 30.85% |
Yes | 688 | 69.15% |
Survival Time | ||
Between 0 to 1 Year | 135 | 13.57% |
Between 1 to 3 Years | 275 | 27.64% |
Between 3 to 5 Years | 77 | 7.74% |
Greater than 5 Years | 9 | 0.90% |
Censored c | 499 | 50.15% |
ESAS Scores Baseline d,e | ||
Mean Total Symptom Distress Score (SD, Range, N) | 20.33 (15.73, 0.00–79.00, 995) | |
Mean Pain Score (SD, Range, N) | 2.33 (2.63, 0.00–10.00, 992) | |
Mean Tiredness Score (SD, Range, N) | 0.86 (1.84, 0.00–10.00, 995) | |
Mean Lack of Appetite Score (SD, Range, N) | 1.79 (2.44, 0.00–10.00, 994) | |
Mean Shortness of Breath Score (SD, Range, N) | 1.47 (2.37, 0.00–10.00, 993) | |
Mean Nausea Score (SD, Range, N) | 3.45 (2.81, 0.00–10.00, 995) | |
Mean Drowsiness Score (SD, Range, N) | 2.44 (2.85, 0.00–10.00, 991) | |
Mean Depression Score (SD, Range, N) | 1.75 (2.51, 0.00–10.00, 995) | |
Mean Anxiety Score (SD, Range, N) | 3.04 (2.90, 0.00–10.00, 993) | |
Mean Wellbeing Score (SD, Range, N) | 3.21 (2.69, 0.00–10.00, 990) | |
ED Visits f | ||
Rate of ED Visits per Patient Month (Standard Error, Confidence Interval) | 0.12 (0.02, 0.12–0.12) |
Number of Groups | Polynomial Order | BIC a | log Bayes Factor b |
---|---|---|---|
1 | 4 | −33,389.92 | - |
2 | 44 | −29,166.78 | >1000 |
3 | 444 | −27,620.32 | >1000 |
4 | 4440 | −27,075.20 | >1000 |
5 | 44401 | −26,746.86 | >100 |
6 | 444000 | −26,486.85 | >100 |
All Patients in Cohort | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | |||||||
Total N | 89 | 138 | 111 | 233 | 265 | 159 | ||||||
n | % | n | % | n | % | n | % | n | % | n | % | |
Age Group a,b | ||||||||||||
18–39 | 7 | 7.87% | 13 | 9.42% | 10 | 9.01% | 19 | 8.15% | 14 | 5.28% | 8 | 5.03% |
40–49 | 14 | 15.73% | 20 | 14.49% | 23 | 20.72% | 43 | 18.45% | 40 | 15.09% | 32 | 20.13% |
50–59 | 25 | 28.09% | 28 | 20.29% | 30 | 27.03% | 61 | 26.18% | 75 | 28.30% | 35 | 22.01% |
60–69 | 19 | 21.35% | 39 | 28.26% | 26 | 23.42% | 61 | 26.18% | 64 | 24.15% | 32 | 20.13% |
70–79 | 18 | 20.22% | 28 | 20.29% | 16 | 14.41% | 34 | 14.59% | 41 | 15.47% | 33 | 20.75% |
80–99 | 6 | 6.74% | 10 | 7.25% | 6 | 5.41% | 15 | 6.44% | 31 | 11.70% | 19 | 11.95% |
Neighbourhood Income a | ||||||||||||
Quintile 1 (Low Income) | 19 | 21.35% | 27 | 19.57% | 12 | 10.81% | 45 | 19.31% | 53 | 20.00% | 39 | 24.53% |
Quintile 2 | 11 | 12.36% | 23 | 16.67% | 25 | 22.52% | 51 | 21.89% | 55 | 20.75% | 31 | 19.50% |
Quintile 3 | 20 | 22.47% | 28 | 20.29% | 19 | 17.12% | 48 | 20.60% | 52 | 19.62% | 26 | 16.35% |
Quintile 4 | 23 | 25.84% | 30 | 21.74% | 28 | 25.23% | 47 | 20.17% | 47 | 17.74% | 37 | 23.27% |
Quintile 5 (High Income) | 16 | 17.98% | 30 | 21.74% | 27 | 24.32% | 42 | 18.03% | 58 | 21.89% | 26 | 16.35% |
Rurality a | ||||||||||||
Urban | 74 | 83.15% | 123 | 89.13% | 99 | 89.19% | 207 | 88.84% | 230 | 86.79% | 147 | 92.45% |
Rural | 15 | 16.85% | 15 | 10.87% | 12 | 10.81% | 26 | 11.16% | 35 | 13.21% | 12 | 7.55% |
Diagnosis Year a | ||||||||||||
2010 | 15 | 16.85% | 25 | 18.12% | 21 | 18.92% | 46 | 19.74% | 51 | 19.25% | 38 | 23.90% |
2011 | 19 | 21.35% | 20 | 14.49% | 20 | 18.02% | 50 | 21.46% | 53 | 20.00% | 32 | 20.13% |
2012 | 16 | 17.98% | 23 | 16.67% | 26 | 23.42% | 51 | 21.89% | 55 | 20.75% | 33 | 20.75% |
2013 | 21 | 23.60% | 30 | 21.74% | 23 | 20.72% | 49 | 21.03% | 59 | 22.26% | 31 | 19.50% |
2014 | 18 | 20.22% | 40 | 28.99% | 21 | 18.92% | 37 | 15.88% | 47 | 17.74% | 25 | 15.72% |
Charlson Comorbidity Index c,d | ||||||||||||
0 | 329 | 97.34% | 227 | 97.42% | 247 | 93.21% | 146 | 91.82% | ||||
1–3 | 9 | 2.66% | 6 | 2.58% | 18 | 6.79% | 13 | 8.18% | ||||
Receiving Treatment—Chemotherapy b,d | ||||||||||||
No | 12 | 13.48% | 17 | 12.32% | 9 | 8.11% | 28 | 12.02% | 52 | 19.62% | 31 | 19.50% |
Yes | 77 | 86.52% | 121 | 87.68% | 102 | 91.89% | 205 | 87.98% | 213 | 80.38% | 128 | 80.50% |
Receiving Treatment—Radiotherapy b | ||||||||||||
No | 53 | 59.55% | 85 | 61.59% | 61 | 54.95% | 120 | 51.50% | 141 | 53.21% | 84 | 52.83% |
Yes | 36 | 40.45% | 53 | 38.41% | 50 | 45.05% | 113 | 48.50% | 124 | 46.79% | 75 | 47.17% |
Receiving Care—Home Care b | ||||||||||||
No | 47 | 52.81% | 71 | 51.45% | 53 | 47.75% | 105 | 45.06% | 133 | 50.19% | 76 | 47.80% |
Yes | 42 | 47.19% | 67 | 48.55% | 58 | 52.25% | 128 | 54.94% | 132 | 49.81% | 83 | 52.20% |
Receiving Care—Palliative Care b,d | ||||||||||||
No | 42 | 47.19% | 51 | 36.96% | 41 | 36.94% | 73 | 31.33% | 67 | 25.28% | 33 | 20.75% |
Yes | 47 | 52.81% | 87 | 63.04% | 70 | 63.06% | 160 | 68.67% | 198 | 74.72% | 126 | 79.25% |
ER Visits/Person Month e | ||||||||||||
Mean ER Visits/Person Month | 0.10 | 0.10 | 0.08 | 0.12 | 0.14 | 0.17 |
Group Number (Membership %) | Parameter | Estimate | Standard Error | Test | p-Value |
---|---|---|---|---|---|
1 (11.49%) | Chemotherapy | −0.10 | 0.06 | −1.67 | 0.0944 |
Radiotherapy * | 0.60 | 0.13 | 4.71 | <0.0001 | |
Home Care * | 0.35 | 0.09 | 3.82 | 0.0001 | |
Palliative Care * | 0.38 | 0.07 | 5.35 | <0.0001 | |
2 (9.86%) | Chemotherapy * | −0.15 | 0.06 | −2.66 | 0.0079 |
Radiotherapy * | 0.43 | 0.11 | 3.76 | 0.0002 | |
Home Care | 0.11 | 0.08 | 1.47 | 0.1412 | |
Palliative Care | 0.12 | 0.06 | 1.89 | 0.0592 | |
3 (12.10%) | Chemotherapy | −0.06 | 0.06 | −1.10 | 0.2734 |
Radiotherapy * | 0.43 | 0.11 | 4.01 | 0.0001 | |
Home Care | 0.02 | 0.10 | 0.19 | 0.8466 | |
Palliative Care * | 0.37 | 0.06 | 5.68 | <0.0001 | |
4 (24.63%) | Chemotherapy | −0.07 | 0.04 | −1.74 | 0.0822 |
Radiotherapy * | 0.25 | 0.08 | 3.36 | 0.0008 | |
Home Care * | 0.17 | 0.06 | 2.81 | 0.0050 | |
Palliative Care * | 0.34 | 0.05 | 7.47 | <0.0001 | |
5 (26.48%) | Chemotherapy * | −0.16 | 0.04 | −3.80 | 0.0001 |
Radiotherapy * | 0.24 | 0.08 | 3.02 | 0.0025 | |
Home Care * | 0.22 | 0.06 | 3.92 | 0.0001 | |
Palliative Care * | 0.15 | 0.04 | 3.43 | 0.0006 | |
6 (15.44%) | Chemotherapy | 0.01 | 0.05 | 0.18 | 0.8568 |
Radiotherapy * | 0.30 | 0.11 | 2.83 | 0.0047 | |
Home Care * | −0.14 | 0.07 | −2.02 | 0.0430 | |
Palliative Care | −0.004 | 0.06 | −0.07 | 0.9469 |
Group 1 (n = 121) | Group 2 (n = 93) | Group 3 (n = 114) | Group 4 (n = 245) | Group 5 (n = 271) | Group 6 (n = 151) | |
---|---|---|---|---|---|---|
Chemotherapy (Y) | 88.43% | 86.02% | 87.72% | 88.98% | 81.18% | 80.13% |
Radiotherapy (Y) | 36.36% | 43.01% | 47.37% | 48.16% | 46.86% | 45.03% |
Home Care (Y) | 52.89% | 49.46% | 50.88% | 53.06% | 49.45% | 51.66% |
Palliative Care (Y) | 66.12% | 58.06% | 62.28% | 66.53% | 74.17% | 78.81% |
Radiotherapy + Chemotherapy (Y) | 33.88% | 36.56% | 40.35% | 42.45% | 37.64% | 38.41% |
Radiotherapy + Home Care (Y) | 23.14% | 20.43% | 25.44% | 26.94% | 25.09% | 25.17% |
Radiotherapy + Palliative Care (Y) | 25.62% | 24.73% | 32.46% | 35.1% | 35.06% | 37.09% |
Home Care + Chemotherapy (Y) | 50.41% | 45.16% | 46.49% | 48.16% | 43.17% | 42.38% |
Home Care + Palliative Care (Y) | 38.84% | 32.26% | 33.33% | 37.55% | 39.85% | 41.06% |
Palliative Care + Chemotherapy (Y) | 60.33% | 52.69% | 54.39% | 61.22% | 62.73% | 62.91% |
Chemotherapy + Radiotherapy + Home Care + Palliative Care (Y) | 17.36% | 12.90% | 15.79% | 17.96% | 16.97% | 18.54% |
Time to Death <= 3 Years | 44.63% | 19.35% | 20.18% | 41.22% | 47.23% | 56.95% |
Time to Death >3 Years | 5.79% | 15.05% | 10.53% | 8.98% | 6.64% | 8.61% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budhwani, S.; Moineddin, R.; Wodchis, W.P.; Zimmermann, C.; Howell, D. Longitudinal Symptom Burden Trajectories in a Population-Based Cohort of Women with Metastatic Breast Cancer: A Group-Based Trajectory Modeling Analysis. Curr. Oncol. 2021, 28, 879-897. https://doi.org/10.3390/curroncol28010087
Budhwani S, Moineddin R, Wodchis WP, Zimmermann C, Howell D. Longitudinal Symptom Burden Trajectories in a Population-Based Cohort of Women with Metastatic Breast Cancer: A Group-Based Trajectory Modeling Analysis. Current Oncology. 2021; 28(1):879-897. https://doi.org/10.3390/curroncol28010087
Chicago/Turabian StyleBudhwani, Suman, Rahim Moineddin, Walter P. Wodchis, Camilla Zimmermann, and Doris Howell. 2021. "Longitudinal Symptom Burden Trajectories in a Population-Based Cohort of Women with Metastatic Breast Cancer: A Group-Based Trajectory Modeling Analysis" Current Oncology 28, no. 1: 879-897. https://doi.org/10.3390/curroncol28010087
APA StyleBudhwani, S., Moineddin, R., Wodchis, W. P., Zimmermann, C., & Howell, D. (2021). Longitudinal Symptom Burden Trajectories in a Population-Based Cohort of Women with Metastatic Breast Cancer: A Group-Based Trajectory Modeling Analysis. Current Oncology, 28(1), 879-897. https://doi.org/10.3390/curroncol28010087