Next Article in Journal
Software Defects Prediction Based on Hybrid Beetle Antennae Search Algorithm and Artificial Bee Colony Algorithm with Comparison
Next Article in Special Issue
A Brief Overview and Survey of the Scientific Work by Feng Qi
Previous Article in Journal
A Simultaneous Estimation of the Baseline Intensity and Parameters for Modulated Renewal Processes
Previous Article in Special Issue
Context-Free Grammars for Several Triangular Arrays
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Several Double Inequalities for Integer Powers of the Sinc and Sinhc Functions with Applications to the Neuman–Sándor Mean and the First Seiffert Mean

1
Department of Basic Courses, Zhengzhou University of Science and Technology, Zhengzhou 450064, China
2
School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454010, China
3
Independent Researcher, Dallas, TX 75252-8024, USA
*
Author to whom correspondence should be addressed.
Axioms 2022, 11(7), 304; https://doi.org/10.3390/axioms11070304
Submission received: 27 May 2022 / Revised: 18 June 2022 / Accepted: 21 June 2022 / Published: 23 June 2022

Abstract

:
In the paper, the authors establish a general inequality for the hyperbolic functions, extend the newly-established inequality to trigonometric functions, obtain some new inequalities involving the inverse sine and inverse hyperbolic sine functions, and apply these inequalities to the Neuman–Sándor mean and the first Seiffert mean.

1. Introduction

For s , t > 0 with s t , the Neuman–Sándor mean M ( s , t ) , the first Seiffert mean P ( s , t ) , and the second Seiffert mean T ( s , t ) are, respectively, defined in [1,2,3] by
M ( s , t ) = s t 2 arcsinh s t s + t , P ( s , t ) = s t 4 arctan s t π , T ( s , t ) = s t 2 arctan s t s + t ,
where arcsinh x = ln x + x 2 + 1 denotes the inverse hyperbolic sine function. The first Seiffert mean P ( s , t ) can be rewritten ([1], Equation (2.4)) as
P ( s , t ) = s t 2 arcsin s t s + t .
Recently, these bivariate mean values have been the subject of intensive research. In particular, many remarkable inequalities and properties for the means M ( s , t ) , P ( s , t ) , and T ( s , t ) can be found in the literature [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20].
Let A ( s , t ) = s + t 2 , H ( s , t ) = 2 s t s + t , and C ( s , t ) = s 2 + t 2 s + t be the arithmetic, harmonic, and contra-harmonic mean of two positive numbers s and t. The inequalities
H ( s , t ) < P ( s , t ) < A ( s , t ) < T ( s , t ) < C ( s , t )
hold for all s , t > 0 with s t .
In [1,21], it was established that
P ( s , t ) < M ( s , t ) < T 2 ( s , t ) , A ( s , t ) < M ( s , t ) < T ( s , t ) ,
A ( s , t ) T ( s , t ) < M 2 ( s , t ) < A 2 ( s , t ) + T 2 ( s , t ) 2
for s , t > 0 with s t .
For z C , the functions
sinc z = { sin z z , z 0 1 , z = 0 and sinhc z = { sinh z z , z 0 1 , z = 0
are called the sinc function and hyperbolic sinc function, respectively. The function sinc z is also called the sine cardinal or sampling function, and the function sinhc z is also called the hyperbolic sine cardinal; see [22]. The sinc function sinc z arises frequently in signal processing, the theory of Fourier transforms, and other areas in mathematics, physics, and engineering. It is easy to see that these two functions sinc z and sinhc z are analytic on C , that is, they are entire functions.
In [23], the authors obtained double inequalities of the Neuman–Sándor meansin terms of the arithmetic and contra-harmonic means, and they deduced that the inequalities
1 β 1 1 1 cosh 2 θ < 1 sinhc θ < 1 α 1 1 1 cosh 2 θ , 1 β 2 1 1 cosh 4 θ < 1 sinhc 2 θ < 1 α 2 1 1 cosh 4 θ , 1 + α 3 cosh 4 θ 1 < sinhc 2 θ < 1 + β 3 cosh 4 θ 1
hold for θ ( 0 , ln ( 1 + 2 ) ) if and only if
α 1 1 6 and β 1 2 1 ln 1 + 2 = 0.237253 , α 2 1 6 and β 2 4 3 1 ln 2 1 + 2 = 0.297574 , α 3 1 ln 2 1 + 2 3 ln 2 1 + 2 = 0.095767 and β 3 1 6
respectively.
In this paper, motivated by those double inequalities in (3), we will obtain necessary and sufficient conditions on α and β such that double inequalities
1 α + α cosh 2 r x < sinhc r x < 1 β + β cosh 2 r x
and
1 α + α cos 2 r x < sinc r x < 1 β + β cos 2 r x
are valid on ( , ) for some ranges of r R . Hereafter, substituting the double inequalities (4) and (5) into the Neuman–Sándor mean M ( s , t ) and the first Seiffert means P ( s , t ) , we will derive generalizations of some inequalities for the Neuman–Sándor mean M ( s , t ) and the first Seiffert means P ( s , t ) .

2. Lemmas

To achieve our main purposes, we need the following lemmas.
Lemma 1
([24], Theorem 1.25). For < s < t < , let f , g be continuous on [ s , t ] , differentiable on ( s , t ) , and g ( x ) 0 on ( s , t ) . If the ratio f ( x ) g ( x ) is increasing on ( s , t ) , so are the functions f ( x ) f ( s ) g ( x ) g ( s ) and f ( x ) f ( t ) g ( x ) g ( t ) .
Lemma 2
([25], Lemma 1.1). Suppose that the power series f ( x ) = n = 0 a n x n and g ( x ) = n = 0 b n x n have the radius r > 0 of convergence and b n > 0 for all n N 0 = { 0 , 1 , 2 , } . Let h ( x ) = f ( x ) g ( x ) . Then the following statements are true.
1. 
If the sequence { a n b n } n = 0 is increasing, so is the function h ( x ) on ( 0 , r ) .
2. 
If the sequence { a n b n } is increasing for 0 < n n 0 and decreasing for n > n 0 , then there exists x 0 ( 0 , r ) such that h ( x ) is increasing on ( 0 , x 0 ) and decreasing on ( x 0 , r ) .
The classical Bernoulli numbers B n for n 0 are generated in ([26], p. 3) by
z e z 1 = n = 0 B n z n n ! = 1 z 2 + n = 1 B 2 n z 2 n ( 2 n ) ! | z | < 2 π .
In the recent papers [27,28,29], some novel results for the even-indexed Bernoulli numbers B 2 n were discovered.
Lemma 3
([30]). Let B 2 n be the even-indexed Bernoulli numbers. Then
x sin x = 1 + n = 1 2 2 n 2 ( 2 n ) ! | B 2 n | x 2 n , 0 < | x | < π .
Lemma 4
([30,31,32]). Let B 2 n be the even-indexed Bernoulli numbers. Then
cot x = 1 x n = 1 2 2 n ( 2 n ) ! | B 2 n | x 2 n 1
and
1 sin 2 x = csc 2 x = 1 x 2 + n = 1 2 2 n ( 2 n 1 ) ( 2 n ) ! | B 2 n | x 2 n 2
for 0 < | x | < π .
Lemma 5.
The function
h 1 ( x ) = 2 sinh 2 x cosh x x sinh x x 2 cosh 3 x x sinh x cosh x x sinh 2 x ( x cosh x sinh x )
is increasing on ( 0 , ) and has the limits
lim x 0 + h 1 ( x ) = 17 25 and lim x h 1 ( x ) = 1 .
Proof. 
Let
A ( x ) = 2 sinh 2 x cosh x x sinh x x 2 cosh 3 x
and
B ( x ) = x sinh x cosh x x sinh 2 x ( x cosh x sinh x ) .
Straightforward computation gives
A ( x ) = 2 cosh 3 x 2 cosh x x sinh x x 2 cosh 3 x = cosh 3 x 2 cosh x 2 x 2 cosh 3 x 4 3 x 2 cosh x 4 x sinh x = 1 2 n = 0 ( 3 x ) 2 n ( 2 n ) ! 1 2 n = 0 x 2 n ( 2 n ) ! x 2 4 n = 0 ( 3 x ) 2 n ( 2 n ) ! 3 x 2 4 n = 0 x 2 n ( 2 n ) ! x n = 0 x 2 n + 1 ( 2 n + 1 ) ! = 1 2 n = 0 ( 3 x ) 2 n + 2 ( 2 n + 2 ) ! 1 2 n = 0 x 2 n + 2 ( 2 n + 2 ) ! 1 4 n = 0 3 2 n x 2 n + 2 ( 2 n ) ! 3 4 n = 0 x 2 n + 2 ( 2 n ) ! n = 0 x 2 n + 2 ( 2 n + 1 ) ! = 1 2 n = 2 3 2 n ( 2 n 2 3 n + 8 ) 6 n 2 13 n 8 ( 2 n + 2 ) ! x 2 n + 2
and
B ( x ) = x 2 cosh x 2 x sinh x x 2 sinh 2 x cosh x + sinh 2 x cosh x = x 2 cosh x 2 x sinh x x 2 cosh 3 x 4 + x 2 cosh x 4 + cosh 3 x 4 cosh x 4 = 5 4 n = 0 x 2 n + 2 ( 2 n ) ! 2 n = 0 x 2 n + 2 ( 2 n + 1 ) ! 1 4 n = 0 3 2 n x 2 n + 2 ( 2 n ) ! + 1 4 n = 0 ( 3 x ) 2 n ( 2 n ) ! 1 4 n = 0 x 2 n ( 2 n ) ! = 1 4 n = 2 3 2 n ( 4 n 2 6 n + 7 ) + 20 n 2 + 14 n 7 ( 2 n + 2 ) ! x 2 n + 2 .
Let
a n = 3 2 n ( 2 n 2 3 n + 8 ) 6 n 2 13 n 8 2 ( 2 n + 2 ) !
and
b n = 3 2 n ( 4 n 2 6 n + 7 ) + 20 n 2 + 14 n 7 4 ( 2 n + 2 ) ! .
Simple computation leads to
a n = 3 2 n ( 2 n 2 3 n + 8 ) 6 n 2 13 n 8 2 ( 2 n + 2 ) ! 3 4 ( 2 n 2 3 n + 8 ) 6 n 2 13 n 8 2 ( 2 n + 2 ) ! = 168 n 2 256 n + 640 2 ( 2 n + 2 ) ! 272 ( 2 n + 2 ) ! < 0
for all n N and n 2 , whereas, for all n N and n 2 ,
b n = 3 2 n ( 4 n 2 6 n + 7 ) + 20 n 2 + 14 n 7 4 ( 2 n + 2 ) ! 3 4 ( 4 n 2 6 n + 7 ) + 20 n 2 + 14 n 7 4 ( 2 n + 2 ) ! = 304 n 2 472 n + 560 4 ( 2 n + 2 ) ! 400 ( 2 n + 2 ) ! < 0 .
Consequently, we obtain
c n = a n b n = 2 × 3 2 n ( 2 n 2 + 3 n 8 ) + 6 n 2 + 13 n + 8 3 2 n ( 4 n 2 + 6 n 7 ) 20 n 2 14 n + 7 = 9 n ( 4 n 2 + 6 n 16 ) + 12 n 2 + 26 n + 16 9 n ( 4 n 2 + 6 n 7 ) 20 n 2 14 n + 7 = 1 + 9 n + 1 + 32 n 2 + 40 n + 9 9 n ( 4 n 2 + 6 n 7 ) 20 n 2 14 n + 7 1 + k ( n )
for n N and n 2 . Let
k ( x ) = 9 x + 1 + 32 x 2 + 40 x + 9 9 x ( 4 x 2 + 6 x 7 ) 20 x 2 14 x + 7
for x [ 2 , ) . Then
k ( x ) = ( x ) [ 9 x ( 4 x 2 + 6 x 7 ) 20 x 2 14 x + 7 ] 2 ,
where
( x ) = 9 x + 1 ln 9 + 64 x + 40 9 x 4 x 2 + 6 x 7 20 x 2 14 x + 7 9 x + 1 + 32 x 2 + 40 x + 9 9 x 4 x 2 + 6 x 7 ln 9 + 9 x ( 8 x + 6 ) 40 x 14 = 9 2 x + 1 ( 8 x + 6 ) + 9 x 9 20 x 2 + 14 x 7 4 x 2 + 6 x 7 32 x 2 + 40 x + 9 ln 9 + 9 x ( 64 x + 40 ) 4 x 2 + 6 x 7 9 ( 40 x + 14 ) ( 8 x + 6 ) 32 x 2 + 40 x + 9 ( 64 x + 40 ) 20 x 2 + 14 x 7 + ( 40 x + 14 ) 32 x 2 + 40 x + 9 = 9 2 x + 1 ( 8 x + 6 ) + 9 x 352 x + 128 x 2 352 x 3 128 x 4 ln 9 + 9 x × 4 115 220 x + 8 x 2 + 406 + 808 x + 352 x 2 = 2 × 9 x 9 x + 1 ( 3 + 4 x ) + 176 x + 64 x 2 176 x 3 64 x 4 ln 9 230 440 x + 16 x 2 + 406 + 808 x + 352 x 2 .
Let
m ( x ) = 9 x + 1 ( 3 + 4 x ) + 176 x + 64 x 2 176 x 3 64 x 4 ln 9 230 440 x + 16 x 2 .
Then
m ( x ) = 9 x + 1 ln 9 ( 3 + 4 x ) + 4 × 9 x + 1 + 176 + 128 x 528 x 2 256 x 3 ln 9 440 + 32 x , m ( 2 ) = 4219 ln 9 + 2412 > 0 , m ( x ) = ln 2 9 × 9 x + 1 ( 3 + 4 x ) + 8 ln 9 × 9 x + 1 + 128 1056 x 768 x 2 ln 9 + 32 , m ( 2 ) = 8019 ln 2 9 + 776 ln 9 + 32 > 0 , m ( 3 ) ( x ) = ln 3 9 × 9 x + 1 ( 3 + 4 x ) + 12 ln 2 9 × 9 x + 1 + 1056 1536 x ln 9 , m ( 3 ) ( 2 ) = 8019 ln 3 9 + 8748 ln 2 9 2112 ln 9 > 0 , m ( 4 ) ( x ) = ln 4 9 × 9 x + 1 ( 3 + 4 x ) + 16 ln 3 9 × 9 x + 1 1536 ln 9 > ln 4 9 × 9 x + 1 ( 3 + 4 x ) + 11664 ln 3 9 1536 ln 9 > 0
on [ 2 , ) . Therefore, the function m ( x ) is increasing on [ 2 , ) and
m ( 2 ) = 6973 1824 ln 9 > 1501 > 0 .
Hence, it follows that ( x ) > 0 and the function k ( x ) is increasing on [ 2 , ) .
According to (10), we can observe that c n is increasing for n N and n 2 . Thus, based on Lemma 2, the function h 1 ( x ) = A ( x ) B ( x ) is increasing on ( 0 , ) .
The limits in (8) are straightforward. The proof of Lemma 5 is complete. □

3. Necessary and Sufficient Conditions

Now we are in a position to state and prove our main results.
Theorem 1.
Let x , r R .
1. 
When r 8 25 , the double inequality (4) holds if and only if α 0 and β 1 6 .
2. 
When r < 0 , the right-hand side of the inequality (4) holds if and only if β 1 6 .
Proof. 
Let
F ( x ) = sinhc r x 1 cosh 2 r x 1 f 1 ( x ) f 2 ( x ) ,
where f 1 ( x ) = sinhc r x 1 and f 2 ( x ) = cosh 2 r x 1 . Then
f 1 ( x ) f 2 ( x ) = sinh r 2 x ( x cosh x sinh x ) 2 x r + 1 cosh 2 r 1 x
and
f 1 ( x ) f 2 ( x ) = r 1 2 sinh x x cosh 2 x r 2 x sinh x cosh x x sinh 2 x x 2 cosh 3 x x cosh x sinh x x 2 sinh x cosh x + 1 2 sinh x x cosh 2 x r 1 2 sinh 2 x cosh x x 2 cosh 3 x x sinh x x 3 sinh 2 x cosh 2 x = 1 2 sinh x x cosh 2 x r 2 1 x 4 sinh x cosh 4 x [ ( r 1 ) x sinh x cosh x x sinh 2 x × ( x cosh x sinh x ) + 2 sinh 2 x cosh x x sinh x x 2 cosh 3 x ] = 1 2 sinh x x cosh 2 x r 2 x sinh x cosh x x sinh 2 x ( x cosh x sinh x ) x 4 sinh x cosh 4 x × r 1 + 2 sinh 2 x cosh x x sinh x x 2 cosh 3 x x sinh x cosh x x sinh 2 x ( x cosh x sinh x ) = 1 2 sinh x x cosh 2 x r 2 B ( x ) x 4 sinh x cosh 4 x [ r 1 + h 1 ( x ) ] .
Based on the result (9) in the proof of Lemma 5, we can observe that the function B ( x ) < 0 .
When r 8 25 and x ( 0 , ) , we have r 1 + h 1 ( x ) > 0 , and then f 1 ( x ) f 2 ( x ) is decreasing on ( 0 , ) . Accordingly, by Lemma 1, the function F ( x ) = f 1 ( x ) f 2 ( x ) = f 1 ( x ) f 1 ( 0 + ) f 2 ( x ) f 2 ( 0 + ) is decreasing on ( 0 , ) .
When r < 0 and x ( 0 , ) , we have r 1 + h 1 ( x ) < 0 , and then f 1 ( x ) f 2 ( x ) is increasing on ( 0 , ) . Accordingly, based on Lemma 1, the function F ( x ) = f 1 ( x ) f 2 ( x ) = f 1 ( x ) f 1 ( 0 + ) f 2 ( x ) f 2 ( 0 + ) is increasing on ( 0 , ) .
It is straightforward that lim x 0 + F ( x ) = 1 6 . The proof of Theorem 1 is thus complete. □
Corollary 1.
Let r > 0 and x R . Then the inequality
1 sinhc r x < 1 α + α 1 cosh x 2 r
holds if and only if α 1 6 .
Corollary 2.
Let x R . Then
1 cosh 2 x < 1 sinhc x < 5 6 + 1 6 cosh 2 x < 1 < sinhc x < 5 6 + cosh 2 x 6 < cosh 2 x .
Corollary 3.
Let t 0 . Then
1 1 + t 2 < arcsinh t t < 5 6 + 1 6 ( 1 + t 2 ) < 1 < t arcsinh t < 5 6 + 1 + t 2 6 < 1 + t 2 .
Theorem 2.
Let r R . For x 0 , π 2 ,
1. 
when r 1 2 , the double inequality (5) holds if and only if α 1 2 π r and β 1 6 ;
2. 
when 0 < r 8 25 , the double inequality (5) holds if and only if α 1 6 and β 1 2 π r ;
3. 
when r < 0 , then the right-hand side inequality in (5) holds if and only if β 1 6 .
Proof. 
Let
G ( x ) = sinc r x 1 cos 2 r x 1 g 1 ( x ) g 2 ( x ) ,
where g 1 ( x ) = sinc r x 1 and g 2 ( x ) = cos 2 r x 1 . Then
g 1 ( x ) g 2 ( x ) = 1 2 sin x x cos 2 x r 1 x cos x sin x x 2 sin x cos x
and
g 1 ( x ) g 2 ( x ) = r 1 2 sin x x cos 2 x r 2 x sin x cos x + x sin 2 x x 2 cos 3 x sin x x cos x x 2 sin x cos x + 1 2 sin x x cos 2 x r 1 x 2 cos 3 x + x sin x 2 sin 2 x cos x x 3 sin 2 x cos 2 x = 1 2 sin x x cos 2 x r 2 1 x 4 sin x cos 4 x [ ( r 1 ) x sin x cos x + x sin 2 x × ( sin x x cos x ) + x 2 cos 3 x + x sin x 2 sin 2 x cos x ] = 1 2 sin x x cos 2 x r 2 2 x sin x sin 2 x cos x x 2 cos x x 2 sin 2 x cos x x 4 sin x cos 4 x × r + 2 x 2 cos x x sin x sin 2 x cos x 2 x sin x sin 2 x cos x x 2 cos x x 2 sin 2 x cos x = 1 2 sin x x cos 2 x r 2 2 x sin x sin 2 x cos x x 2 cos x x 2 sin 2 x cos x x 4 sin x cos 4 x [ r + u ( x ) ] ,
where
u ( x ) = 2 x 2 cos x x sin x sin 2 x cos x 2 x sin x sin 2 x cos x x 2 cos x x 2 sin 2 x cos x = 2 x 2 sin 2 x 2 x sin 2 x 1 4 x sin 2 x 1 x 2 sin 2 x x 2 D ( x ) E ( x )
with
D ( x ) = 2 x 2 sin 2 x 2 x sin 2 x 1 and E ( x ) = 4 x sin 2 x 1 x 2 sin 2 x x 2 .
By virtue of (6) and (7), we have
D ( x ) = 2 x 2 1 x 2 + n = 1 2 2 n ( 2 n 1 ) ( 2 n ) ! | B 2 n | x 2 n 2 1 + n = 1 2 2 n 2 ( 2 n ) ! | B 2 n | ( 2 x ) 2 n 1 = n = 1 2 2 n + 1 ( 2 n 1 ) ( 2 n ) ! | B 2 n | x 2 n n = 1 2 2 n 2 ( 2 n ) ! | B 2 n | ( 2 x ) 2 n = n = 2 2 2 n 4 n 2 2 n ( 2 n ) ! | B 2 n | x 2 n n = 2 d n x 2 n
and
E ( x ) = 2 1 + n = 1 2 2 n 2 ( 2 n ) ! | B 2 n | ( 2 x ) 2 n x 2 1 x 2 + n = 1 2 2 n ( 2 n 1 ) ( 2 n ) ! | B 2 n | x 2 n 2 x 2 1 = n = 1 2 2 n + 1 2 n 3 2 2 n ( 2 n ) ! | B 2 n | x 2 n x 2 = n = 2 2 2 n + 1 2 n 3 2 2 n ( 2 n ) ! | B 2 n | x 2 n n = 2 e n x 2 n ,
where
d n = 2 2 n 4 n 2 2 n ( 2 n ) ! | B 2 n | and e n = 2 2 n + 1 2 n 3 2 2 n ( 2 n ) ! | B 2 n | > 0 .
Since the sequence c n = d n e n = 4 n 2 2 n 2 2 n + 1 2 n 3 for n = 2 , 3 , is decreasing, according to Lemma 2, the function u ( x ) = D ( x ) E ( x ) is decreasing from 0 , π 2 onto 1 2 , 8 25 . When r 1 2 , the function g 1 ( x ) g 2 ( x ) is increasing on 0 , π 2 , and based on Lemma 1, the function G ( x ) = g 1 ( x ) g 2 ( x ) = g 1 ( x ) g 1 ( 0 + ) g 2 ( x ) g 2 ( 0 + ) is increasing on 0 , π 2 . When r 8 25 , the function g 1 ( x ) g 2 ( x ) is decreasing on 0 , π 2 , and according to Lemma 1, the function G ( x ) = g 1 ( x ) g 2 ( x ) = g 1 ( x ) g 1 ( 0 + ) g 2 ( x ) g 2 ( 0 + ) is decreasing on 0 , π 2 .
It is straightforward that lim x 0 + G ( x ) = 1 6 . The proof of Theorem 2 is thus complete. □
Corollary 4.
Let r > 0 and | x | < π / 2 . Then the inequality
1 sinc r x < 1 α + α 1 cos x 2 r
holds if and only if α 1 6 .
Corollary 5.
Let | x | π 2 . Then
cos 2 x < cos x < sinc x < 5 6 + cos 2 x 6 < 1 < 1 sinc x < 5 6 + 1 6 cos 2 x < 1 cos 2 x .
Corollary 6.
Let t ( 0 , 1 ) . Then
1 t 2 < t arcsin t < 5 6 + 1 t 2 6 < 1 < arcsin t t < 5 6 + 1 6 ( 1 t 2 ) < 1 1 t 2 .

4. Applications of Necessary and Sufficient Conditions

In this section, using Theorems 1 and 2, we can obtain the following inequalities.
Theorem 3.
Let s , t > 0 with s t . When r 8 25 , the double inequality
α C r ( s , t ) + ( 1 α ) A r ( s , t ) < M r ( s , t ) < β C r ( s , t ) + ( 1 β ) A r ( s , t )
holds if and only if α 1 2 r 1 1 ln r ( 1 + 2 ) ln r ( 1 + 2 ) and β 1 6 ; when r < 0 , the inequality (11) holds if and only if α 1 2 r 1 1 ln r ( 1 + 2 ) ln r ( 1 + 2 ) and β 1 6 .
Proof. 
Without loss of generality, we assume that s > t > 0 . Let u = s t s + t . Then u ( 0 , 1 ) and
M r ( s , t ) A r ( s , t ) C r ( s , t ) A r ( s , t ) = u r arcsinh r u 1 ( 1 + u 2 ) r 1 .
Let t = sinh θ . Then θ 0 , ln 1 + 2 and
M r ( s , t ) A r ( s , t ) C r ( s , t ) A r ( s , t ) = sinh r θ θ r 1 cosh 2 r θ 1 F ( θ ) .
Using Theorem 1, we can observe that, when r 8 25 , the function F ( θ ) is decreasing on the interval 0 , ln 1 + 2 , whereas F ( θ ) is increasing on 0 , ln 1 + 2 for r < 0 .
According to L’Hospital’s rule, we have
lim θ 0 + F ( θ ) = 1 6 and lim θ ln ( 1 + 2 ) F ( θ ) = 1 2 r 1 1 ln r ( 1 + 2 ) ln r ( 1 + 2 ) .
The proof of Theorem 3 is thus complete. □
Theorem 4.
Let s , t > 0 with s t . Then the double inequality
α H r ( s , t ) + ( 1 α ) A r ( s , t ) < P r ( s , t ) < β H r ( s , t ) + ( 1 β ) A r ( s , t )
holds if and only if
{ for r 1 2 , α 1 2 π r and β 1 6 ; for 0 < r 8 25 , α 1 6 and β 1 2 π r ; for r < 0 , α 0 and β 1 6 .
Proof. 
Without the loss of generality, we assume that s > t > 0 . Let v = s t s + t . Then v ( 0 , 1 ) and
P r ( s , t ) A r ( s , t ) H r ( s , t ) A r ( s , t ) = v r arcsin r v 1 ( 1 v 2 ) r 1 .
Let v = sin θ . Then θ 0 , π 2 and
P r ( s , t ) A r ( s , t ) H r ( s , t ) A r ( s , t ) = sin r θ θ r 1 cos 2 r θ 1 G ( θ ) .
By virtue of Theorem 2, we can observe that, when r ( , 0 ) 0 , 8 25 , the function G ( θ ) is decreasing on 0 , π 2 , whereas G ( θ ) is increasing on 0 , π 2 for r 1 2 .
Using L’Hospital’s rule, we obtain the limits lim θ 0 + G ( θ ) = 1 6 and
lim θ ( π / 2 ) G ( θ ) = { 1 2 π r , r > 0 ; 0 , r < 0 .
The proof of Theorem 4 is thus complete. □
Corollary 7.
For all s , t > 0 with s t ,
1. 
The double inequality
α 1 H ( s , t ) + 1 α 1 A ( s , t ) < 1 P ( s , t ) < β 1 H ( s , t ) + 1 β 1 A ( s , t )
holds if and only if
α 1 2 1 ln 1 + 2 = 0.237253 and β 1 1 6 ;
2. 
The double inequality
α 2 H 2 ( s , t ) + 1 α 2 A 2 ( s , t ) < 1 P 2 ( s , t ) < β 2 H 2 ( s , t ) + 1 β 2 A 2 ( s , t )
holds if and only if α 2 0 and β 2 1 6 ;
3. 
The double inequality
α 3 H ( s , t ) + ( 1 α 3 ) A ( s , t ) < P ( s , t ) < β 3 H ( s , t ) + ( 1 β 3 ) A ( s , t )
holds if and only if
α 3 1 2 π = 0.36338 , and β 3 1 6 ;
4. 
The double inequality
α 4 H 2 ( s , t ) + ( 1 α 4 ) A 2 ( s , t ) < P 2 ( s , t ) < β 4 H 2 ( s , t ) + ( 1 β 4 ) A 2 ( s , t )
holds if and only if
α 4 1 2 π 2 = 0.594715 and β 4 1 6 .
Corollary 8.
For all s , t > 0 with s t , then
H ( s , t ) < 1 2 π H ( s , t ) + 2 π A ( s , t ) < P ( s , t ) < 1 6 H ( s , t ) + 5 6 A ( s , t ) < A ( s , t ) < 1 ln 1 + 2 ln 1 + 2 C ( s , t ) + 2 ln 1 + 2 1 ln 1 + 2 A ( s , t ) < M ( s , t ) < 1 6 C ( s , t ) + 5 6 A ( s , t ) < C ( s , t ) .

5. Remarks

Remark 1.
When taking r = 2 , 1 , 1 , 2 in Theorem 1, we can obtain the results reported in [13,23].
Remark 2.
The inequality chain (12) improves the left-hand sides of inequalities (1) and (2).
Remark 3.
From sinh ( z i ) = i sin z , it follows that sinhc ( z i ) = sinc z . This relation is possibly available to simplify proofs of the main results in this paper.
Remark 4.
In [33,34,35,36], series expansions of the functions
arcsin t t r , arcsinh t t r , ( arccos x ) 2 2 ( 1 x ) r , ( arccosh x ) 2 2 ( 1 x ) r , ( arccos t ) r , ( arccosh t ) r
for r R were established. These series expansions are possibly available to prove the main results presented in this paper.

6. Conclusions

In this paper, we have established some inequalities for the trigonometric functions and hyperbolic functions. These results can trigger further investigations on inequalities involving trigonometric and hyperbolic functions. The techniques used in this paper are suitable for proving and establishing many other inequalities involving the Neuman–Sándor mean, the Seiffert mean, the Toader mean, and so on.

Author Contributions

Writing—original draft, W.-H.L., Q.-X.S. and B.-N.G. All authors contributed equally to the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors thank anonymous referees for their careful corrections to and valuable comments on the original version of this paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Neuman, E.; Sándor, J. On the Schwab-Borchardt mean. Math. Pannon. 2003, 14, 253–266. [Google Scholar]
  2. Seiffert, H.-J. Aufgabe β 16. Wurzel 1995, 29, 221–222. [Google Scholar]
  3. Seiffert, H.-J. Problem 887. Nieuw Arch. Wiskd. 1993, 11, 176. [Google Scholar]
  4. Chu, Y.-M.; Long, B.-L. Bounds of the Neuman–Sándor mean using power and identric means. Abstr. Appl. Anal. 2013, 2013, 6. [Google Scholar] [CrossRef]
  5. Chu, Y.-M.; Long, B.-L.; Gong, W.-M.; Song, Y.-Q. Sharp bounds for Seiffert and Neuman–Sándor means in terms of generalized logarithmic means. J. Inequal. Appl. 2013, 2013, 13. [Google Scholar] [CrossRef] [Green Version]
  6. Chu, Y.-M.; Wang, M.-K.; Gong, W.-M. Two sharp double inequalities for Seiffert mean. J. Inequal. Appl. 2011, 2011, 7. [Google Scholar] [CrossRef] [Green Version]
  7. Chu, Y.-M.; Zong, C.; Wang, G.-D. Optimal convex combination bounds of Seiffert and geometric means for the arithmetic mean. J. Math. Inequal. 2011, 5, 429–434. [Google Scholar] [CrossRef] [Green Version]
  8. Jiang, W.-D. Some sharp inequalities involving reciprocals of the Seiffert and other means. J. Math. Inequal. 2012, 6, 593–599. [Google Scholar] [CrossRef] [Green Version]
  9. Jiang, W.-D.; Qi, F. Sharp bounds for Neuman-Sándor’s mean in terms of the root-mean-square. Period. Math. Hungar. 2014, 69, 134–138. [Google Scholar] [CrossRef] [Green Version]
  10. Jiang, W.-D.; Qi, F. Sharp bounds for the Neuman-Sándor mean in terms of the power and contraharmonic means. Cogent Math. 2015, 2, 7. [Google Scholar] [CrossRef] [Green Version]
  11. Li, Y.-M.; Long, B.-Y.; Chu, Y.-M. Sharp bounds for the Neuman-Sándor mean in terms of generalized logarithmic mean. J. Math. Inequal. 2012, 6, 567–577. [Google Scholar] [CrossRef]
  12. Liu, H.; Meng, X.-J. The optimal convex combination bounds for Seiffert’s mean. J. Inequal. Appl. 2011, 2011, 9. [Google Scholar] [CrossRef] [Green Version]
  13. Neuman, E. A note on a certain bivariate mean. J. Math. Inequal. 2012, 6, 637–643. [Google Scholar] [CrossRef] [Green Version]
  14. Neuman, E. Inequalities for the Schwab-Borchardt mean and their applications. J. Math. Inequal. 2011, 5, 601–609. [Google Scholar] [CrossRef] [Green Version]
  15. Qi, F.; Li, W.-H. A unified proof of inequalities and some new inequalities involving Neuman–Sándor mean. Miskolc Math. Notes 2014, 15, 665–675. [Google Scholar] [CrossRef]
  16. Sun, H.; Shen, X.-H.; Zhao, T.-H.; Chu, Y.-M. Optimal bounds for the Neuman-Sándor means in terms of geometric and contraharmonic means. Appl. Math. Sci. (Ruse) 2013, 7, 4363–4373. [Google Scholar] [CrossRef] [Green Version]
  17. Sun, H.; Zhao, T.-H.; Chu, Y.-M.; Liu, B.-Y. A note on the Neuman-Sándor mean. J. Math. Inequal. 2014, 8, 287–297. [Google Scholar] [CrossRef] [Green Version]
  18. Wang, M.-K.; Chu, Y.-M.; Liu, B.-Y. Sharp inequalities for the Neuman-Sándor mean in terms of arithmetic and contra-harmonic means. Rev. Anal. Numér. Théor. Approx. 2013, 42, 115–120. [Google Scholar]
  19. Zhao, T.-H.; Chu, Y.-M. A sharp double inequality involving identric, Neuman-Sándor, and quadratic means. Sci. Sin. Math. 2013, 43, 551–562. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
  20. Zhao, T.-H.; Chu, Y.-M.; Liu, B.-Y. Optimal bounds for Neuman-Sándor mean in terms of the convex cobinations of harmonic, geometric, quadratic, and contra-harmonic means. Abstr. Appl. Anal. 2012, 2012, 9. [Google Scholar] [CrossRef]
  21. Neuman, E.; Sándor, J. On the Schwab-Borchardt mean II. Math. Pannon. 2006, 17, 49–59. [Google Scholar]
  22. Sánchez-Reyes, J. The hyperbolic sine cardinal and the catenary. Coll. Math. J. 2012, 43, 285–290. [Google Scholar] [CrossRef]
  23. Li, W.-H.; Miao, P.; Guo, B.-N. Bounds for the Neuman–Sándor mean in terms of the arithmetic and contra-harmonic means. Axioms 2022, 11, 236. [Google Scholar] [CrossRef]
  24. Anderson, G.D.; Vamanamurthy, M.K.; Vuorinen, M. Conformal Invariants, Inequalities, and Quasiconformal Maps; John Wiley & Sons: New York, NY, USA, 1997. [Google Scholar]
  25. Simić, S.; Vuorinen, M. Landen inequalities for zero-balanced hypergeometric function. Abstr. Appl. Anal. 2012, 2012, 11. [Google Scholar] [CrossRef]
  26. Temme, N.M. Special Functions: An Introduction to Classical Functions of Mathematical Physics; A Wiley-Interscience Publication; publisher-name>John Wiley & Sons, Inc.: New York, NY, USA, 1996. [Google Scholar] [CrossRef]
  27. Qi, F. A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers. J. Comput. Appl. Math. 2019, 351, 1–5. [Google Scholar] [CrossRef]
  28. Qi, F. On signs of certain Toeplitz–Hessenberg determinants whose elements involve Bernoulli numbers. Contrib. Discrete Math. 2022, 17, 2. Available online: https://www.researchgate.net/publication/356579520 (accessed on 22 June 2022).
  29. Shuang, Y.; Guo, B.-N.; Qi, F. Logarithmic convexity and increasing property of the Bernoulli numbers and their ratios. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2021, 115, 12. [Google Scholar] [CrossRef]
  30. Qi, F.; Taylor, P. Several series expansions for real powers and several formulas for partial Bell polynomials of sinc and sinhc functions in terms of central factorial and Stirling numbers of second kind. arXiv 2022, arXiv:2204.05612. [Google Scholar]
  31. Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; National Bureau of Standards, Applied Mathematics Series 55, 10th Printing; Dover Publications: New York, NY, USA; Washington, DC, USA, 1972. [Google Scholar]
  32. Jeffrey, A. Handbook of Mathematical Formulas and Integrals, 3rd ed.; Elsevier Academic Press: San Diego, CA, USA, 2004. [Google Scholar]
  33. Guo, B.-N.; Lim, D.; Qi, F. Maclaurin’s series expansions for positive integer powers of inverse (hyperbolic) sine and tangent functions, closed-form formula of specific partial Bell polynomials, and series representation of generalized logsine function. Appl. Anal. Discrete Math. 2022, 16, 2. [Google Scholar] [CrossRef]
  34. Guo, B.-N.; Lim, D.; Qi, F. Series expansions of powers of arcsine, closed forms for special values of Bell polynomials, and series representations of generalized logsine functions. AIMS Math. 2021, 6, 7494–7517. [Google Scholar] [CrossRef]
  35. Qi, F. Explicit Formulas for Partial Bell Polynomials, Maclaurin’s Series Expansions of Real Powers of Inverse (Hyperbolic) Cosine and Sine, and Series Representations of Powers of Pi; Research Square: Durham, NC, USA, 2021. [Google Scholar] [CrossRef]
  36. Qi, F. Taylor’s series expansions for real powers of functions containing squares of inverse (hyperbolic) cosine functions, explicit formulas for special partial Bell polynomials, and series representations for powers of circular constant. arXiv 2021, arXiv:2110.02749. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Li, W.-H.; Shen, Q.-X.; Guo, B.-N. Several Double Inequalities for Integer Powers of the Sinc and Sinhc Functions with Applications to the Neuman–Sándor Mean and the First Seiffert Mean. Axioms 2022, 11, 304. https://doi.org/10.3390/axioms11070304

AMA Style

Li W-H, Shen Q-X, Guo B-N. Several Double Inequalities for Integer Powers of the Sinc and Sinhc Functions with Applications to the Neuman–Sándor Mean and the First Seiffert Mean. Axioms. 2022; 11(7):304. https://doi.org/10.3390/axioms11070304

Chicago/Turabian Style

Li, Wen-Hui, Qi-Xia Shen, and Bai-Ni Guo. 2022. "Several Double Inequalities for Integer Powers of the Sinc and Sinhc Functions with Applications to the Neuman–Sándor Mean and the First Seiffert Mean" Axioms 11, no. 7: 304. https://doi.org/10.3390/axioms11070304

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop