Assessment of Myocardial Viability After the STICH-Trial: Still Viable?
Summary
Introduction
Timing of coronary revascularisation
Extent and severity of myocardial ischaemia
Stage of the myocardial remodelling process
Suboptimal imaging protocols for viability assessment and evaluation
Application in clinical practice
- a)
- transmural necrosis,
- b)
- nontransmural necrosis and no ischaemic component.
- a)
- nontransmural necrosis with viable but ischaemic, compromised myocardium,
- b)
- completely viable and ischaemic, compromised myocardium.
Role of echocardiograpy and magnetic resonance imaging in viability assessment
Conclusions
Funding
Conflicts of Interest
References
- Hunt, S.A.; Abraham, W.T.; Chin, M.H.; Feldman, A.M.; Francis, G.S.; Ganiats, T.G.; et al. Focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009, 53, e1–e90. [Google Scholar]
- Owens, A.T.; Jessup, M. The year in heart failure. J Am Coll Cardiol. 2012, 60, 359–368. [Google Scholar] [CrossRef]
- Ezekowitz, J.A.; Kaul, P.; Bakal, J.A.; Armstrong, P.W.; Welsh, R.C.; McAlister, F.A. Declining in-hospital mortality and increasing heart failure incidence in elderly patients with first myocardial infarction. J Am Coll Cardiol. 2009, 53, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Sahul, Z.H.; Mukherjee, R.; Song, J.; McAteer, J.; Stroud, R.E.; Dione, D.P.; et al. Targeted imaging of the spatial and temporal variation of matrix metalloproteinase activity in a porcine model of postinfarct remodeling: relationship to myocardial dysfunction. Circ Cardiovasc Imaging. 2011, 4, 381–391. [Google Scholar] [CrossRef]
- Shirani, J.; Dilsizian, V. Imaging left ventricular remodeling: targeting the neurohumoral axis. Nat Clin Pract Cardiovasc Med. 2008, 5 (Suppl. 2), S57–S62. [Google Scholar] [CrossRef] [PubMed]
- Marshall, R.C.; Tillisch, J.H.; Phelps, M.E.; Huang, S.C.; Carson, R.; Henze, E.; et al. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, 18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation. 1983, 67, 766–778. [Google Scholar] [CrossRef]
- Tillisch, J.; Brunken, R.; Marshall, R.; Schwaiger, M.; Mandelkern, M.; Phelps, M.; et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med. 1986, 314, 884–888. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, N.; Rimoldi, O.E.; Beanlands, R.S.; Camici, P.G. Assessment of myocardial ischaemia and viability: role of positron emission tomography. Eur Heart J. 2010, 31, 2984–2995. [Google Scholar] [CrossRef]
- Bax, J.J.; Schinkel, A.F.; Boersma, E.; Rizzello, V.; Elhendy, A.; Maat, A.; et al. Early versus delayed revascularization in patients with ischemic cardiomyopathy and substantial viability: impact on outcome. Circulation. 2003, 108 (Suppl. 1), II39–II42. [Google Scholar] [CrossRef]
- Allman, K.C.; Shaw, L.J.; Hachamovitch, R.; Udelson, J.E. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a metaanalysis. J Am Coll Cardiol. 2002, 39, 1151–1158. [Google Scholar] [CrossRef]
- Rahimtoola, S.H. Hibernating myocardium has reduced blood flow at rest that increases with low-dose dobutamine. Circulation. 1996, 94, 3055–3061. [Google Scholar] [CrossRef]
- Rahimtoola, S.H. Clinical aspects of hibernating myocardium. J Mol Cell Cardiol. 1996, 28, 2397–2401. [Google Scholar] [CrossRef]
- Schinkel, A.F.; Bax, J.J.; Poldermans, D.; Elhendy, A.; Ferrari, R.; Rahimtoola, S.H. Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol. 2007, 32, 375–410. [Google Scholar] [CrossRef]
- Partington, S.L.; Kwong, R.Y.; Dorbala, S. Multimodality imaging in the assessment of myocardial viability. Heart Fail Rev. 2011, 16, 381–395. [Google Scholar] [CrossRef]
- Di Carli, M.F. Myocardial Viability Assessment with PET and PET/CT. Springer: New York, 2007. [Google Scholar]
- Carrel, T.; Jenni, R.; Haubold-Reuter, S.; von Schulthess, G.; Pasic, M.; Turina, M. Improvement of severely reduced left ventricular function after surgical revascularization in patients with preoperative myocardial infarction. Eur J Cardiothorac Surg. 1992, 6, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Di Carli, M.F.; Asgarzadie, F.; Schelbert, H.R.; Brunken, R.C.; Laks, H.; Phelps, M.E.; et al. Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation. 1995, 92, 3436–3444. [Google Scholar] [CrossRef]
- Di Carli, M.F.; Davidson, M.; Little, R.; Khanna, S.; Mody, F.V.; Brunken, R.C.; et al. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol. 1994, 73, 527–533. [Google Scholar] [CrossRef]
- Auerbach, M.A.; Schoder, H.; Hoh, C.; Gambhir, S.S.; Yaghoubi, S.; Sayre, J.W.; et al. Prevalence of myocardial viability as detected by positron emission tomography in patients with ischemic cardiomyopathy. Circulation. 1999, 99, 2921–2926. [Google Scholar] [CrossRef] [PubMed]
- D’Egidio, G.; Nichol, G.; Williams, K.A.; D’Egidio, G.; Nichol, G.; Williams, K.A.; et al. Increasing benefit from revascularization is associated with increasing amounts of myocardial hibernation: a substudy of the PARR-2 trial. JACC Cardiovasc Imaging. 2009, 2, 1060–1068. [Google Scholar] [CrossRef] [PubMed]
- Elsasser, A.; Muller, K.D.; Skwara, W.; Bode, C.; Kubler, W.; Vogt, A.M. Severe energy deprivation of human hibernating myocardium as possible common pathomechanism of contractile dysfunction, structural degeneration and cell death. J Am Coll Cardiol. 2002, 39, 1189–1198. [Google Scholar] [CrossRef]
- Bonow, R.O.; Maurer, G.; Lee, K.L.; Holly, T.A.; Binkley, P.F.; Desvigne-Nickens, P.; et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med. 2011, 364, 1617–1625. [Google Scholar] [CrossRef] [PubMed]
- Beanlands, R.S.; Hendry, P.J.; Masters, R.G.; deKemp, R.A.; Woodend, K.; Ruddy, T.D. Delay in revascularization is associated with increased mortality rate in patients with severe left ventricular dysfunction and viable myocardium on fluorine 18-fluorodeoxyglucose positron emission tomography imaging. Circulation. 1998, 98 (Suppl. 19), II51–II56. [Google Scholar] [PubMed]
- Beanlands, R.S.; Nichol, G.; Huszti, E.; Humen, D.; Racine, N.; Freeman, M.; et al. F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (PARR2). J Am Coll Cardiol. 2007, 50, 2002–2012. [Google Scholar] [CrossRef]
- Schwarz, E.R.; Schoendube, F.A.; Kostin, S.; Schmiedtke, N.; Schulz, G.; Buell, U.; et al. Prolonged myocardial hibernation exacerbates cardiomyocyte degeneration and impairs recovery of function after revascularization. J Am Coll Cardiol. 1998, 31, 1018–1026. [Google Scholar] [CrossRef]
- Elsasser, A.; Vogt, A.M.; Nef, H.; Kostin, S.; Möllmann, H.; Skwara, W.; et al. Human hibernating myocardium is jeopardized by apoptotic and autophagic cell death. J Am Coll Cardiol. 2004, 43, 2191–2199. [Google Scholar] [CrossRef]
- Tarakji, K.G.; Brunken, R.; McCarthy, P.M.; Al-Chekakie, M.O.; Abdel-Latif, A.; Pothier, C.E.; et al. Myocardial viability testing and the effect of early intervention in patients with advanced left ventricular systolic dysfunction. Circulation. 2006, 113, 230–237. [Google Scholar] [CrossRef]
- Bax, J.J.; Schinkel, A.F.; Boersma, E.; Elhendy, A.; Rizzello, V.; Maat, A.; et al. Extensive left ventricular remodeling does not allow viable myocardium to improve in left ventricular ejection fraction after revascularization and is associated with worse long-term prognosis. Circulation. 2004, 110 (Suppl. 1), II18–II22. [Google Scholar] [CrossRef]
- Vanoverschelde, J.L.; Wijns, W.; Depre, C.; Essamri, B.; Heyndrickx, G.R.; Borgers, M.; et al. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation. 1993, 87, 1513–1523. [Google Scholar] [CrossRef]
- Bonow, R.O. Contractile reserve and coronary blood flow reserve in collateral-dependent myocardium. J Am Coll Cardiol. 1999, 33, 705–707. [Google Scholar]
- Meier, P.; Gloekler, S.; Zbinden, R.; Beckh, S.; de Marchi, S.F.; Zbinden, S.; et al. Beneficial effect of recruitable collaterals: a 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation. 2007, 116, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Schindler, T.H.; Schelbert, H.R.; Quercioli, A.; Dilsizian, V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging. 2010, 3, 623–640. [Google Scholar] [CrossRef]
- Schindler, T.H.; Schelbert, H.R.; Quercioli, A.; Dilsizian, V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging. 2010, 3, 623–640. [Google Scholar] [CrossRef]
- Hochman, J.S.; Lamas, G.A.; Buller, C.E.; Dzavik, V.; Reynolds, H.R.; Abramsky, S.J.; et al. Coronary intervention for persistent occlusion after myocardial infarction. N Engl J Med. 2006, 355, 2395–2407. [Google Scholar] [CrossRef]
- Hochman, J.S.; Reynolds, H.R.; Dzavik, V.; Buller, C.E.; Ruzyllo, W.; Sadowski, Z.P.; et al. Long-term effects of percutaneous coronary intervention of the totally occluded infarct-related artery in the subacute phase after myocardial infarction. Circulation 2011, 124, 2320–2328. [Google Scholar] [CrossRef] [PubMed]
- Beanlands, R.S.; Labinaz, M.; Ruddy, T.D.; Marquis, J.F.; Williams, W.; LeMay, M.; et al. Establishing an approach for patients with recent coronary occlusion: identification of viable myocardium. J Nucl Cardiol. 1999, 6, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Desideri, A.; Cortigiani, L.; Christen, A.I.; Coscarelli, S.; Gregori, D.; Zanco, P.; et al. The extent of perfusion-F18-fluorodeoxyglucose positron emission tomography mismatch determines mortality in medically treated patients with chronic ischemic left ventricular dysfunction. J Am Coll Cardiol. 2005, 46, 1264–1269. [Google Scholar] [CrossRef] [PubMed]
- Louie, H.W.; Laks, H.; Milgalter, E.; Drinkwater, D.C. Jr.; Hamilton, M.A.; Brunken, R.C.; et al. Ischemic cardiomyopathy. Criteria for coronary revascularization and cardiac transplantation. Circulation. 1991, 84 (Suppl. 5), III290–II295. [Google Scholar]
- Yamaguchi, A.; Ino, T.; Adachi, H.; Murata, S.; Kamio, H.; Okada, M.; et al. Left ventricular volume predicts postoperative course in patients with ischemic cardiomyopathy. Ann Thorac Surg. 1998, 65, 434–438. [Google Scholar] [CrossRef]
- Dilsizian, V.; Perrone-Filardi, P.; Arrighi, J.A.; Bacharach, S.L.; Quyyumi, A.A.; Freedman, N.M.; et al. Concordance and discordance between stressredistribution-reinjection and rest-redistribution thallium imaging for assessing viable myocardium. Comparison with metabolic activity by positron emission tomography. Circulation. 1993, 88, 941–952. [Google Scholar] [CrossRef]
- Berman, D.S.; Kiat, H.; Friedman, J.D.; Wang, F.P.; van Train, K.; Matzer, L.; et al. Separate acquisition rest thallium-201/stress technetium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: a clinical validation study. J Am Coll Cardiol. 1993, 22, 1455–1464. [Google Scholar] [CrossRef]
- Sciagra, R.; Bisi, G.; Santoro, G.M.; Zerauschek, F.; Sestini, S.; Pedenovi, P.; et al. Comparison of baseline-nitrate technetium-99m sestamibi with restredistribution thallium-201 tomography in detecting viable hibernating myocardium and predicting postrevascularization recovery. J Am Coll Cardiol. 1997, 30, 384–391. [Google Scholar] [CrossRef]
- Perrone-Filardi, P.; Pinto, F.J. Looking for myocardial viability after a STICH trial: not enough to close the door. J Nucl Med. 2012, 53, 349–352. [Google Scholar] [CrossRef]
- Camici, P.G.; Prasad, S.K.; Rimoldi, O.E. Stunning, hibernation, and assessment of myocardial viability. Circulation. 2008, 117, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.J.; Wu, E.; Rafael, A.; Chen, E.L.; Parker, M.A.; Simonetti, O.; et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000, 343, 1445–1453. [Google Scholar] [CrossRef]
- Dilsizian, V.; Arrighi, J.A.; Diodati, J.G.; Quyyumi, A.A.; Alavi, K.; Bacharach, S.L.; et al. Myocardial viability in patients with chronic coronary artery disease. Comparison of 99mTc-sestamibi with thallium reinjection and [18F]fluorodeoxyglucose. Circulation. 1994, 89, 578–587. [Google Scholar] [PubMed]
- Bonow, R.O.; Dilsizian, V.; Cuocolo, A.; Bacharach, S.L. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction. Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-fluorodeoxyglucose. Circulation. 1991, 83, 26–37. [Google Scholar]
- Brunken, R.C.; Mody, F.V.; Hawkins, R.A.; Nienaber, C.; Phelps, M.E.; Schelbert, H.R. Positron emission tomography detects metabolic viability in myocardium with persistent 24-hour single-photon emission computed tomography 201Tl defects. Circulation. 1992, 86, 1357–1369. [Google Scholar] [CrossRef]
- Akinboboye, O.O.; Idris, O.; Cannon, P.J.; Bergmann, S.R. Usefulness of positron emission tomography in defining myocardial viability in patients referred for cardiac transplantation. Am J Cardiol. 1999, 83, 1271–1274. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, N.; Kawamoto, M.; Takahashi, N.; Yonekura, Y.; Magata, Y.; Nohara, R.; et al. Prognostic value of an increase in fluorine-18 deoxyglucose uptake in patients with myocardial infarction: comparison with stress thallium imaging. J Am Coll Cardiol. 1993, 22, 1621–1627. [Google Scholar] [CrossRef]
- Dreyfus, G.D.; Duboc, D.; Blasco, A.; Vigoni, F.; Dubois, C.; Brodaty, D.; et al. Myocardial viability assessment in ischemic cardiomyopathy: benefits of coronary revascularization. Ann Thorac Surg. 1994, 57, 1402–1407. [Google Scholar] [CrossRef]
- Marin-Neto, J.A.; Dilsizian, V.; Arrighi, J.A.; Freedman, N.M.; Perrone-Filardi, P.; Bacharach, S.L.; et al. Thallium reinjection demonstrates viable myocardium in regions with reverse redistribution. Circulation. 1993, 88 Pt 1, 1736–1745. [Google Scholar] [CrossRef] [PubMed]
- Dilsizian, V. Cardiac magnetic resonance versus SPECT: are all noninfarct myocardial regions created equal? J Nucl Cardiol. 2007, 14, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Wellnhofer, E.; Olariu, A.; Klein, C.; Grafe, M.; Wahl, A.; Fleck, E.; et al. Magnetic resonance low-dose dobutamine test is superior to scar quantification for the prediction of functional recovery. Circulation. 2004, 109, 2172–2174. [Google Scholar] [CrossRef] [PubMed]
- Dall’Armellina, E.; Karia, N.; Lindsay, A.C.; Karamitsos, T.D.; Ferreira, V.; Robson, M.D.; et al. Dynamic changes of edema and late gadolinium enhancement after acute myocardial infarction and their relationship to functional recovery and salvage index. Circ Cardiovasc Imaging. 2011, 4, 228–236. [Google Scholar] [CrossRef]
- Roes, S.D.; Kaandorp, T.A.; Marsan, N.A.; Westenberg, J.J.; Dibbets-Schneider, P.; Stokkel, M.P.; et al. Agreement and disagreement between contrastenhanced magnetic resonance imaging and nuclear imaging for assessment of myocardial viability. Eur J Nucl Med Mol Imaging. 2009, 36, 594–601. [Google Scholar] [CrossRef]
- Wu, Y.W.; Tadamura, E.; Yamamuro, M.; Kanao, S.; Marui, A.; Tanabara, K.; et al. Comparison of contrast-enhanced MRI with (18)F-FDG PET/201Tl SPECT in dysfunctional myocardium: relation to early functional outcome after surgical revascularization in chronic ischemic heart disease. J Nucl Med. 2007, 48, 1096–1103. [Google Scholar] [CrossRef]
- Knuesel, P.R.; Nanz, D.; Wyss, C.; Buechi, M.; Kaufmann, P.A.; von Schulthess, G.K.; et al. Characterization of dysfunctional myocardium by positron emission tomography and magnetic resonance: relation to functional outcome after revascularization. Circulation. 2003, 108, 1095–1100. [Google Scholar] [CrossRef]
- Dwivedi, G.; Al-Shehri, H.; Dekemp, R.A.; Ali, I.; Alghamdi, A.A.; Klein, R.; et al. Scar imaging using multislice computed tomography versus metabolic imaging by F-18 FDG positron emission tomography: A pilot study. Int J Cardiol [Epub ahead of print]. 2012. [Google Scholar] [CrossRef] [PubMed]
© 2013 by the author. Attribution - Non-Commercial - NoDerivatives 4.0.
Share and Cite
Valenta, I.; Quercioli, A.; Ruddy, T.T.; Schindler, T.H. Assessment of Myocardial Viability After the STICH-Trial: Still Viable? Cardiovasc. Med. 2013, 16, 289. https://doi.org/10.4414/cvm.2013.00189
Valenta I, Quercioli A, Ruddy TT, Schindler TH. Assessment of Myocardial Viability After the STICH-Trial: Still Viable? Cardiovascular Medicine. 2013; 16(11):289. https://doi.org/10.4414/cvm.2013.00189
Chicago/Turabian StyleValenta, Ines, Alessandra Quercioli, Terrence T. Ruddy, and Thomas H. Schindler. 2013. "Assessment of Myocardial Viability After the STICH-Trial: Still Viable?" Cardiovascular Medicine 16, no. 11: 289. https://doi.org/10.4414/cvm.2013.00189
APA StyleValenta, I., Quercioli, A., Ruddy, T. T., & Schindler, T. H. (2013). Assessment of Myocardial Viability After the STICH-Trial: Still Viable? Cardiovascular Medicine, 16(11), 289. https://doi.org/10.4414/cvm.2013.00189