Ormona® SI and Ormona® RC—New Nutraceuticals with Geranylgeraniol, Tocotrienols, Anthocyanins, and Isoflavones—Decrease High-Fat Diet-Induced Dyslipidemia in Wistar Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Ethical Aspects
2.2. Material Test
2.3. Chemical Analysis
2.3.1. Tocotrienol and Geranylgeraniol Content Assessment
2.3.2. Isoflavones Quantification
2.4. Experimental Design
- OSI: Treated with Ormona® SI at 200 mg/kg/day;
- ORC: Treated with Ormona® RC at 200 mg/kg/day;
- SG: Treated with soybean germ only at 200 mg/kg/day;
- Simv.: Positive control, treated with simvastatin at 20 mg/kg/day;
- Simv. + OSI: Treated with Ormona® RC (200 mg/kg/day) plus simvastatin (20 mg/kg/day);
- DW: Negative control, treated only with distilled water.
2.4.1. Biochemical Assay
2.4.2. Aorta Scanning Electron Microscopy
2.4.3. Statistical Analysis
2.5. In Silico Analysis
3. Results
3.1. Chemical Analysis
3.2. Total Bilirubin
3.3. Total Cholesterol
3.4. Low-Density Lipoproteins
3.5. High-Density Lipoproteins
3.6. Triglycerides
3.7. Glucose
3.8. Aspartate Transaminase
3.9. Alanine Transaminase
3.10. Urea
3.11. Creatinine
3.12. Atherogenesis Formation
3.13. In Silico Results
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fulcher, J.; O’Connell, R.; Voysey, M.; Emberson, J.; Blackwell, L.; Mihaylova, B.; Simes, J.; Collins, R.; Kirby, A.; Colhoun, H.; et al. Efficacy and safety of LDL-lowering therapy among men and women: Meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet 2015, 385, 1397–1405. [Google Scholar] [CrossRef] [PubMed]
- Boekholdt, S.M.; Hovingh, G.K.; Mora, S.; Arsenault, B.J.; Amarenco, P.; Pedersen, T.R.; LaRosa, J.C.; Waters, D.D.; DeMicco, D.A.; Simes, R.J.; et al. Very Low Levels of Atherogenic Lipoproteins and the Risk for Cardiovascular Events: A meta-analysis of statin trials. J. Am. Coll. Cardiol. 2014, 64, 485–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, S.K.; Chin, K.-Y.; Suhaimi, F.H.; Ahmad, F.; Ima-Nirwana, S. Exploring the potential of tocotrienol from Bixa orellana as a single agent targeting metabolic syndrome and bone loss. Bone 2018, 116, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Madrid, R.; Aguilar-Espinosa, M.; Cardenas-Conejo, Y.; Garza-Caligaris, L.E. Carotenoid Derivates in Achiote (Bixa orellana) Seeds: Synthesis and Health Promoting Properties. Front. Plant Sci. 2016, 7, 1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilar, D.D.A.; Vilar, M.S.D.A.; Moura, T.F.A.D.L.E.; Raffin, F.N.; de Oliveira, M.R.; Franco, C.F.D.O.; de Athayde-Filho, P.F.; Diniz, M.D.F.F.M.; Barbosa-Filho, J.M. Traditional Uses, Chemical Constituents, and Biological Activities of Bixa orellana L.: A Review. Sci. World J. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.C.M.; Carvalho, H.D.O.; Gonçalves, D.E.S.; Picanço, K.R.T.; Santos, A.V.T.D.L.T.D.; da Silva, H.R.; Braga, F.S.; Bezerra, R.M.; Nunes, A.D.S.; Nazima, M.T.S.T.; et al. Co-Treatment of Purified Annatto Oil (Bixa orellana L.) and Its Granules (Chronic®) Improves the Blood Lipid Profile and Bone Protective Effects of Testosterone in the Orchiectomy-Induced Osteoporosis in Wistar Rats. Molecules 2021, 26, 4720. [Google Scholar] [CrossRef] [PubMed]
- Moradi, M.; Daneshzad, E.; Azadbakht, L. The effects of isolated soy protein, isolated soy isoflavones and soy protein containing isoflavones on serum lipids in postmenopausal women: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2019, 60, 3414–3428. [Google Scholar] [CrossRef]
- Hidalgo, L.A.; Chedraui, P.A.; Morocho, N.; Ross, S.; Miguel, G.S. The effect of red clover isoflavones on menopausal symptoms, lipids and vaginal cytology in menopausal women: A randomized, double-blind, placebo-controlled study. Gynecol. Endocrinol. 2005, 21, 257–264. [Google Scholar] [CrossRef]
- Da Silva, H.R.; Assis, D.D.C.D.; Prada, A.L.; Silva, J.O.C.; De Sousa, M.B.; Ferreira, A.M.; Amado, J.R.R.; Carvalho, H.D.O.; Santos, A.V.T.D.L.T.D.; Carvalho, J.C.T. Obtaining and characterization of anthocyanins from Euterpe oleracea (açaí) dry extract for nutraceutical and food preparations. Rev. Bras. Farm. 2019, 29, 677–685. [Google Scholar] [CrossRef]
- de Melo, E.L.; Pinto, A.M.; Baima, C.L.B.; da Silva, H.R.; Sena, I.D.S.; Sanchez-Ortiz, B.L.; Teixeira, A.V.T.D.L.; Pereira, A.C.M.; Barbosa, R.D.S.; Carvalho, H.O.; et al. Evaluation of the in vitro release of isoflavones from soybean germ associated with kefir culture in the gastrointestinal tract and anxiolytic and antidepressant actions in zebrafish (Danio rerio). J. Funct. Foods 2020, 70, 103986. [Google Scholar] [CrossRef]
- Faria E Souza, B.S.; Carvalho, H.O.; Taglialegna, T.; Barros, A.S.A.; da Cunha, E.L.; Ferreira, I.M.; Keita, H.; Navarrete, A.; Carvalho, J.C.T. Effect of Euterpe oleracea Mart. (Açaí) Oil on Dyslipidemia Caused by Cocos nucifera L. Saturated Fat in Wistar Rats. J. Med. Food 2017, 20, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Batista, M.A.; Santos, A.V.T.D.L.T.D.; Nascimento, A.L.D.; Moreira, L.F.; Souza, I.R.S.; da Silva, H.R.; Pereira, A.C.M.; Hage-Melim, L.I.D.S.; Carvalho, J.C.T. Potential of the Compounds from Bixa orellana Purified Annatto Oil and Its Granules (Chronic®) against Dyslipidemia and Inflammatory Diseases: In Silico Studies with Geranylgeraniol and Tocotrienols. Molecules 2022, 27, 1584. [Google Scholar] [CrossRef] [PubMed]
- Filimonov, D.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chem. Heterocycl. Compd. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Lagunin, A.; Zakharov, A.; Filimonov, D.; Poroikov, V. QSAR Modelling of Rat Acute Toxicity on the Basis of PASS Prediction. Mol. Inform. 2011, 30, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Rudik, A.; Dmitriev, A.; Lagunin, A.; Filimonov, D.; Poroikov, V. PASS-based prediction of metabolites detection in biological systems. SAR QSAR Environ. Res. 2019, 30, 751–758. [Google Scholar] [CrossRef]
- Druzhilovskiy, D.S.; Rudik, A.V.; Filimonov, D.A.; Gloriozova, T.A.; Lagunin, A.A.; Dmitriev, A.V.; Pogodin, P.V.; Dubovskaya, V.I.; Ivanov, S.M.; Tarasova, O.A.; et al. Computational platform Way2Drug: From the prediction of biological activity to drug repurposing. Bull. Acad. Sci. USSR Div. Chem. Sci. 2017, 66, 1832–1841. [Google Scholar] [CrossRef]
- Delwatta, S.L.; Gunatilake, M.; Baumans, V.; Seneviratne, M.D.; Dissanayaka, M.L.B.; Batagoda, S.S.; Udagedara, A.H.; Walpola, P.B. Reference values for selected hematological, biochemical and physiological parameters of Sprague-Dawley rats at the Animal House, Faculty of Medicine, University of Colombo, Sri Lanka. Anim. Model. Exp. Med. 2018, 1, 250–254. [Google Scholar] [CrossRef]
- Yusuf, D.; Davis, A.M.; Kleywegt, G.J.; Schmitt, S. An Alternative Method for the Evaluation of Docking Performance: RSR vs. RMSD. J. Chem. Inf. Model. 2008, 48, 1411–1422. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Pan, M.-H.; Ho, C.-T. Anti-obesity molecular mechanism of soy isoflavones: Weaving the way to new therapeutic routes. Food Funct. 2017, 8, 3831–3846. [Google Scholar] [CrossRef]
- Coon, J.T.; Pittler, M.H.; Ernst, E. Trifolium pratense isoflavones in the treatment of menopausal hot flushes: A systematic review and meta-analysis. Phytomedicine 2007, 14, 153–159. [Google Scholar] [CrossRef]
- Yokoyama, S.-I.; Kodera, M.; Hirai, A.; Nakada, M.; Ueno, Y.; Osawa, T. Red Clover (Trifolium pratense L.) Sprout Prevents Metabolic Syndrome. J. Nutr. Sci. Vitaminol. 2020, 66, 48–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanadys, W.; Baranska, A.; Jedrych, M.; Religioni, U.; Janiszewska, M. Effects of red clover (Trifolium pratense) isoflavones on the lipid profile of perimenopausal and postmenopausal women—A systematic review and meta-analysis. Maturitas 2020, 132, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Devi, K.; Fattepur, S.R.; Kochikuzhyil, B.M. Effect of saturated fatty acid-rich dietary vegetable oils on lipid profile, antioxidant enzymes and glucose tolerance in diabetic rats. Indian J. Pharmacol. 2010, 42, 142–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storlien, L.H.; Kriketos, A.D.; Jenkins, A.; Baur, L.; Pan, D.A.; Tapsell, L.C.; Calvert, G.D. Does Dietary Fat Influence Insulin Action? Ann. New York Acad. Sci. 1997, 827, 287–301. [Google Scholar] [CrossRef] [PubMed]
- Lefevre, M.; Kris-Etherton, P.M.; Zhao, G.; Tracy, R.P. Dietary fatty acids, hemostasis, and cardiovascular disease risk. J. Am. Diet. Assoc. 2004, 104, 410–419. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Yu, S. Individualfatty acid effects on plasma lipidsand lipoproteins: Human. Am. J. Clin. Nutr. 1997, 65, 1628S–1644S. [Google Scholar] [CrossRef] [Green Version]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers 2019, 5, 56. [Google Scholar] [CrossRef]
- Wong, S.K.; Kamisah, Y.; Mohamed, N.; Muhammad, N.; Masbah, N.; Fahami, N.A.M.; Mohamed, I.N.; Shuid, A.N.; Saad, Q.M.; Abdullah, A.; et al. Potential Role of Tocotrienols on Non-Communicable Diseases: A Review of Current Evidence. Nutrients 2020, 12, 259. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, M.M.; Elsabrouty, R.; Seemann, J.; Jo, Y.; A DeBose-Boyd, R. The prenyltransferase UBIAD1 is the target of geranylgeraniol in degradation of HMG CoA reductase. eLife 2015, 4, e05560. [Google Scholar] [CrossRef]
- Hussain, Y.; Ding, Q.; Connelly, P.W.; Brunt, J.H.; Ban, M.R.; McIntyre, A.D.; Huff, M.W.; Gros, R.; Hegele, R.A.; Feldman, R.D. G-Protein Estrogen Receptor as a Regulator of Low-Density Lipoprotein Cholesterol Metabolism: Cellular and population ge-netic studies. Arter. Thromb. Vasc. Biol. 2015, 35, 213–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savage, D.B.; Petersen, K.F.; Shulman, G.I. Disordered Lipid Metabolism and the Pathogenesis of Insulin Resistance. Physiol. Rev. 2007, 87, 507–520. [Google Scholar] [CrossRef] [PubMed]
- Lian, C.-Y.; Zhai, Z.-Z.; Li, Z.-F.; Wang, L. High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chem. Interact. 2020, 330, 109199. [Google Scholar] [CrossRef] [PubMed]
- Herman-Edelstein, M.; Scherzer, P.; Tobar, A.; Levi, M.; Gafter, U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J. Lipid Res. 2014, 55, 561–572. [Google Scholar] [CrossRef] [PubMed]
OSI | ORC | SG | Simv. | Simv. + OSI | DW | |
---|---|---|---|---|---|---|
Total bilirubin (mg/dL) | 0.107 ± 0.005 | 0.098 ± 0.01 | 0.092 ± 0.016 | 0.084 ± 0.013 | 0.07 ± 0.007 | 0.167 ± 0.015 |
Total cholesterol (mg/dL) | 71.75 ± 7.27 | 70.8 ± 5.76 | 70.4 ± 3.57 | 78.0 ± 16.31 | 83.4 ± 10.11 | 249.66 ± 190.89 |
LDL (mg/dL) | 4.75 ± 1.70 | 4.20 ± 1.30 | 3.40 ± 0.54 | 5.6 ± 1.81 | 5.25 ± 2.21 | 22.33 ± 8.96 |
HDL (mg/dL) | 47.5 ± 4.5 | 46.5 ± 5.19 | 49.00 ± 4.58 | 50.4 ± 9.15 | 53.80 ± 6.68 | 30.33 ± 2.88 |
Triglycerides (mg/dL) | 100.25 ± 25.23 | 142.20 ± 64.80 | 134.40 ± 30.62 | 150.80 ± 56.25 | 121.20 ± 32.55 | 1028.33 ± 460.39 |
Glucose (mg/dL) | 95.00 ± 11.04 | 102.6 ± 6.34 | 109.00 ± 5.70 | 110.4 ± 8.73 | 119.00 ± 8.68 | 391.00 ± 50.26 |
AST (U/L) | 93.10 ± 4.49 | 87.66 ± 6.83 | 98.42 ± 16.42 | 102.96 ± 17.55 | 82.84 ± 8.99 | 129.80 ± 32.82 |
ALT (U/L) | 42.35 ± 4.01 | 39.26 ± 6.68 | 48.23 ± 23.31 | 54.22 ± 18.82 | 39.96 ± 9.13 | 63.60 ± 43.98 |
Urea (mg/dL) | 36.50 ± 3.69 | 37.60 ± 2.40 | 39.20 ± 4.38 | 41.40 ± 4.50 | 44.40 ± 3.64 | 80.33 ± 29.02 |
Creatinine (mg/dL) | 0.65 ± 0.27 | 0.64 ± 0.032 | 0.642 ± 0.294 | 0.618 ± 0.022 | 0.610 ± 0.044 | 1.153 ± 0.26 |
Molecule | Pa | Pi | Activity predicted |
---|---|---|---|
Daidzein | 0.595 | 0.006 | Menopausal disorders treatment |
0.562 | 0.004 | Estrogen receptor agonist | |
0.582 | 0.009 | Bone disorders treatment | |
Genistein | 0.560 | 0.009 | Menopausal disorders treatment |
0.583 | 0.004 | Estrogen receptor agonist | |
0.584 | 0.009 | Bone disorders treatment | |
Glycitein | 0.592 | 0.007 | Menopausal disorders treatment |
0.469 | 0.005 | Estrogen receptor agonist | |
0.474 | 0.017 | Bone disorders treatment | |
Formononetin | 0.584 | 0.007 | Menopausal disorders treatment |
0.482 | 0.005 | Estrogen receptor agonist | |
Biochanin A | 0.549 | 0.009 | Menopausal disorders treatment |
0.522 | 0.005 | Estrogen receptor agonist | |
0.519 | 0.013 | Bone disorders treatment |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, A.P.S.; da Silva Barbosa, R.; Pereira, A.C.M.; Batista, M.A.; Sales, P.F.; Ferreira, A.M.; Colares, N.N.D.; da Silva, H.R.; Soares, M.O.d.S.; da Silva Hage-Melim, L.I.; et al. Ormona® SI and Ormona® RC—New Nutraceuticals with Geranylgeraniol, Tocotrienols, Anthocyanins, and Isoflavones—Decrease High-Fat Diet-Induced Dyslipidemia in Wistar Rats. Nutraceuticals 2022, 2, 311-322. https://doi.org/10.3390/nutraceuticals2040024
Rodrigues APS, da Silva Barbosa R, Pereira ACM, Batista MA, Sales PF, Ferreira AM, Colares NND, da Silva HR, Soares MOdS, da Silva Hage-Melim LI, et al. Ormona® SI and Ormona® RC—New Nutraceuticals with Geranylgeraniol, Tocotrienols, Anthocyanins, and Isoflavones—Decrease High-Fat Diet-Induced Dyslipidemia in Wistar Rats. Nutraceuticals. 2022; 2(4):311-322. https://doi.org/10.3390/nutraceuticals2040024
Chicago/Turabian StyleRodrigues, Ana Paula Santos, Raimundo da Silva Barbosa, Arlindo César Matias Pereira, Mateus Alves Batista, Priscila Faimann Sales, Adriana Maciel Ferreira, Nayara Nilcia Dias Colares, Heitor Ribeiro da Silva, Marcelo Oliveira dos Santos Soares, Lorane Izabel da Silva Hage-Melim, and et al. 2022. "Ormona® SI and Ormona® RC—New Nutraceuticals with Geranylgeraniol, Tocotrienols, Anthocyanins, and Isoflavones—Decrease High-Fat Diet-Induced Dyslipidemia in Wistar Rats" Nutraceuticals 2, no. 4: 311-322. https://doi.org/10.3390/nutraceuticals2040024
APA StyleRodrigues, A. P. S., da Silva Barbosa, R., Pereira, A. C. M., Batista, M. A., Sales, P. F., Ferreira, A. M., Colares, N. N. D., da Silva, H. R., Soares, M. O. d. S., da Silva Hage-Melim, L. I., & Carvalho, J. C. T. (2022). Ormona® SI and Ormona® RC—New Nutraceuticals with Geranylgeraniol, Tocotrienols, Anthocyanins, and Isoflavones—Decrease High-Fat Diet-Induced Dyslipidemia in Wistar Rats. Nutraceuticals, 2(4), 311-322. https://doi.org/10.3390/nutraceuticals2040024