A Comprehensive and Comparative Metabolomic Study of Two Nutraceutical-Containing Plants; Moringa oleifera and Solanum lycopersicum: A Review
Abstract
:1. Introduction
2. Comparison of Polyphenolic Profiles of Solanum lycopersicum and Moringa oleifera and Thier Resultant Antioxidant Activities
Structural Variation in Phenolic Acids and Flavones in Solanum lycopersicum and Moringa oleifera
Plant Species | Flavones | Phenolic acids | Bioactivity | Reference |
---|---|---|---|---|
Moringa oleifera | Apigenin | - | Anti-inflammatory, anti-Alzheimer’s activity | [7] |
- | Caffeic acids; gallic acid | Anti-diabetic and anti-obese properties; inhibits gluCose-6-phosphate translocase in rat liver | [39] | |
Isorhamnetin | - | Reduces human leukaemia cells | [40] | |
Kaempferol | - | Prevents DNA damage, antioxidant | [40,43] | |
Solanum lycopersicum | Quercetin glycoside | - | Inhibition of sodic-alkaline stress | [46] |
Kaempferol rutinoside | - | Inhibition of sodic-alkaline stress | [46] | |
- | Chlorogenic acids | Inhibition of galectin-3 | [47] | |
- | Ferulic acids | Inhibition of galectin-3 | [47] | |
- | Gallic acid | Inhibition of trichoderma harzianum | [48] | |
- | Salicylic acid | Inhibition of trichoderma harzianum | [48] | |
- | Caffeic acid | Nematode (Meloidogyne incognita) resistance | [49] | |
- | Phenylalanine | Resistance to drought stress | [50] | |
- | Tyrosine | Resistance to drought stress | [50] |
3. Similarities and Differences Due to Cytotoxic Potency against Cancerous Cells of Alkaloids Contained in Moringa oleifera and Solanum lycopersicum
3.1. Alkaloids in Moringa oleifera and Solanum lycopersicum
3.2. Comparison in Mechanism of Alkaloid Bioactivities of Solanum lycopersicum and Moringa oleifera
4. Challenges and Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montero-Vargas, J.M.; Castillo, K.C.; Martínez-Gallardo, N.; Ordaz-Ortiz, J.J.; Délano-Frier, J.P.; Winkler, R. Modulation of steroidal glycoalkaloid biosynthesis in tomato (Solanum lycopersicum) by jasmonic acid. Plant Sci. 2018, 277, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Dhakad, A.K.; Ikram, M.; Sharma, S.; Khan, S.; Pandey, V.V.; Singh, A. Biological, nutritional, and therapeutic significance of Moringa oleifera Lam. Phytother. Res. 2019, 33, 2870–2903. [Google Scholar] [CrossRef] [PubMed]
- Yooying, R.; Jittinandana, S.; Judprasong, K. Effects of cooking methods on antioxidant properties and carotenoids contents of Moringa oleifera Lam. pods. Walailak Procedia 2019, 2019, IC4IR-53. [Google Scholar] [CrossRef]
- Khera, P.; Pandey, M.K.; Wang, H.; Feng, S.; Qiao, L.; Culbreath, A.K.; Kale, A.K.; Wang, S.; Holbrook, C.C.; Zhaung, W.; et al. Mapping quantitative trait loci of resistance to tomato spotted wilt virus and leaf spots in a recombinant inbred line population of peanut (Arachis hypogaea L.) from SunOleic 97R and NC94022. PLoS ONE 2016, 11, e0158452. [Google Scholar] [CrossRef]
- Mvumi, C.; Ngadze, E.; Marais, D.; du Toit, E.S.; Mvumi, B.M. Moringa (Moringa oleifera) leaf extracts inhibit spore germination of Alternaria solani, causal agent of early blight disease of tomato (Solanum lycopersicum). S. Afr. J. Plant Soil 2017, 34, 161–165. [Google Scholar] [CrossRef]
- Elwan, H.A.M.; Elnesr, S.S.; Mohany, M.; Al-Rejaie, S.S. The effects of dietary tomato powder (Solanum lycopersicum L.) supplementation on ther haematological, immunological, serum biochemical antioxidant. J. Anim. Physiol. Anim. Nutr. 2019, 103, 534–546. [Google Scholar] [CrossRef]
- Makita, C.; Chimuka, L.; Steenkamp, P.; Cukrowska, E.; Madala, E. Comparative analyses of flavonoid content in Moringa oleifera and Moringa ovalifolia with the aid of UHPLC-qTOF-MS fingerprinting. S. Afr. J. Bot. 2016, 105, 116–122. [Google Scholar] [CrossRef]
- Lee, H.J.; Eom, S.H.; Lee, J.H.; Wi, S.H.; Kim, S.K.; Hyun, T.K. Genome-wide analysis of alternative splicing events during response to drought stress in tomato (Solanum lycopersicum L.). J. Hortic. Sci. Biotechnol. 2020, 95, 286–293. [Google Scholar] [CrossRef]
- Chu, C.; Du, Y.; Yu, X.; Shi, J.; Yuan, X.; Liu, X.; Liu, Y.; Zhang, H.; Zhang, Z.; Yan, N. Dynamics of antioxidant activities, metabolites, phenolic acids, flavonoids, and phenolic biosynthetic genes in germinating Chinese wild rice (Zizania latifolia). Food Chem. 2020, 318, 126483. [Google Scholar] [CrossRef]
- Ojiako, O.A.; Chikezie, P.C. Comparative proximate composition and hypoglycemic properties of three medicinal plants (Verononia amygdalina, Azadirachta indica and Moringa oleifera). Pharmacog. Commun. 2014, 4, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Tomás-Barberán, F.A.; Ferreres, F.; Gil, M.I. Antioxidant phenolic metabolites from fruit and vegetables and changes during postharvest storage and processing. Stud. Nat. Prod. Chem. 2000, 23, 739–795. [Google Scholar] [CrossRef]
- Fernández-Moriano, C.; Divakar, P.K.; Crespo, A.; Gómez-Serranillos, M.P. Neuroprotective activity and cytotoxic potential of two Parmeliaceae lichens: Identification of active compounds. Phytomedicine 2015, 22, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Chutulo, E.C.; Chalannavar, R.K. Endophytic mycoflora and their bioactive compounds from Azadirachta indica: A comprehensive review. J. Fungi 2018, 4, 42. [Google Scholar] [CrossRef] [PubMed]
- Kazmi, A.; Khan, M.A.; Huma, A.L.I. Biotechnological approaches for production of bioactive secondary metabolites in Nigella sativa: An up-to-date review. Int. J. Second. Metab. 2019, 6, 172–195. [Google Scholar] [CrossRef]
- Hasegawa, T.; Kato, Y.; Okabe, A.; Itoi, C.; Ooshiro, A.; Kawaide, H.; Natsume, M. Effect of secondary metabolites of tomato (Solanum lycopersicum) on chemotaxis of Ralstonia solanaceearum, Pathogen of Wilt disease. J. Agric. Food Chem. 2019, 67, 1807–1813. [Google Scholar] [CrossRef]
- Zeiss, D.R.; Mhlongo, M.I.; Tugizimana, F.; Steenkamp, P.A.; Dubery, I.A. Comparative metabolic phenotyping of tomato (Solanum lycopersicum) for the identification of metabolic signatures in cultivars differing in resistance to Ralstonia solanacearum. Int. J. Mol. Sci. 2018, 19, 2558. [Google Scholar] [CrossRef]
- Tshabalala, T.; Ncube, B.; Madala, N.E.; Nyakudya, T.T.; Moyo, H.P.; Sibanda, M.; Ndhlala, A.R. Scribbling the cat: A case of the “Miracle” Plant, Moringa oleifera. Plants 2019, 8, 510. [Google Scholar] [CrossRef]
- Ridzuan, N.I.; Abdullah, N.; Vun, Y.L.; Supramaniam, C.V. Micropropagation and defence enzymes assessment of Moringa oleifera L. plantlets using nodal segments as explant. S. Afr. J. Bot. 2020, 129, 56–61. [Google Scholar] [CrossRef]
- Steinbrenner, A.D.; Gómez, S.; Osorio, S.; Fernie, A.R.; Orians, C.M. Herbivore-induced changes in tomato (Solanum lycopersicum) primary metabolism: A whole plant perspective. J. Chem. Ecol. 2011, 37, 1294–1303. [Google Scholar] [CrossRef]
- de Falco, B.; Manzo, D.; Incerti, G.; Garonna, A.P.; Ercolano, M.; Lanzotti, V. Metabolomics approach based on NMR spectroscopy and multivariate data analysis to explore the interaction between the leafminer Tuta absoluta and tomato (Solanum lycopersicum). Phytochem. Anal. 2019, 30, 556–563. [Google Scholar] [CrossRef]
- Ahmadu, T.; Ahmad, K.; Ismail, S.I.; Rashed, O.; Asib, N.; Omar, D. Antifungal efficacy of Moringa oleifera leaf and seed extracts against Botrytis cinerea causing gray mold disease of tomato (Solanum lycopersicum L.). Braz. J. Biol. 2020, 81, 1007–1022. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Vargas, F.; Sicairos-Medina, L.Y.; Luna-Mandujan, A.G.; López-Angulo, G.; Salazar-Salas, N.Y.; Vega-García, M.O.; López-Valenzuela, J.A. Phenolic profiles, antioxidant and antimutagenic activities of Solanum lycopersicum var. cerasiforme accessions from Mexico. CYTA-J. Food. 2018, 16, 715–722. [Google Scholar] [CrossRef]
- Aghofack-Nguemezi, J.; Hoffmann, T.; Schwab, W. Effects of bio-based coatings on the ripening and quality attributes of tomato (Solanum lycopersicum) fruits. J. Sci. Food Agric. 2019, 99, 1842–1849. [Google Scholar] [CrossRef] [PubMed]
- Daji, G.; Steenkamp, P.; Madala, N.; Dlamini, B. Phytochemical composition of Solanum retroflexum analysed with the aid of ultra-performance liquid chromatography hyphenated to quadrupole-time-of-flight mass spectrometry (UPLC-qTOF-MS). J. Food Qual. 2018, 2018, 3678795. [Google Scholar] [CrossRef]
- Hamany-Djande, C.Y.; Piater, L.A.; Steenkamp, P.A.; Madala, N.E.; Dubery, I.A. Differential extraction of phytochemicals from the multipurpose tree, Moringa oleifera, using green extraction solvents. S. Afr. J. Bot. 2018, 115, 81–89. [Google Scholar] [CrossRef]
- Rodriguez-Perez, C.; Quirantes-Pine, C.; Fernandez-Gutierrez, R.; Segura-Carretero, A. Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Ind. Crops Prod. 2015, 66, 246–254. [Google Scholar] [CrossRef]
- Bennett, R.N.; Mellon, F.A.; Foidl, N.; Pratt, J.H.; Dupont, M.S.; Perkins, L.; Kroon, P.A. Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (Horseradish tree) and Moringa stenopetala L. J. Agric. Food Chem. 2003, 51, 3546–3553. [Google Scholar] [CrossRef]
- Ziani, B.E.C.; Rached, W.; Bachari, K.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Ferreira, I.C.F.R. Detailed chemical composition and functional properties of Ammodaucus leucotrichus Cross. & Dur. and Moringa oleifera Lamarck. J. Funct. Foods 2019, 53, 237–247. [Google Scholar] [CrossRef]
- Weston, L.A.; Mathesius, U. Flavonoids: Their structure, biosynthesis and role in the rhizosphere, including allelopathy. J. Chem. Ecol. 2013, 39, 283–297. [Google Scholar] [CrossRef]
- Ekalu, A.; Habila, J.D. Flavonoids: Isolation, characterization, and health benefits. BJBAS 2020, 9, 45. [Google Scholar] [CrossRef]
- Corradini, E.; Foglia, P.; Giansanti, P.; Gubbiotti, R.; Samperi, R.; Lagana, A. Flavonoids: Chemical properties and analytical methodologies of identification and quantitation in foods and plants. Nat. Prod. Res. 2011, 25, 469–495. [Google Scholar] [CrossRef] [PubMed]
- Mierziak, J.; Kostyn, K.; Kulma, A. Flavonoids as important molecules of plant interactions with the environment. Molecules 2014, 19, 16240–16265. [Google Scholar] [CrossRef]
- Bailly, C. The subgroup of 2′-hydroxy-flavonoids: Molecular diversity, mechanism of action, and anticancer properties. Bioorg. Med. Chem. 2021, 32, 116001. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Zhu, H.; Tan, J.; Wang, H.; Wang, Z.; Li, P.; Zhao, C.; Liu, J. Comparative analysis of chemical constituents of Moringa oleifera leaves from China and India by Ultra-Performance Liquid Chromatography Coupled with Quadrupole-Time-Of-Flight Mass Spectrometry. Molecules 2019, 24, 942. [Google Scholar] [CrossRef] [PubMed]
- Alseekh, S.; de Souza, L.P.; Benina, M.; Fernie, A.R. The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry 2020, 174, 112347. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Sadhukhan, P.; Saha, S.; Sil, P.C. Regulation of oxidative stress by different naturally occurring polyphenolic compounds: An emerging anticancer therapeutic approach. React. Oxyg. Species 2017, 3, 81–95. [Google Scholar] [CrossRef]
- Kinger, M.; Kumar, S.; Kumar, V. Some important dietary polyphenolic compounds: An anti-inflammatory and immunoregulatory perspective. Mini-Rev. Med. Chem 2018, 18, 1270–1282. [Google Scholar] [CrossRef]
- Xiao, J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit. Rev. Food Sci. Nutr. 2017, 57, 1874–1905. [Google Scholar] [CrossRef]
- Vergara-Jimenez, M.; Almatrafi, M.M.; Fernandez, M.L. Bioactive components in Moringa Oliefera leaves protect against chronic disease. Antioxidants 2017, 6, 91. [Google Scholar] [CrossRef]
- Lin, M.; Zhang, J.; Chen, X. Bioactive flavonoids in Moringa oleifera and their health-promoting properties. J. Funct. Foods 2018, 47, 469–479. [Google Scholar] [CrossRef]
- Nunthanawanich, P.; Sompong, W.; Sirikwanpong, S.; Mäkynen, K.; Adisakwattana, S.; Dahlan, W.; Ngamukote, S. Moringa oleifera aqueous leaf extract inhibits reducing monosaccharide-induced protein glycation and oxidation of bovine serum albumin. Springerplus 2016, 5, 1098. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, S.; Uemura, K. Dynamic porous properties of coordination polymers inspired by hydrogen bonds. Chem. Soc. Rev. 2005, 34, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Makita, C.; Madala, N.E.; Cukrowska, E.; Abdelgadir, H.; Chimuka, L.; Steenkamp, P.; Ndhlala, A.R. Variation in pharmacologically potent rutinoside-bearing flavonoids amongst twelve Moringa oleifera Lam. cultivars. S. Afr. J. Bot. 2017, 112, 270–274. [Google Scholar] [CrossRef]
- Dilworth, L.L.; Stennett, D.; Omoruyi, F.O. Effects of Moringa oleifera leaf extract on human promyelocytic leukemia cells subjected to oxidative stress. J. Med. Food 2020, 23, 728–734. [Google Scholar] [CrossRef]
- Akanni, E.O.; Adedeji, A.L.; Adedosu, O.T.; Olaniran, O.I.; Oloke, J.K. Chemopreventive and anti-leukemic effects of ethanol extracts of Moringa oleifera leaves on wistar rats bearing benzene induced leukemia. Curr. Pharm. Biotechnol. 2014, 15, 563–568. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, J.D.; Wang, B.; Lv, Y.J.; Jiang, H.; Liu, G.L.; Qiao, Y.; Ren, M.; Guo, X.F. Quercetin inhibits left ventricular hypertrophy in spontaneously hypertensive rats and inhibits angiotensin II-induced H9C2 cells hypertrophy by enhancing PPAR-γ expression and suppressing AP-1 activity. PLoS ONE 2013, 8, e72548. [Google Scholar] [CrossRef]
- Kapoor, S.; Dharmesh, S.M. Physiologically induced changes in bound phenolics and antioxidants, DNA/cytoprotective potentials in pectic poly/oligosaccharides of tomato (Solanum lycopersicum). J. Sci. Food Agric. 2016, 96, 4874–4884. [Google Scholar] [CrossRef]
- Alwhibi, M.S.; Hashem, A.; Abd, A.E.F.; Alqarawi, A.A.; Soliman, D.W.K.; Wirth, S.; Egamberdieva, D. Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. J. Integr. Agric. 2017, 16, 1751–1757. [Google Scholar] [CrossRef]
- Afifah, E.N.; Murti, R.H.; Nuringtyas, T.R. Metabolomics approach for the analysis of resistance of four tomato genotypes (Solanum lycopersicum L.) to root-knot nematodes (Meloidogyne incognita). Open Life Sci. 2019, 14, 141–149. [Google Scholar] [CrossRef]
- Filiz, E.; Cetin, D.; Akbudak, M.A. Aromatic amino acids biosynthesis genes identification and expression analysis under salt and drought stresses in Solanum lycopersicum L. Sci. Hortic. 2019, 250, 127–137. [Google Scholar] [CrossRef]
- Atkins, C.A.; Smith, P.M.; Rodriguez-Medina, C. Macromolecules in phloem exudates–a review. Protoplasma 2011, 248, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Hoagland, R.E. Toxicity of tomatine and tomatidine on weeds, crops and phytopathogenetic fungi. Allelopathy J. 2009, 23, 425–436. [Google Scholar]
- Garcia, P.G.; Neves dos Santos, F.; Zanotta, S.; Eberlin, M.N.; Carazzone, C. Metabolomics of Solanum lycopersicum infected with Phytophthora infestans leads to early detection of late blight in asymptomatic plants. Molecules 2018, 23, 3330. [Google Scholar] [CrossRef]
- Chowański, S.; Adamski, Z.; Marciniak, P.; Rosiński, G.; Büyükgüzel, E.; Büyükgüzel, K.; Falabella, P.; Scrano, L.; Ventrella, E.; Lelario, F.; et al. A review of bioinsecticidal activity of Solanaceae alkaloids. Toxins 2016, 8, 60. [Google Scholar] [CrossRef]
- Blankemeyer, J.T.; White, J.B.; Stringer, B.K.; Friedman, M. Effect of α-tomatine and tomatidine on membrane potential of frog embryos and active transport of ions in frog skin. Food Chem. Toxicol. 1997, 35, 639–646. [Google Scholar] [CrossRef]
- Kirwa, K.K.; Murungi, L.K.; Beck, J.K.; Torto, B. Elicidation of different responses in the root knot nematode meloidogyne inconitato tomato root exudate cytokinin, flavonoids, and alkaloids. J. Agric. Food Chem. 2018, 66, 11291–11300. [Google Scholar] [CrossRef]
- Almadiy, A.A.; Nenaah, G.E. Ecofriendly synthesis of silver nanoparticles using potato steroidal alkaloids and their activity against phytopathogenic fungi. Braz. Arch. Biol. Technol. 2018, 61, 1–14. [Google Scholar] [CrossRef]
- Zhou, J.R.; Kimura, S.; Nohara, T.; Yokomizo, K. Competitive inhibition of mammalian hyaluronidase by tomato saponin, esculeoside A. Nat. Prod. Commun. 2018, 13, 1461–1463. [Google Scholar] [CrossRef]
- Abdulazeez, A.M.; Ajiboye, O.S.; Wudil, A.M.; Abubakar, H. Partial purification and characterization of angiotensin converting enzyme inhibitory alkaloids and flavonoids from the leaves and seeds of Moringa oleifera. J. Adv. Biol. 2016, 5, 1–11. [Google Scholar] [CrossRef]
- Panda, S.; Kar, A.; Sharma, P.; Sharma, A. Cardioprotective potential of N,α-L-rhamnopyranosyl vincosamide, an indole alkaloid, isolated from the leaves of Moringa oleifera in isoproterenol induced cardiotoxic rats: In vivo and in vitro studies. Bioorg. Med. Chem. Lett. 2013, 23, 959–962. [Google Scholar] [CrossRef]
- Cheraghi, M.; Namdari, M.; Daraee, H.; Negahdari, B. Cardioprotective effect of magnetic hydrogel nanocomposite loaded N, α-L-rhamnopyranosyl vincosamide isolated from Moringa oleifera leaves against doxorubicin-induced cardiac toxicity in rats: In vitro and in vivo studies. J. Microencapsul. 2017, 34, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Oleg, P.; Ilona, G.; Alexey, G.; Irina, S.; Ivan, S.; Vladimir, K. Biological activities of derived bioactive components from Moringa species: An overview. Entomol. Appl. Sci. 2018, 5, 82–87. [Google Scholar] [CrossRef]
- Yelken, B.O.; Balcı, T.; Süslüer, S.Y.; Kayabaşı, C.A.; Kırmızıbayrak., P.B.; Gündüz, C. The effect of tomatine on metastasis related matrix metalloproteinase (MMP) activities in breast cancer cell model. Gene 2017, 627, 408–411. [Google Scholar] [CrossRef]
- Friedman, M.; Fitch, T.E.; Yokoyama, W.E. Lowering of plasma LDL cholesterol in hamsters by the tomato glycoalkaloid tomatine. Food Chem. Toxicol. 2000, 38, 549–553. [Google Scholar] [CrossRef]
- Pinela, J.; Montoya, C.; Carvalho, A.M.; Martins, V.; Rocha, F.; Barata, A.M.; Ferreira, I.C. Phenolic composition and antioxidant properties of ex-situ conserved tomato (Solanum lycopersicum L.) germplasm. Int. Food Res. J. 2019, 125, 108545. [Google Scholar] [CrossRef]
- Kasolo, J.N.; Bimenya, G.S.; Ojok, L.; Ochieng, J.; Ogwal-Okeng, J.W. Phytochemicals and uses of Moringa oleifera leaves in Ugandan rural communities. J. Med. Plant Res. 2010, 4, 753–757. [Google Scholar] [CrossRef]
- Friedman, M.; McDonald, G.M.; Filadelfi-Keszi, M. Potato glycoalkaloids: Chemistry, analysis, safety, and plant physiology. Crit. Rev. Plant Sci. 1997, 16, 55–132. [Google Scholar] [CrossRef]
- Noonan, J. Tomatine and Furocoumarins: Toxins in Commonly Consumed Plants. Ph.D. Thesis, Taylor University, Upland, Indiana, 2018. [Google Scholar]
- Weissenberg, M.; Levy, A.; Svoboda, J.A.; Ishaaya, I. The effect of some Solanum steroidal alkaloids and glycoalkaloids on larvae of the red flour beetle, Tribolium castaneum, and the tobacco hornworm, Manduca sexta. Phytochemistry. 1998, 47, 203–209. [Google Scholar] [CrossRef]
- Siddan, A.A.; Abubakar, S.M.; Gadanya, A.M.; Maigari, F.U.; Yahaya, A.S.; Yarima, M. Determination of nutrients and anti-nutrients contents of Moringa oleifera and arachis hypogaea. J. Mol. Microbiol. Biotechnol. 2020, 8, 11–14. [Google Scholar] [CrossRef]
- Sun, X.; Ma, X.; Li, Q.; Yang, Y.; Xu, X.; Sun, J.; Yu, M.; Cao, K.; Yang, L.; Wang, X. Anti-cancer effects of fisetin on mammary carcinoma cells via regulation of the PI3K/Akt/mTOR pathway: In vitro and in vivo studies. Int. J. Mol. Med. 2018, 42, 811–820. [Google Scholar] [CrossRef]
- Sharma, D.; Tekade, R.K.; Kalia, K. Kaempferol in ameliorating diabetes-induced fibrosis and renal damage: An in vitro and in vivo study in diabetic nephropathy mice model. Phytomedicine 2020, 76, 153235. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, C.; Li, Z.; Shangguan, A.; Jiang, J.; Zeng, W.; Zhang, S.; He, Q. Quercetin as an antiviral agent inhibits the Pseudorabies virus in vitro and in vivo. Virus Res. 2021, 305, 198556. [Google Scholar] [CrossRef] [PubMed]
- Troost, B.; Mulder, L.M.; Diosa-Toro, M.; van de Pol, D.; Rodenhuis-Zybert, I.A.; Smit, J.M. Tomatidine, a natural steroidal alkaloid shows antiviral activity towards chikungunya virus in vitro. Sci. Rep. 2020, 10, 6364. [Google Scholar] [CrossRef] [PubMed]
- Serratì, S.; Porcelli, L.; Guida, S.; Ferretta, A.; Iacobazzi, R.M.; Cocco, T.; Maida, I.; Tamasi, G.; Rossi, C.; Guida, G.; et al. Tomatine displays antitumor potential in in vitro models of metastatic melanoma. Int. J. Mol. Sci. 2020, 21, 5243. [Google Scholar] [CrossRef] [PubMed]
- Abdelsayed, E.M.; Medhat, D.; Mandour, Y.M.; Hanafi, R.S.; Motaal, A.A. Niazimicin: A thiocarbamate glycoside from Moringa oleifera Lam. seeds with a novel neuroprotective activity. J. Food Biochem. 2021, 45, e13992. [Google Scholar] [CrossRef]
- Kandeil, M.A.; Mohammed, E.T.; Hashem, K.S.; Aleya, L.; Abdel-Daim, M.M. Moringa seed extract alleviates titanium oxide nanoparticles (TiO2-NPs)-induced cerebral oxidative damage, and increases cerebral mitochondrial viability. Environ. Sci. Pollut. Res. 2019, 27, 19169–19184. [Google Scholar] [CrossRef]
- Amaechi, D.; Ekpe, I.P.; Edet, E.D.; Madu, M.C. Hepatoprotective and hematological effects of solanum melongena (garden egg), Solannum lycopersicum (tomato) and daucus carrots subsp. sativus (carrot) extracts against lead induced toxicity in wistar rats. Asian J. Biochem. Genet. 2021, 7, 10–18. [Google Scholar] [CrossRef]
- Buabeid, M.A.; Arafa, E.S.; Rani, T.; Ahmad, F.U.D.; Ahmed, H.; Hassan, W.; Murtaza, G. Effects of Solanum lycopersicum L.(tomato) against isoniazid and rifampicin induced hepatotoxicity in wistar albino rats. Braz. J. Biol. 2022, 84, e254552. [Google Scholar] [CrossRef]
- Abdel Fattah, M.E.; Sobhy, H.M.; Reda, A.; Abdelrazek, H. Hepatoprotective effect of Moringa oleifera leaves aquatic extract against lead acetate–induced liver injury in male Wistar rats. Environ. Sci. Pollut. Res. 2020, 27, 43028–43043. [Google Scholar] [CrossRef]
Plant Species | Alkaloids | Chemical Formula | Bioactivity | Reference |
---|---|---|---|---|
Solanum lycopersicum | Dehydrotomatidine | C27H43NO2 | Defensive against fungi and bacteria | [8] |
Dehydrotomatine | C50H81NO21 | Inhibition of acetylcholinesterase | [21] | |
Tomatidine | C27H45NO2 | Blocked cell-signalling pathways in macrophages | [21] | |
Solasodine | C27H43NO2 | Inhibition of nematode Meloidogne incognita | [56] | |
Esculeoside A | C58H95NO29 | Anti-hyaluronidase activity | [58] | |
Esculeoside B | C56H93NO22 | Inhibition of dermatitis | [58] | |
Tomatine | C50H83NO21 | Inhibited larval growth of Tribolium castaneum | [69] | |
Moringa oleifera | N, α-l-rhamnopyranosyl vincosamide. | C32H40N2O13 | Cardio-protective activity | [61] |
N, α-l-rhamnopyranosyl vincosamide | - | Antitumor promoter; antimicrobial activity | [62] | |
Niazimicin | C16H23NO6S | Anticancer activity | [62] | |
Pterygospermin | C22H18N2O2S2 | Hyperthyroidism, anti-herpes simplex | [62] |
Metabolite | Vivo/Vitro | Dosage | Period | Bioactivity | Reference |
---|---|---|---|---|---|
Fisetin | vitro | 0–80 µM | 24–48 h | Anti-cancer | Sun et al. [71] |
Kaempferol | vitro | Anti-diabetes | Sharme et al. [72] | ||
Quercetin | vitro | 2.618 μM | Anti pseudorabies virus | Sun et al. [73] | |
Tomatidine | vitro | 5000 µM | ≈26 h | Chikungunya virus | Troost et al. [74] |
Tomatine | vitro | 0.1–1 µM | 24 h | Anti-metastatic melanoma | Serrati et al. [75] |
Niazimicin | vivo | 250 mg kg−1 | 15 days | Neuroprotection | Abdelsayed et al. [76] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokgehle, T.M.; Ndou, D.; Madala, N.E.; Tavengwa, N.T. A Comprehensive and Comparative Metabolomic Study of Two Nutraceutical-Containing Plants; Moringa oleifera and Solanum lycopersicum: A Review. Nutraceuticals 2022, 2, 234-245. https://doi.org/10.3390/nutraceuticals2030017
Mokgehle TM, Ndou D, Madala NE, Tavengwa NT. A Comprehensive and Comparative Metabolomic Study of Two Nutraceutical-Containing Plants; Moringa oleifera and Solanum lycopersicum: A Review. Nutraceuticals. 2022; 2(3):234-245. https://doi.org/10.3390/nutraceuticals2030017
Chicago/Turabian StyleMokgehle, Tebogo Mphatlalala, Dakalo Ndou, Ntakadzeni Edwin Madala, and Nikita Tawanda Tavengwa. 2022. "A Comprehensive and Comparative Metabolomic Study of Two Nutraceutical-Containing Plants; Moringa oleifera and Solanum lycopersicum: A Review" Nutraceuticals 2, no. 3: 234-245. https://doi.org/10.3390/nutraceuticals2030017
APA StyleMokgehle, T. M., Ndou, D., Madala, N. E., & Tavengwa, N. T. (2022). A Comprehensive and Comparative Metabolomic Study of Two Nutraceutical-Containing Plants; Moringa oleifera and Solanum lycopersicum: A Review. Nutraceuticals, 2(3), 234-245. https://doi.org/10.3390/nutraceuticals2030017