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Abstract: Solanum lycopersicum and Moringa oleifera are two essential nutraceutical-containing plants
from two different families, and are sources of abundant metabolites. They have a variety of appli-
cations in medicines, functional food additives and even water purification. This review aims to
complement earlier reviews by comparing the metabolite profiles and modern-day pharmacological
relevance of both plants. The metabolome of Moringa oleifera was compared to that of Solanum lycoper-
sicum, to evaluate the common metabolites found within the two plants and how these compounds
can be used for same pharmacological and nutritional benefits. While these plants contain similar
metabolites, they also contain different compounds of the same class that differ in terms of their
biological functions. In such instances, Moringa oleifera and Solanum lycopersicum may have similar
applications, but remain distinguishable from each other in terms of pharmacological potential.
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1. Introduction

Moringa oleifera and Solanum lycopersicum are vegetable crops that are in high demand
in the agricultural sector for various economic, social, and cultural purposes. Furthermore,
Moringa oleifera and Solanum lycopersicum are abundant sources of bioactive compounds
and are therefore essential nutraceuticals [1,2]. Their edible nature makes them popular;
for instance, Moringa pods are commonly used in Thailand for sour soup (also known as
Keang-Som) while in other countries the leaves, flowers, and seeds of Moringa oleifera are
boiled and served as side dishes for chili pastes [3]. Additionally, Moringa leaves, flowers,
and seeds are made into dry powder and packed in capsules or tea bags for infusion
drinks [3]. Similarly, Solanum lycopersicum is a common staple in many countries, with a
global production of over 42.3 million tons [4]. A large portion of its produce is served as
vegetable drinks, sauces, salads, or stews in restaurants and supermarkets. Hence, Moringa
oleifera and Solanum lycopersicum both serve as pivotal nutritional supplements for the
well-being of mankind [5,6].

The nutritional qualities of Moringa oleifera and Solanum lycopersicum are derived from
their phytochemical composition. The metabolic profile of Moringa oleifera includes proteins,
vitamins, beta-carotene, amino acids, and various phenolics [7]. Similarly, metabolites
such as systemin, phenolic acids such as ferulic acids, flavonoids, organic acids, and
glycoalkaloids have been reported in Solanum lycopersicum [1,8]. A common feature of
Moringa oleifera and Solanum lycopersicum is the abundance of flavonoids and phenolic
acid metabolites in both. Flavonoids and phenolic acids have been observed to exhibit
antioxidant properties [9]. For instance, Ojiako et al. [10] reported that extracts of Moringa
oleifera contained abundant phenolic-based antioxidants such as vitamins A, C, and E, which
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inhibited bacterial infections, reduced inflammation, and eliminated toxins associated with
venomous bites and gout.

Previously, reviews by Tomás-Barberán et al. [11], Fernández-Moriano et al. [12],
Chutulo et al. [13], and Kazmi et al. [14] have reported on the phytoconstituents and bioac-
tivities of plants including Arthothelium awastii, Parmotreme tinctorum, Azadirachta indica,
Nigella sativa, and Prunus avium. However, to the best of our knowledge, there no review
has placed emphasis on differences and similarities in flavone, phenolic acid, or alkaloid
metabolic profiles of plants obtained from different families, particularly Moringaceae and
Solanaceae. Hence, this review aims to complement earlier reviews by providing collective
information, comparing and contrasting the metabolic profiles and metabolic relevance
in the modern era of compounds obtained from Moringa oleifera and Solanum lycopersicum.
The reader is presented with an update on the health-promoting applications of phenolic
and alkaloid-based metabolites obtained from Moringa oleifera and Solanum lycopersicum.
Thereafter, challenges and recommendations are discussed to educate the reader on how
better to handle and obtain the most nutritional value from these versatile nutraceuticals,
Moringa oleifera and Solanum lycopersicum [11–14].

2. Comparison of Polyphenolic Profiles of Solanum lycopersicum and Moringa oleifera
and Thier Resultant Antioxidant Activities
Structural Variation in Phenolic Acids and Flavones in Solanum lycopersicum and
Moringa oleifera

Solanum lycopersicum and Moringa oleifera have been reported to contain polyphenolic
phytochemicals. These include quinic and hydroxylated or methoxylated cinnamic acid
derivatives [15–18]. Common polyphenols in Solanum lycopersicum and Moringa oleifera
include cinnamic acids (phenolic acids), some of which include gallic, ferulic, caffeoyl,
and p-coumaric acids, and cyclic polyphenols such as quinic acids. Solanum lycopersicum
and Moringa oleifera were both reported to contain the esterification product of cinnamic
acid and quinic acid. One example of an ester is caffeoyl quinic acid (CQA), which is
derived from the reaction of quinic acid and caffeic acid, and has been reported in Solanum
lycopersicum [19,20]. Examples include 5-CQA [21], CQA and tricaffeoylquinic acid [22],
3-CQA [23], 3-CQA, 5-CQA, and 4-CQA [16], diCQA, and p-coumaroylquinic acid [24].

Hamany-Djande et al. [25] reported identification of three chlorogenic acids in Moringa
oleifera; caffeoyl quinic acid (CQA), coumaroyl quinic acid (CoQA), and feruloyl quinic
acid (FQA). Rodriguez-Perez et al. [26] characterized eleven phenolic acids and derivatives
from Moringa oleifera. Seven of the identified phenolic acids were identified for the first
time in Moringa oleifera leaves and in the Moringaceae family. They reported four isomers
of CQA and two isomers of FQA, characterized for the first time in Moringa oleifera leaves.
One fragment corresponded to [M-CH3-CO2-H]- from ferulic acid and another fragment
corresponded to the loss of ferulic acid and five isomers of CoQA, with one fragment
being identified as 4-p-CoQA, also identified for the first time in Moringa oleifera and the
Moringaceae family [26]. A study by Bennett et al. [27] identified 3- and 5- CQA in Moringa
oleifera leaves. Ziani et al. [28] also reported the presence of 3-CQA, 4-CQA and 3-CoQA in
Moringa oleifera leaves.

Flavonoids are a wide-ranging group of metabolites with estimates of over 10,000 com-
pounds reported [29,30], some of which have been observed in Moringa oleifera and
Solanum lycopersicum. From this cluster, 6500 of these flavonoids are made up of a 15-
carbon skeleton [31]. The flavonoids highlighted therein can be further broken down
into flavonols, flavones, flavanones, isoflavones, anthocyanidins, chalcones, aurones, and
flavanols [32]. The basic skeletal design of flavonoid molecules is based on the (2-(2′-
phenyl)-chromen-4-one) which consists of two benzene rings denoted as A and C, con-
nected by a three-carbon chain that forms a closed pyran ring (B ring), which fuses with
ring A as shown in Figure 1 [33]. Additionally, the skeleton (2-(2′-phenyl)-chromen-4-one)
structure of flavonoids consists of a C2–C3 double bond and 3-hydoxy group with 4-Oxo
group in ring B. The basic skeletal structure (2-(2′-phenyl)-chromen-4-one) is so versatile
that it permits other combinations of multiple hydroxyls, methoxyl, and glycoside sub-
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stituents to attach to R’ (Figure 1), some of which include solabiose (galactose + glucose+
rhamnose), chacotriose (glucose + rhamnose + rhamnose), and rutinoside (rhamnose +
glucose) [33]. Examples of flavones include isorhamnetin, quercetin, kaempferol, and
myricetin; Isorhamnetin-3-O-rutinoside was reported in Moringa oleifera [34] while the car-
bohydrate side chain linked to isorhamnetin at carbon 3, sophoroside (glucose + glucose),
was detected in Solanum lycopersicum [35]. This indicates that though the aglycone unit
of the flavones may be the same, the arrangement of glycosides attached there can differ,
giving rise to unique biological properties [33].
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activity of phenolic acids and flavones obtained from Solanum lycopersicum and Moringa oleifera.

Polyphenolic compounds in both Solanum lycopersicum and Moringa oleifera are renowned
for their anticancer and anti-inflammatory activities [36–38]. Table 1 lists metabolites
derived from Moringa oleifera, such as kaempferol, isorhamnetin, and quercetin, which can
provide antioxidant activity, reduce human leukeamia cells, and promote anti-inflammatory
and anti-alzheimer’s activity, respectively [39,40]. For instance, flavones such as quercetin,
morin, fisetin, and rutin from Solanum lycopersicum [39,40] and kaempferol, isorhamnetin,
myrecytin, and apigenin from Moringa oleifera leaves were observed to form hydrogen bonds
with bovine serum albumin [41]. This indicated that the higher free-radical-scavenging
and antioxidant abilities of flavones were probably due to the presence of the 4′-OH
group on ring C, as well as the 3-OH group on ring B, in addition to other hydroxyl
groups on ring C (Figure 1). Kitagawa et al. [42] studied the inhibitory effect of flavonoids
on P-gp-mediated transport in KB-C2 cells and found that the inhibitory effect on P-gp
decreased in the order kaempferol > quercetin > myricetin > fisetin. Results revealed that
the double bonds between C2–C3, 3-OH, 5-OH, 7-OH, and 4′-OH groups (Figure 1) were
responsible for the higher activity of flavones, whereas the presence of other hydroxyl group
at ring C with the exception of 4′-OH resulted in decreased activity. Flavones in Moringa
oleifera including kaempferol, isorhamnetin, and quercetin were reported to prevent DNA
damage [40], reduce human leukaemia cells [43–45]. Solanum lycopersicum, through querctin
glucoside and kaempferol rutinoside, has been reported to provide inhibition of sodic-
alkaline stress [46]. This arises due to the pro-oxidant action and electrophilic conjugation
reaction of polyphenols. For instance, electrophilic conjugation reaction includes the
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oxidation of flavonol into electrophilic quinones. The quinones then function as effective
electron-pair acceptors, to form nucleophiles such as thiols, amino-containing proteins, and
glutathiones yielding biologically active flavonol adducts. The chemical sites responsible
for anti-inflammatory activity are the C2–C3 double bond, 5-OH and 7-OH groups at ring
A, and the 4′-OH group at ring B (Figure 1). Furthermore, as indicated in Table 1, both
Solanum lycopersicum and Moringa oleifera have been observed to produce cinnamic acids
such as chlorogenic acid (caffeoyl quinic acid), gallic acid, and caffeic acid, which have
been reported to inhibit galectin-3, trichorderma harzianum, and diabetes.

Solanum lycopersicum and Moringa oleifera were observed to contain common polyphe-
nolic metabolites including gallic, ferulic, caffeoyl, and p-coumaric acids, quercetin, and
kaempferol derivatives, the majority of which have been shown to be efficient antiox-
idants. Additionally, mono/polysaccharides attached to the (2-(2′-phenyl)-chromen-4-
one) were reported with various bioactivities (Table 1). There were also differences
in polyphenolic composition between Moringa oleifera and Solanum lycopersicum, with
isorhamnetin-3-O-rutinoside and isorhamnetin sophoroside observed in Moringa oleifera
and Solanum lycopersicum, respectively, as a result of differences in the arrangement of the
carbohydrate sugar side chains glycosylated to (2-(2′-phenyl)-chromen-4-one) (Table 1).

Table 1. Bioactivities exhibited by flavones and phenolic acids in Solanum lycopersicum and
Moringa oleifera.

Plant Species Flavones Phenolic acids Bioactivity Reference

Moringa oleifera Apigenin - Anti-inflammatory, anti-Alzheimer’s
activity [7]

- Caffeic acids; gallic acid
Anti-diabetic and anti-obese properties;
inhibits gluCose-6-phosphate translocase
in rat liver

[39]

Isorhamnetin - Reduces human leukaemia cells [40]
Kaempferol - Prevents DNA damage, antioxidant [40,43]

Solanum lycopersicum Quercetin glycoside - Inhibition of sodic-alkaline stress [46]
Kaempferol rutinoside - Inhibition of sodic-alkaline stress [46]
- Chlorogenic acids Inhibition of galectin-3 [47]
- Ferulic acids Inhibition of galectin-3 [47]
- Gallic acid Inhibition of trichoderma harzianum [48]
- Salicylic acid Inhibition of trichoderma harzianum [48]

- Caffeic acid Nematode (Meloidogyne incognita)
resistance [49]

- Phenylalanine Resistance to drought stress [50]
- Tyrosine Resistance to drought stress [50]

3. Similarities and Differences Due to Cytotoxic Potency against Cancerous Cells of
Alkaloids Contained in Moringa oleifera and Solanum lycopersicum
3.1. Alkaloids in Moringa oleifera and Solanum lycopersicum

Alkaloids are nitrogen-containing organic compounds present in plants. Steroidal alka-
loids (SAs) are derived from steroids and are hence classified as tropanes. Alkaloids of this
class are prevalent in a range of plants within the Solanaceae family. The synthesis of SAs
originated from glycosylation (addition of mono-/polysaccharides) to sterols, contained
in the cell cytosol, yielding steroidal glycoalkaloids, as reported by Okamoto et al. [51].
Steroidal glycoalkaloids derived from Solanum lycopersicum can provide a chemical barrier
against a broad range of pathogens [16,52,53]. Some of the SGAs derived from Solanum
lycopersicum are shown in Figure 2a, including tomatidine, tomatine, dehydrotomatine,
dehyrotomatidine, esculeoside A and esculeoside B, most of which except for the latter two
contain spirosolane as the aglycone unit. For instance, α-tomatine, an SGA reported to be
obtained from Solanum lycopersicum, can be responsible for the disruption of membranes of
cancerous cells, leakage of electrolytes, and depolarization of the membrane potential [54].
Although toxic to humans, the presence of α-tomatine is not toxic to the plant itself possi-
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bly due the existence of sterol glycosides and acetylated sterol glycosides in tomato cell
membranes [55]. Other SGAs have been shown to inhibit roundworms (nematodes), as
described by Kirwa et al. [56], and fungi, as reported by Almadiy et al. [57]. Esculeode A
and esculeode B were reported by Zhou et al. [58] to inhibit skin-related cancers.
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common monosaccharides reported to glycosylate the alkaloids.

Alkaloids reported in Moringa oleifera have also been found to reduce blood pres-
sure and treat hypertension [59]. Some of the alkaloids that have been isolated from
Moringa oleifera leaves include N,α-L-rhamnopyranosyl vincosamide, phenylacetonitrile
pyrrolemarumine,4′-hydroxyphenylethanamide-α-L-rhamnopyranoside, and its glucopy-
ranosyl derivative [39] (Figure 2b). Of these, N,α-L-rhamnopyranosyl vincosamide (VR), as
studied by Panda et al. [60], was isolated from Moringa leaves and demonstrated cardio-
protective potential in rats. This beneficial action of N,α-L-rhamnopyranosyl vincosamide
(VR) was due to its free-radical-scavenging properties [61].

As discussed in this section, both Solanum lycopersicum and Moringa oleifera produce
alkaloids. A common trait among the two is that Solanum lycopersicum and Moringa oleifera
have both been reported to contain glycosylated alkaloid metabolites with sugars such as
glucose, rhamnose, galactose, and xylose, as seen in Figure 2 [16,52,53]. The distinguishing
factors between the plants are the aglycone units of the alkaloids, for instance Solanum
lycopersicum has been observed to produce alkaloids containing 6-fused rings, such as
tomatine, tomatidine, dehydrotomatine, eucleoside A, and eucleoside B, whereas Moringa
oleifera generally contains 5-fused rings (Figure 2a).

3.2. Comparison in Mechanism of Alkaloid Bioactivities of Solanum lycopersicum and
Moringa oleifera

Alkaloids obtained from Solanum lycopersicum and Moringa oleifera have been shown to
be bioactive [21,61,62]. The alkaloid α-tomatine, derived from Solanum lycopersicum, was re-
ported by Yelken et al. [63] to show inhibitory activity on cell proliferation of human breast
MCF-7 cancer cells. In the same paper, they further indicated that α-tomatine−cholesterol
interactions within the cell membrane of MCF-7 cancer cells played a vital role in the
anticarcinogenic effect of α-tomatine [63]. In another study by Friedman et al. [64], ani-
mals receiving a tomatine diet had reduced plasma LDL cholesterol levels with increased
dietary tomatine content. This was due to the complexation ability of cholesterol to toma-
tine [64]. Furthermore, dehydrotomatine, the oxidized form of tomatine, was reported by
Pinela et al. [65] to inhibit acetylcholinesterase, an enzyme responsible for catalyzing the
production of the neurotransmitter acetylcholine, which is also responsible for cancer [21].
Similarly, alkaloids from Moringa oleifera such as niazimicin were reported by Oleg et al. [62]
to demonstrate anticancer activity. Panda et al. [60] reported on the cardioprotective behav-
ior of the alkaloid N,α-L-rhamnopyranosyl vincosamide. Moringa oleifera alkaloids were
also reported by Kasolo et al. [66] to be efficient in their antimicrobial activity, achieved by
the ability of the alkaloids to intercalate with the DNA of microorganisms.
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Glycoalkaloids from Solanum lycopersicum have also been reported to disrupt active
transport of ions through membranes, proceeding to cause disorders in general body
metabolism [67]. For instance, Blankemeyer et al. [55] evaluated the effect of exposure of
varying concentrations of α-tomatine and tomatidine on frog embryos and frogs. The study
revealed that α-tomatine increased the fluorescence-measured membrane permeability of
frog embryos by approximately 600% compared with control values; the corresponding
value for tomatidine was about 150%. An illustration of how glycoalkaloids such as α-
tomatine incurred damage in the cells of frog embryos is shown in Figure 3a,b. Two phases
were involved in the damage caused by α-tomatine in cell membranes. The first involved
permeation by α-tomatine through the infected cell membrane by potential hydrogen bond
interaction between the carbohydrate side chain of α-tomatine and the polar compartment
of the cell-membrane lipid bilayer (Figure 3a) [55]. The alkaloid portion of tomatine
interacts with cholesterol, while the sugar groups remain outside the bilipid membrane
due to its hydrophilic nature [67]. The extracellular polysaccharides interact with each
other through hydrogen bonding, forming a matrix (Figure 3a). Secondly, penetration of
the toxic aglycone unit into the cytosol (inner cell compartment) of frog embryos resulted
in “loss of barrier function” in the cellular membrane and subsequent changes in ion flux
and interstitial currents between neighboring cells (Figure 3b). Therefore, the enhanced
activity of α-tomatine relative to tomatidine was due to its sugar moiety, with pores being
formed in the lipid bilayer in frog embryos [55]. Thereafter, the increasing porosity of the
cell membrane allows permeation of extracellular fluid into the cell, compromising the
cytosol’s chemistry [68]. This leads to eventual cell death; examples include inhibition of
larval growth of Tribolium castaneum as reported by Weissenberg et al. [69], and inhibition
of acetylcholinesterase as described by Pinela et al. [65].
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Alkaloids have been studied for other bioactivities, as shown in Table 2, which arise
from various mechanistic actions. For example, mechanisms of action for alkaloids derived
from Solanum lycopersicum involve complexation, disruption of active transport of ions
through cell membranes, permeation through the infected cell membrane, and penetration
of the toxic aglycone unit into the cytosol [65–67]. Alkaloids from Moringa oleifera have a
different mode of action to those discussed for Solanum lycopersicum, including intercalation
with the DNA of pathogens [62,70]. This probably indicates that the structural design of
the alkaloids, such as 6- and 5-fused rings of Solanum lycopersicum and Moringa oleifera
respectively, and the nature of the sugars attached, all determine the mode of action and
subsequent efficiency of the bioactivity. Table 3 presents the dosage concentrations, dosage
period, and type of bioactivity of various flavones and alkaloids. Sun et al. [71] reported on
minute concentrations (80 µM) of fisetin that were required for anti-cancer activity.

Table 2. Some alkaloids reported in Solanum lycopersicum and Moringa oleifera.

Plant Species Alkaloids Chemical Formula Bioactivity Reference

Solanum lycopersicum Dehydrotomatidine C27H43NO2 Defensive against fungi and bacteria [8]
Dehydrotomatine C50H81NO21 Inhibition of acetylcholinesterase [21]
Tomatidine C27H45NO2 Blocked cell-signalling pathways in

macrophages
[21]

Solasodine C27H43NO2 Inhibition of nematode Meloidogne
incognita

[56]

Esculeoside A C58H95NO29 Anti-hyaluronidase activity [58]
Esculeoside B C56H93NO22 Inhibition of dermatitis [58]
Tomatine C50H83NO21 Inhibited larval growth of Tribolium

castaneum
[69]

Moringa oleifera N, α-L-rhamnopyranosyl
vincosamide. C32H40N2O13 Cardio-protective activity [61]

N, α-L-rhamnopyranosyl
vincosamide - Antitumor promoter; antimicrobial

activity [62]

Niazimicin C16H23NO6S Anticancer activity [62]
Pterygospermin C22H18N2O2S2 Hyperthyroidism, anti-herpes simplex [62]

N,α-L-rhamno.vin.: N,α-L-rhamnopyranosyl vincosamide, 4-(A-L-rham:4-(A-L-rhamnosyloxy)benzyl isothiocyanate.

Table 3. Dosage, period, and bioactivity of some flavones and alkaloids.

Metabolite Vivo/Vitro Dosage Period Bioactivity Reference

Fisetin vitro 0–80 µM 24–48 h Anti-cancer Sun et al. [71]
Kaempferol vitro Anti-diabetes Sharme et al. [72]
Quercetin vitro 2.618 µM Anti pseudorabies virus Sun et al. [73]
Tomatidine vitro 5000 µM ≈26 h Chikungunya virus Troost et al. [74]
Tomatine vitro 0.1–1 µM 24 h Anti-metastatic melanoma Serrati et al. [75]
Niazimicin vivo 250 mg kg−1 15 days Neuroprotection Abdelsayed et al. [76]

4. Challenges and Recommendations

Moringa oleifera and Solanum lycopersicum both contain efficient and diverse flavone
antioxidants, and have been studied to treat the same ailments including liver damage,
detoxification of the body’s digestive system, and reduction of brain inflammation [77,78].
For instance, Buabeid et al. (2022) reported that hepatoprotection from Solanum lycopersisum
was induced by isoniazid and rifampicin (INH + RIF), resulting in significant elevation
of serum hepatic enzymes including aspartate aminotransferase (AST), alanine amino-
transferase (ALT), alkaline phosphatase (ALP), and total bilirubin, while decreasing the
albumin level [79]. Additionally, Fattah et al. (2020) reported that hepatoprotection from
Moringa Oleifera occurred through reduction of oxidative stress–induced DNA damage via
amelioration of NF-kB and TNF-α, which maintained hepatocyte integrity and reduced
hepatic enzyme activity in serum [80]. However, underlying questions remain of interest to
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metabolomics researchers, particularly which between the two plants may be more potent
for treatment of ailments such as liver or brain injury, and what other modes of action may
be at play within their antioxidant activity due to polyphenols, or anti-pathogen activity
due to alkaloids. Furthermore, taking the view that there are a variety of mechanisms
present in Moringa oleifera and Solanum lycopersicum involved in counteracting pathogens
and bacteria, there are also questions about what conditions favor one mode of action
over another.

The flavones in Moringa oleifera and Solanum lycopersicum contain the (2-(2′-phenyl)-
chromen-4-one) backbone. Additionally, variable mono- and polysaccharide chains with
unique arrangements are linked to this (2-(2′-phenyl)-chromen-4-one), diversifying the
large cluster of related metabolites. Hence, analysis of the similarities and differences in
the metabolic profiles of Solanum lycopersicum and Moringa oleifera needs to be scrutinized.
Fortunately, advancements in technology have led to the development and availability of
instruments such as those for ultra-high-performance liquid chromatography–quadrupole
time-of-flight mass spectroscopy (UHPLC-QTOF-MS). The appliance of UHPLC-QTOF-MS
would permit better isolation from tens of thousands of metabolites and the subsequent
characterization of closely related compounds involving geometric and positional isomers,
in comparison to conventional instruments such as the 1H-NMR spectrometer. Furthermore,
using state-of-the-art analytical tools for UHPLC-QTOF-MS, comprehensive correlations in
the metabolic fingerprinting of plants (Moringa oleifera and Solanum lycopersicum) from two
distinct families can be identified. For instance, isomers such as quercetin 3-glucoside and
quercetin 3-galactoside can conclusively be determined based on ultra-high performance
liquid chromatography–quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS)
rather than conventional H1-NMR. Bearing in mind that these plants can produce a wide
range of complex compounds, it is inevitable that racemic mixtures would be obtained that
are extremely difficult to separate using chromatographic techniques. Recently, even more
advanced techniques have been developed for the isolation of racemic compounds with
unique potential for pharmacological applications. This can be achieved by calculating
ion-mobility arrival-time distributions and surface collisional cross sections (CCS), using
ultra-high-performance liquid chromatography photodiode array detection ion-mobility
high-resolution mass spectrometry (UHPLC-PDA-IM-HR-MS).

5. Conclusions

Solanum lycopersicum and Moringa oleifera are two invaluable natural products, due to
their metabolite profiles and subsequent nutraceutical potential. Owing to the significant
presence of bioactive polyphenols and alkaloid compounds in both plants, it is imperative
that the naturally derived metabolites be exploited for various applications. Both Solanum
lycopersicum and Moringa oleifera contain a range of polyphenols. For instance, these plants
produce flavonols such as kaempferol and quercetin derivatives that can be glycosylated
by different sugars. However, the two plants differ in terms of their alkaloid composition,
which results in their capability for different biological functions. While these plants can
be used to perform the same pharmacological and nutritional functions resulting from the
flavonols they have in common, they remain distinguishable by their alkaloid composition.
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