Synergistic Effects of Copper and Butylic Ester of 2,4-Dichlorophenoxyacetic Acid (Esternon Ultra) on Amphibian Embryos
Abstract
:Introduction
Material and Methods
Results and Discussion
Acknowledgments
References
- Linder, M. C.; Hazegh-Azam, M. Copper biochemistry and molecular biology. Am. J. Clin. Nutr 1996, 63(5), 797S–811S. [Google Scholar]
- IPCS International Programme on Chemical Safety, Copper; Environmental Health Criteria 200; World Health Organization: Genova, 1998.
- Herkovits, J.; Helguero, L. A. Copper toxicity and copper-zinc interactions in amphibian embryos. Sci. Total Environ 1998, 221, 1–10. [Google Scholar]
- Alt, E. R.; Sternlieb, I.; Goldfisher, S. The cytopathology of metal overload. Int. Rev. Exp. Pathol 1990, 31, 165–188. [Google Scholar]
- Palma, G.; Sanchez, A.; Olave, Y.; Encina, F.; Palma, R.; Barra, R. Pesticide levels in surface waters in an agricultural-forestry basin in Southern Chile. Chemosphere 2004, 57(8), 763–770. [Google Scholar]
- Gorzinsky, S. J.; Kociba, R. J.; Campbell, R. A.; Smith, F. A.; Nolan, R. J.; Eisenbrandt, D. L. Acute, pharmacokinetic and subchronic toxicological studies of 2,4-dichlorophenoxyacetic acid. Fundam. Appl. Toxicol 1987, 9(3), 423–435. [Google Scholar]
- Schulze, G. E. Neurobehavioral toxicity and tolerance to the herbicide 2,4-dichlorophenoxiacetic acid-n-butyl ester (2,4-D ester). Fundam. Appl. Toxicol 1988, 10(3), 413–424. [Google Scholar]
- Schulze, G. E. 2,4-D-n-butyl ester (2,4-D ester) induced ataxia in rats: role for n-butanol formation. Neurotoxicol. Teratol 1988, 10(1), 81–84. [Google Scholar]
- Bortolozzi, A. A.; Evangelista de Duffard, A.M.; Duffard, R. O.; Antonelli, M. C. Effects of 2,4-dichlorophenoxyacetic acid exposure on dopamine D2-like receptors in rat brain. Neurotoxicol Teratol 2004, 26(4), 599–605. [Google Scholar]
- Palmeira, C. M.; Moreno, A. J.; Madeira, V. M. Thiols metabolism is altered by the herbicides paraquat, dinoseb and 2,4-D: a study in isolated hepatocytes. Toxicol. Lett 1995, 81(2–3), 115–123. [Google Scholar]
- Oruc, E. O.; Sevgiler, Y.; Uner, N. Tissue-specific oxidative stress responses in fish exposed to 2,4-D and azinphosmethyl. Comp. Biochem. Physiol. C 2004, 137(1), 43–51. [Google Scholar]
- Palmeira, C. M.; Moreno, A. J.; Madeira, V. M. Metabolic alterations in hepatocytes prompted by the herbicides paraquat, dinoseb and 2,4-D. Arch. Toxicol 1994, 68(1), 24–31. [Google Scholar]
- Palmeira, C. M.; Moreno, A. J.; Madeira, V. M. Interactions of herbicides 2,4-D and dinoseb with liver mitochondrial bioenergetics. Toxicol. Appl. Pharmacol 1994, 127(1), 50–57. [Google Scholar]
- Herkovits, J.; Herkovits, F. D.; Pérez-Coll, C. S. Identification of aluminium toxicity and Al-Zn interaction in amphibian Bufo arenarum embryos. Environm. Sci 1997, 5(1), 57–64. [Google Scholar]
- Herkovits, J.; Pérez-Coll, C. S. Bioensayos para test de toxicidad con embriones de anfibio “ANFITOX” basado en Bufo arenarum. Test Agudo (ANFIAGU), Crónico corto (ANFICOR), Crónico (ANFICRO) y de Estadios Tempranos del Desarrollo (ANFIEMB). Ingeniería Sanitaria y Ambiental 1999, 42. [Google Scholar]
- Herkovits, J.; Pérez-Coll, C. S.; Herkovits, F. D. Ecotoxicological studies of environmental samples from Buenos Aires area using a standardized amphibian embryo toxicity test (AMPHITOX). Environ. Poll 2002, 116(1), 177–183. [Google Scholar]
- Pisanó, A. Efficienza funzionale e struttura dell’ipofisi di anfibio. Arch. Zool. Ital 1957, 42, 221–227. [Google Scholar]
- Del Conte, E.; Sirlin, L. The first stages of Bufo arenarum development. Acta Zool. Lilloana 1951, 12, 495–499. [Google Scholar]
- U.S. EPA. Users guide for a computer program for PROBIT analysis of data from acute and short-term chronic toxicity test with aquatic organisms. Biological Methods, Environmental monitoring and Support Lab 1988.
- Herkovits, J.; Pérez-Coll, C. S. AMPHITOX: A customized set of toxicity tests employing amphibian embryos. Symposium on multiple stressor effects in relation to declining amphibian populations”. In Multiple Stressor Effects in Relation to Decclining Amphibian Populations; ASTM International STP 1443, Linder, G. L., Krest, S., Sparling, D., Little, E. E., Eds.; printed in USA; 2003; pp. 46–60. [Google Scholar]
- Pérez-Coll, C. S.; Herkovits, J.; Fridman, O.; D’Eramo, J. L.; Corró, L. Acclimation of Bufo arenarum embryos to copper: Effects on survival and the induction of metallothioneins. Abstract Book 21stAnnual Meeting Nashville Convention Center 2000, PWP140, 274. [Google Scholar]
- Nriagu, J. O. Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature (Lond) 1979, 279, 409–411. [Google Scholar]
- Morgan, M. K.; Scheuerman, P. R.; Bishop, C. S.; Pyles, R. A. Teratogenic potential of atrazine and 2,4-D using FETAX. J. Toxicol. Environ. Health 1996, 48(2), 151–168. [Google Scholar]
- Herkovits, J. Evoecotoxicology: Oxygen. A major driver in the evolutionary process. VII SETAC LA Meeting. Abstract Book 2005, 121, 68. [Google Scholar]
- American Society for Testing and Materials. Standard guide for conducting the Frog Embryo Teratogenesis Assay-Xenopus (FETAX). E1439-91. Annual Book of ASTM Standards, Philadelphia, PA 1992, 11.04, 1199–1209.
- Jacobi, H.; Witte, I. Synergistic effects of U46 D fluid (dimethylammonium salt of 2,4-D) and CuCl2on cytotoxicity and DNA repair in human fibroblasts. Toxicol. Lett 1991, 58(2), 159–167. [Google Scholar]
- Jacobi, H.; Metzger, J.; Witte, I. Synergistic effects of Cu(II) and dimethylammonium 2,4-dichlorophenoxyacetate (U46 D fluid) on PM2 DNA and mechanism of DNA damage. Free Radic. Res. Commun 1992, 16(2), 123–130. [Google Scholar]
- Ferri, A.; Duffard, R.; Sturtz, N.; Evangelista de Duffard, A.M. Iron, zinc and copper levels in brain, serum and liver of neonates exposed to 2,4-dichlorophenoxyacetic acid. Neurotoxicol. Teratol 2003, 25(5), 607–613. [Google Scholar]
- Hegg, E. L.; Whiting, A. K.; Saari, R. E.; McCracken, J.; Hausinger, R. P.; Que, L., Jr. Herbicide-degrading alpha-keto acid-dependent enzyme TfdA: metal coordination environment and mechanistic insights. Biochemistry 1999, 38(50), 16714–16726. [Google Scholar]
- Luo, S. Q.; Plowman, M. C.; Hopfer, S. M.; Sunderman, F. W., Jr. Embryotoxicity and teratogenicity of Cu2+and Zn2+for Xenopus laevis, assayed by the FETAX procedure. Ann. Clin. Lab. Sci 1993, 23(2), 111–120. [Google Scholar]
- Kasama, T.; Tanaka, H. Effects of copper administration on fetal and neonatal mice. J. Nutr. Sci. Vitam 1988, 34, 595–605. [Google Scholar]
- Lecyk, M. Toxicity of copper sulphate in mice embryonic development. Zool. Pol 1980, 28, 101–105. [Google Scholar]
- Blaustein, A. R.; Wake, D. B.; Sousa, W. P. Amphibian declines: judging stability, persistence and susceptibility of populations to local and global extinctions. Conserv. Biol 1994, 8, 60–71. [Google Scholar]
- Boyer, R.; Grue, C. E. The need for water quality criteria for frogs. Environ. Health Perspect 1995, 103, 352–355. [Google Scholar]
- Reeder, A. L.; Ruiz, M. O.; Pessier, A.; Brown, L. E.; Levengood, J. M.; Phillips, C. A.; Wheeler, M. B.; Warner, R. E.; Beasley, V. R. Intersexuality and the cricket frog decline: historic and geographic trends. Environ. Health Persp 2005, 113(3), 261–265. [Google Scholar]
- Vismara, C.; Bacchetta, R.; Cacciatore, B.; Vailati, G.; Fascio, U. Paraquat embryotoxicity in the Xenopus laevis cleavage phase. Aquat. Toxicol 2001, 55(1–2), 85–93. [Google Scholar]
- Besser, J. M.; Dwyer, F. J.; Ingersoll, C. G.; Wang, N. Early Life-stage toxicity of copper to endangered and surrogate fish species; Washington, DC; U.S. Environmental Protection Agency; EPA/600/R-01/051; 2001. [Google Scholar]
- Herkovits, J.; Pérez-Coll, C S.; Herkovits, F. D. Ecotoxicity in Reconquista River (Province of Buenos Aires, Argentine): A preliminary study. Environm. Health Persp 1996, 104(2), 186–189. [Google Scholar]
- Burkhart, J. G.; Ankley, G.; Bell, H.; Carpenter, H.; Fort, D.; Gardiner, D.; Gardner, H.; Hale, R.; Helgen, J. C.; Jepson, P.; Johnson, D.; Lannoo, M.; Lee, D.; Lary, J.; Levey, R.; Magner, J.; Meteyer, C.; Shelby, M.D.; Lucier, G. Strategies for assessing the implications of malformed frogs for environmental health. Environ. Health Perspect 2000, 108(1), 83–90. [Google Scholar]
- Tietge, J. E.; Ankley, G. T.; DeFoe, D. L.; Holcombe, G. W.; Jensen, K. M. Effects of water quality on development of Xenopus laevis: a frog embryo teratogenesis assay-Xenopus assessment of surface water associated with malformations in native anurans. Environ. Toxicol. Chem 2000, 19, 2114–2121. [Google Scholar]
© 2006 MDPI. All rights reserved.
Share and Cite
Pérez-Coll, C.S.; Herkovits, J. Synergistic Effects of Copper and Butylic Ester of 2,4-Dichlorophenoxyacetic Acid (Esternon Ultra) on Amphibian Embryos. Int. J. Environ. Res. Public Health 2006, 3, 343-347. https://doi.org/10.3390/ijerph2006030044
Pérez-Coll CS, Herkovits J. Synergistic Effects of Copper and Butylic Ester of 2,4-Dichlorophenoxyacetic Acid (Esternon Ultra) on Amphibian Embryos. International Journal of Environmental Research and Public Health. 2006; 3(4):343-347. https://doi.org/10.3390/ijerph2006030044
Chicago/Turabian StylePérez-Coll, Cristina Silvia, and Jorge Herkovits. 2006. "Synergistic Effects of Copper and Butylic Ester of 2,4-Dichlorophenoxyacetic Acid (Esternon Ultra) on Amphibian Embryos" International Journal of Environmental Research and Public Health 3, no. 4: 343-347. https://doi.org/10.3390/ijerph2006030044
APA StylePérez-Coll, C. S., & Herkovits, J. (2006). Synergistic Effects of Copper and Butylic Ester of 2,4-Dichlorophenoxyacetic Acid (Esternon Ultra) on Amphibian Embryos. International Journal of Environmental Research and Public Health, 3(4), 343-347. https://doi.org/10.3390/ijerph2006030044