Association of DRD2 and BDNF Genetic Polymorphisms with Exercise Addiction
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Data Collection Procedure
2.2.1. Exercise Addiction
2.2.2. Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roberts, C.; Barnard, R. Effects of exercise and diet on chronic disease. J. Appl. Physiol. 2005, 98, 3–30. [Google Scholar] [CrossRef] [PubMed]
- Al-Mallah, M.; Sakr, S.; Al-Qunaibet, A. Cardiorespiratory fitness and cardiovascular disease prevention: An update. Curr. Atheroscler. Rep. 2018, 20, 1. [Google Scholar] [CrossRef] [PubMed]
- Hailey, B.J.; Bailey, L.A. Negative addiction in runners: A quantitative approach. J. Sport Behav. 1982, 5, 150–154. [Google Scholar]
- Modolo, V.B.; Antunes, H.K.; Gimenez, P.R.; Santiago, M.L.; Tufik, S.; Mello, M.T. Negative addiction to exercise: Are there differences between genders? Clinics 2011, 66, 255–260. [Google Scholar] [CrossRef]
- Nogueira, A.; Molinero, O.; Salguero, A.; Márquez, S. Exercise Addiction in practitioners of endurance sports: Aliterature review. Front. Psychol. 2018, 9, 1484. [Google Scholar] [CrossRef]
- Stubbe, J.H.; Boomsma, D.I.; Vink, J.M.; Cornes, B.K.; Martin, N.G.; Skytthe, A.; Kyvik, K.O.; Rose, R.J.; Kujala, U.M.; Kaprio, J.; et al. Genetic influences on exercise participation in 37.051 twin pairs from seven countries. PLoS ONE 2006, 1, e22. [Google Scholar] [CrossRef]
- Van Der Mee, D.J.; Fedko, I.O.; Hottenga, J.J.; Ehli, E.A.; Van Der Zee, M.D.; Ligthart, L.; Van Beijsterveldt, T.C.E.M.; Davies, G.E.; Bartels, M.; Landers, J.G.; et al. Dopaminergic genetic variants and voluntary externally paced exercise behavior. Med. Sci. Sports Exerc. 2018, 50, 700–708. [Google Scholar] [CrossRef]
- Good, D.; Li, M.; Deater-Deckard, K. A genetic basis for motivated exercise. Exerc. Sport Sci. Rev. 2015, 4, 231–237. [Google Scholar] [CrossRef]
- Bouchard, C.; Sarzynski, M.A.; Rice, T.K.; Kraus, W.E.; Church, T.S.; Sung, Y.J.; Rao, D.C.; Rankinen, T. Genomic predictors of the maximal O2 uptake response to standardized exercise training programs. J. Appl. Physiol. 2011, 5, 1160–1170. [Google Scholar] [CrossRef]
- Ahmetov, I.; Fedotovskaya, O. Current progress in sports genomics. Adv. Clin. Chem. 2015, 70, 247–314. [Google Scholar]
- Weinstein, A.; Weinstein, Y. Exercise addiction—Diagnosis, bio-psychological mechanisms and treatment issues. Curr. Pharm. Des. 2014, 20, 4062–4069. [Google Scholar] [CrossRef] [PubMed]
- Milaniak, I.; Watson, B.; Jaffee, S. Gene-environment interplay and substance use: A review of recent findings. Curr. Addict. Rep. 2015, 2, 364–371. [Google Scholar] [CrossRef]
- Hancock, D.B.; Markunas, C.A.; Bierut, L.J.; Johnson, E.O. Human genetics of addiction: New insights and future directions. Curr. Psychiatry Rep. 2018, 20, 8. [Google Scholar] [CrossRef] [PubMed]
- Herman, A.I.; DeVito, E.E.; Jensen, K.P.; Sofuoglu, M. Pharmacogenetics of nicotine addiction: Role of dopamine. Pharmacogenomics 2014, 15, 221–234. [Google Scholar] [CrossRef]
- Deng, X.D.; Jiang, H.; Ma, Y.; Gao, Q.; Zhang, B.; Mu, B.; Zhang, L.X.; Zhang, W.; Er, Z.E.; Xie, Y.; et al. Association between DRD2/ANKK1 TaqIA polymorphism and common illicit drug dependence: Evidence from a meta-analysis. Hum. Immunol. 2015, 1, 42–51. [Google Scholar] [CrossRef]
- Rosa, D.A.; Mello, M.T.; Souza-Formigoni, M.L.O. Dependência daprática de exercícios físicos: Estudo com maratonistas brasileiros. Rev. Bras. Med. Esporte 2003, 9, 9–14. [Google Scholar] [CrossRef]
- Huppertz, C.; Bartels, M.; Groen-Blokhuis, M.M.; Dolan, C.V.; de Moor, M.H.; Abdellaoui, A.; van Beijsterveldt, C.E.; Ehli, E.A.; Hottenga, J.J.; Willemsen, G.; et al. The dopaminergic reward system and leisure time exercise behavior: A candidate allele study. Biomed. Res. Int. 2014, 2014, 591717. [Google Scholar] [CrossRef]
- Jozkow, P.; Slowinska-Lisowska, M.; Laczmanski, L.; Medras, M. DRD2 C313T and DRD4 48-bp VNTR polymorphisms and physical activity of healthy men in Lower Silesia, Poland (HALS study). Ann. Hum. Biol. 2013, 40, 186–190. [Google Scholar] [CrossRef]
- Rosso, A.L.; Metti, A.L.; Glynn, N.W.; Boudreau, R.M.; Rejeski, W.J.; Bohnen, N.; Chen, H.; Johannsen, N.M.; King, A.C.; Manini, T.M.; et al. Dopamine-related genotypes and physical activity change during an intervention: The LIFE Study. J. Am. Geriatr. Soc. 2018, 66, 1172–1179. [Google Scholar] [CrossRef]
- Neufer, P.D.; Bamman, M.M.; Muoio, D.M.; Bouchard, C.; Cooper, D.M.; Goodpaster, B.H.; Booth, F.W.; Kohrt, W.M.; Gerszten, R.E.; Mattson, M.P.; et al. Understanding the cellular and molecular mechanisms of physical activity-induced health benefits. Cell Metab. 2015, 22, 4–11. [Google Scholar] [CrossRef]
- De Moor, M.H.; Liu, Y.J.; Boomsma, D.I.; Li, J.; Hamilton, J.J.; Hottenga, J.J.; Levy, S.; Liu, X.G.; Pei, Y.F.; Posthuma, D.; et al. Genome-wide association study of exercise behavior in Dutch and American adults. Med. Sci. Sports Exerc. 2009, 41, 1887–1895. [Google Scholar] [CrossRef]
- Robison, L.S.; Swenson, S.; Hamilton, J.; Thanos, P.K. Exercise reduces dopamine D1R and increases D2R in rats: Implications for addiction. Med. Sci. Sports Exerc. 2018, 50, 1596–1602. [Google Scholar] [CrossRef]
- Fisher, B.E.; Petzinger, G.M.; Nixon, K.; Hogg, E.; Bremmer, S.; Meshul, C.K.; Jakowec, M.W. Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse basal ganglia. J. Neurosci. Res. 2004, 3, 378–390. [Google Scholar] [CrossRef]
- Morgan, J.; Corrigan, F.; Baune, B. Effects of physical exercise on central nervous system functions: A review of brain region specific adaptations. J. Mol. Psychiatry 2015, 3, 3. [Google Scholar] [CrossRef] [PubMed]
- Bryan, A.D.; Magnan, R.E.; Hooper, A.E.; Ciccolo, J.T.; Marcus, B.; Hutchison, K.E. Colorado stride (COSTRIDE): Testing genetic and physiological moderators of response to an intervention to increase physical activity. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 139. [Google Scholar] [CrossRef] [PubMed]
- Gielen, M.; Westerterp-Plantenga, M.S.; Bouwman, F.G.; Joosen, A.M.; Vlietinck, R.; Derom, C.; Zeegers, M.P.; Mariman, E.C.; Westerterp, K.R. Heritability and genetic etiology of habitual physical activity: A twin study with objective measures. Genes Nutr. 2014, 9, 415. [Google Scholar] [CrossRef] [PubMed]
- Schutte, N.M.; Nederend, I.; Hudziak, J.J.; Bartels, M.; de Geus, E.J.C. Heritability of the affective response to exercise and its correlation to exercise behavior. Psychol. Sport Exerc. 2017, 31, 139–148. [Google Scholar] [CrossRef]
- Wang, D.D.; Wang, Y.; Wang, Y.; Li, R.; Zhou, C. Impact of physical exercise on substance use disorders: A meta-analysis. PLoS ONE 2014, 9, e110728. [Google Scholar] [CrossRef]
- Herring, M.; Sailors, M.; Bray, M. Genetic factors in exercise adoption, adherence and obesity. Obes. Rev. 2014, 15, 29–39. [Google Scholar] [CrossRef]
Sex | |||||||
---|---|---|---|---|---|---|---|
Total | Men | Women | p | ||||
Variables | n | % | n | % | n | % | Value |
Age group | 0.311 | ||||||
18 and 19 years old | 93 | 19.8 | 33 | 35.5 | 60 | 64.5 | |
20 to 22 years old | 139 | 29.6 | 51 | 36.7 | 88 | 63.3 | |
23 to 26 years old | 115 | 24.5 | 51 | 44.3 | 64 | 55.7 | |
≥27 years old | 122 | 26.0 | 55 | 45.1 | 67 | 54.9 | |
Practices physical exercise? | 0.000 | ||||||
No | 229 | 48.8 | 61 | 26.6 | 168 | 73.4 | |
Yes | 240 | 51.2 | 129 | 53.8 | 111 | 46.3 | |
Frequency of practice | 0.000 | ||||||
1 to 2 times/week | 28 | 11.7 | 8 | 28.6 | 20 | 71.4 | |
3 to 5 times/week | 137 | 57.1 | 62 | 45.3 | 75 | 54.7 | |
≥6 times/week | 75 | 31.3 | 59 | 78.7 | 16 | 21.3 | |
Time exercising | 0.000 | ||||||
<399 min/week | 119 | 49.8 | 48 | 40.3 | 71 | 59.7 | |
≥400 min/week | 120 | 50.2 | 80 | 66.7 | 40 | 33.3 | |
ACTN3 | 0.125 | ||||||
TT | 89 | 19.0 | 42 | 47.2 | 47 | 52.8 | |
CT | 218 | 46.5 | 78 | 35.8 | 140 | 64.2 | |
CC | 162 | 34.5 | 70 | 43.2 | 92 | 56.8 | |
AMPD1 | 0.499 | ||||||
AA | 3 | 0.6 | 1 | 33.3 | 2 | 66.7 | |
AG | 62 | 13.2 | 21 | 33.9 | 41 | 66.1 | |
GG | 404 | 86.1 | 168 | 41.6 | 236 | 58.4 | |
BDNF | 0.130 | ||||||
TT | 11 | 2.3 | 6 | 54.5 | 5 | 45.5 | |
CT | 88 | 18.8 | 28 | 31.8 | 60 | 68.2 | |
CC | 370 | 78.9 | 156 | 42.2 | 214 | 57.8 | |
DRD1 | 0.843 | ||||||
AA | 31 | 6.6 | 14 | 45.2 | 17 | 54.8 | |
AG | 184 | 39.2 | 75 | 40.8 | 109 | 59.2 | |
GG | 254 | 54.2 | 101 | 39.8 | 153 | 60.2 | |
DRD2 | 0.647 | ||||||
AA | 32 | 6.8 | 13 | 40.6 | 19 | 59.4 | |
AG | 157 | 33.5 | 59 | 37.6 | 98 | 62.4 | |
GG | 280 | 59.7 | 118 | 42.1 | 162 | 57.9 | |
HFE | 0.294 | ||||||
GG | 4 | 0.9 | 2 | 50.0 | 2 | 50.0 | |
CG | 106 | 22.6 | 36 | 34.0 | 70 | 66.0 | |
CC | 358 | 76.5 | 151 | 42.2 | 207 | 57.8 | |
PPARA | |||||||
CC | 49 | 10.5 | 21 | 42.9 | 28 | 57.1 | 0.172 |
CG | 194 | 41.5 | 87 | 44.8 | 107 | 55.2 | |
GG | 225 | 48.1 | 81 | 36.0 | 144 | 64.0 | |
PPARGC1A | 0.729 | ||||||
TT | 37 | 7.9 | 13 | 36.1 | 24 | 64.9 | |
CT | 185 | 39.7 | 74 | 40.0 | 111 | 60.0 | |
CC | 244 | 52.4 | 102 | 41.8 | 142 | 58.2 |
Symptoms Suggestive of Addiction | |||||
---|---|---|---|---|---|
Asymptomatic (0 to 4 Points) | Symptomatic (5 to 14 Points) | p | |||
Single-Nucleotide Polymorphisms | n | % | n | % | Value |
ACTN3 | 0.900 | ||||
TT (XX) | 69 | 77.5 | 20 | 22.5 | |
CT (RX) | 174 | 79.8 | 44 | 20.2 | |
CC (RR) | 126 | 78.8 | 34 | 21.3 | |
AMPD1 | 0.819 | ||||
AA | 2 | 66.7 | 1 | 33.3 | |
AG | 48 | 77.4 | 14 | 22.6 | |
GG | 319 | 79.4 | 83 | 20.6 | |
BDNF | 0.088 | ||||
TT | 9 | 81.8 | 2 | 18.2 | |
CT | 77 | 87.5 | 11 | 12.5 | |
CC | 283 | 76.9 | 85 | 23.1 | |
DRD1 | 0.523 | ||||
AA | 22 | 71.0 | 9 | 29.0 | |
AG | 145 | 79.2 | 38 | 20.8 | |
GG | 201 | 79.8 | 51 | 20.2 | |
DRD2 | 0.027 | ||||
AA | 19 | 61.3 | 12 | 38.7 | |
AG | 130 | 82.8 | 27 | 17.2 | |
GG | 220 | 78.9 | 59 | 21.1 | |
HFE | 0.278 | ||||
GG | 4 | 100.0 | 0 | 0.0 | |
CG | 88 | 83.0 | 18 | 17.0 | |
CC | 276 | 77.5 | 80 | 22.5 | |
PPARA | 0.093 | ||||
CC | 40 | 83.3 | 8 | 16.7 | |
CG | 143 | 74.1 | 50 | 25.9 | |
GG | 181 | 82.2 | 40 | 17.8 | |
PPARGC1A | 0.136 | ||||
TT | 30 | 81.1 | 7 | 18.9 | |
CT | 153 | 83.2 | 31 | 16.8 | |
CC | 183 | 75.3 | 60 | 24.7 |
Gene | Polymorphisms | U | p Value | |
---|---|---|---|---|
BDNF | CC | TT/CT | ||
0.5 (0–4) | 0 (0–3) * | 15,506.000 | 0.014 | |
DRD2 | AA | GG/AG | ||
2 (0–6) | 0 (0–4) | 5723.5 | 0.12 |
Gene | Polymorphisms | U | p Value | |
---|---|---|---|---|
BDNF | CC | TT/CT | ||
4 (2.25–6) | 4 (2–5) | 3468.000 | 0.1 | |
DRD2 | AA | GG/AG | ||
5 (2.75–8) | 4 (2–6) | 1455.5 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, I.M.; Santos, C.G.M.; de Rezende, C.G.; Neto, V.C.; Palma, A. Association of DRD2 and BDNF Genetic Polymorphisms with Exercise Addiction. Int. J. Environ. Res. Public Health 2025, 22, 1356. https://doi.org/10.3390/ijerph22091356
da Silva IM, Santos CGM, de Rezende CG, Neto VC, Palma A. Association of DRD2 and BDNF Genetic Polymorphisms with Exercise Addiction. International Journal of Environmental Research and Public Health. 2025; 22(9):1356. https://doi.org/10.3390/ijerph22091356
Chicago/Turabian Styleda Silva, Izadora Moreira, Caleb Guedes Miranda Santos, Camilla Geyer de Rezende, Victor Corrêa Neto, and Alexandre Palma. 2025. "Association of DRD2 and BDNF Genetic Polymorphisms with Exercise Addiction" International Journal of Environmental Research and Public Health 22, no. 9: 1356. https://doi.org/10.3390/ijerph22091356
APA Styleda Silva, I. M., Santos, C. G. M., de Rezende, C. G., Neto, V. C., & Palma, A. (2025). Association of DRD2 and BDNF Genetic Polymorphisms with Exercise Addiction. International Journal of Environmental Research and Public Health, 22(9), 1356. https://doi.org/10.3390/ijerph22091356