PFAS Exposure, Mental Health, and Environmental Justice in the United States: Impacts on Marginalized Communities
Abstract
1. Introduction
2. PFAS: Chemistry, Sources, and Environmental Persistence
2.1. Chemical Properties of PFAS
2.2. Sources of Exposure
2.3. Environmental Accumulation
3. Health Impacts of PFAS Exposure
3.1. Serum Concentrations
3.2. Bioaccumulation in Brain
3.3. Underexplored Mental Health Effects
4. Environmental Justice and PFAS
4.1. Disproportionate Impact on Marginalized Communities
4.2. Systemic Racism in PFAS Exposure Disparities
5. Intersection of PFAS Contamination and Mental Health in Communities of Color
5.1. Current Research
5.2. Challenges in Understanding Mental Health Impacts
5.3. Cultural and Societal Factors
5.4. Limitations
6. Policy and Regulatory Landscape
6.1. Current PFAS Regulations
6.1.1. International Regulations
6.1.2. U.S. Regulations
6.2. Proposed Recommendations
6.3. Community Advocacy and Solutions
6.4. Community Engagement
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADHD | attention-deficit hyperactivity disorder |
AFB | Air Force Base |
AFFF | aqueous film-forming foam |
AL | allostatic load |
ATP | adenosine triphosphate |
ATSDR | Agency for Toxic Substances and Disease Registry |
BBB | blood–brain barrier |
BUND | Bund für Umwelt und Naturschutz Deutschland |
CDC | Centers for Disease Control and Prevention |
CEPA | Canadian Environmental Protection Act |
CES-D | Center for Epidemiologic Studies Depression Scale |
CIOB | Chemicals in Our Bodies |
9CLPF | 9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid |
CMP | Chemicals Management Plan |
CNS | central nervous system |
CRH | corticotropin-releasing hormone |
CTRL | control |
CWS | community water systems |
DAT | dopamine transporter |
DP1 | neuronal commitment phase |
DP2 | neuronal precursor phase |
DP3 | mature dopaminergic differentiation phase |
ECHA | European Chemicals Agency |
ECHO.CA.IL | Environmental Influences on Child Health Outcomes |
EDCs | endocrine-disrupting chemicals |
EGLE | Environment, Great Lakes, and Energy |
eGFR | estimated glomerular filtration |
EPA | Environmental Protection Agency |
EPDS | Edinburgh Postnatal Scale |
EWG | Environmental Working Group |
FDA | Food and Drug Administration |
HFPO-DA (Gen X®) | hexafluoropropylene oxide dimer acid |
IARC | International Agency for Research on Cancer |
IKIDS | Illinois Kids Development Study |
KFEM | Korean Federation for Environmental Movement |
MCLs | Maximum Contaminant Levels |
MoCRA | Modernization of Cosmetics Regulation Act of 2022 |
NEMP | National Environmental Management Plan |
NF-H | neurofilament heavy chain |
NHANES | National Health and Nutrition Examination Survey |
NIEHS | National Institute of Environmental Health Sciences |
NIH | National Institutes of Health |
NGOs | non-governmental organizations |
NJ | New Jersey |
NPDWR | National Primary Drinking Water Regulation |
NY | New York |
PFAS | per- and polyfluoroalkyl substances |
PFBA | perfluorobutanoic acid |
PFBS | perfluorobutane sulfonate |
PFDA | perfluorodecanoic acid |
PFHpA | perfluoroheptanoic acid |
PFHxS | perfluorohexane sulfonate |
PFNA | perfluorononanoic acid |
PFOA | perfluorooctanoic acid |
PFOS | perfluorooctane sulfonic acid |
PFOSA | perfluorooctane sulfonamide |
POPs | persistent organic pollutants |
PPE | personal protective equipment |
PPAR | peroxisome proliferator-activated receptor |
PSS | Perceived Stress Scale |
REACH | Research, Education, and Action for Community Health |
ROS | reactive oxygen species |
SCWO | supercritical water oxidation |
SELF | Study of Environment, Lifestyle, and Fibroids |
SES | socioeconomic status |
STEEP | Sources, Transport, Exposure, and Effects of Per- and Polyfluoroalkyl Sub-stances |
TH | tyrosine hydroxylase |
UCMR 5 | Fifth Unregulated Contaminant Monitoring Rule |
US | United States |
References
- U.S. Environmental Protection Agency. PFAS Explained. October 2024. Available online: https://www.epa.gov/pfas/pfas-explained (accessed on 11 May 2025).
- U.S. Environmental Protection Agency. Basic Information on PFAS. January 2021. Available online: https://19january2021snapshot.epa.gov/pfas/basic-information-pfas_.html (accessed on 11 May 2025).
- National Institute of Environmental Health Sciences. Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS). May 2025. Available online: https://www.niehs.nih.gov/health/topics/agents/pfc (accessed on 11 May 2025).
- Kwiatkowski, C.F.; Andrews, D.Q.; Birnbaum, L.S.; Bruton, T.A.; DeWitt, J.C.; Knappe, D.R.U.; Maffini, M.V.; Miller, M.F.; Pelch, K.E.; Reade, A.; et al. Scientific Basis for Managing PFAS as a Chemical Class. Environ. Sci. Technol. Lett. 2020, 7, 532–543. [Google Scholar] [CrossRef]
- Panieri, E.; Baralic, K.; Djukic-Cosic, D.; Buha Djordjevic, A.; Saso, L. PFAS Molecules: A Major Concern for the Human Health and the Environment. Toxics 2022, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Pezeshki, H.; Rajabi, S.; Hashemi, M.; Moradalizadeh, S.; Nasab, H. Per- and poly-fluoroalkyl substances as forever chemicals in drinking water: Unraveling the nexus with obesity and endocrine disruption—A mini review. Heliyon 2025, 11, e42782. [Google Scholar] [CrossRef] [PubMed]
- Anik, A.H.; Basir, S.; Sultan, M.B.; Alam, M.; Rahman, M.; Tareq, S.M. Unveiling the emerging concern of per- and polyfluoroalkyl substances (PFAS) and their potential impacts on estuarine ecosystems. Mar. Pollut. Bull. 2025, 212, 117554. [Google Scholar] [CrossRef]
- Dimitrakopoulou, M.; Karvounis, M.; Marinos, G.; Theodorakopoulou, Z.; Aloizou, E.; Petsangourakis, G.; Papakonstantinou, M.; Stoitsis, G. Comprehensive analysis of PFAS presence from environment to plate. NPJ Sci. Food 2024, 8, 80. [Google Scholar] [CrossRef]
- Hong, M.S.; Lee, J.S.; Lee, M.C.; Lee, J.S. Ecotoxicological effects of per- and polyfluoroalkyl substances in aquatic organisms: A review. Mar. Pollut. Bull. 2025, 214, 117678. [Google Scholar] [CrossRef]
- Zhang, J.; Naveed, H.; Chen, K.; Chen, L. Toxicity of Per- and Polyfluoroalkyl Substances and Their Substitutes to Terrestrial and Aquatic Invertebrates—A Review. Toxics 2025, 13, 47. [Google Scholar] [CrossRef]
- Flynn, R.W.; Hoover, G.; Iacchetta, M.; Guffey, S.; de Perre, C.; Huerta, B.; Li, W.; Hoverman, J.T.; Lee, L.; Sepúlveda, M.S. Comparative Toxicity of Aquatic Per- and Polyfluoroalkyl Substance Exposure in Three Species of Amphibians. Environ. Toxicol. Chem. 2022, 41, 1407–1415. [Google Scholar] [CrossRef]
- Harvard T. H. Chan School of Public Health. Communities of Color Disproportionately Exposed to PFAS Pollution in Drinking Water. Harvard, T.H. Chan School of Public Health, May 2023. Available online: https://hsph.harvard.edu/news/communities-of-color-disproportionately-exposed-to-pfas-pollution-in-drinking-water/ (accessed on 1 July 2025).
- Calloway, E.E.; Chiappone, A.L.; Schmitt, H.J.; Sullivan, D.; Gerhardstein, B.; Tucker, P.G.; Rayman, J.; Yaroch, A.L. Exploring Community Psychosocial Stress Related to Per- and Poly-Fluoroalkyl Substances (PFAS) Contamination: Lessons Learned from a Qualitative Study. Int. J. Environ. Res. Public Health 2020, 17, 8706. [Google Scholar] [CrossRef]
- Ogundare, O.; Obeng-Gyasi, E. The Combined Effects of Per- and Polyfluoroalkyl Substances, Metals, and Behavioral and Social Factors on Depressive Symptoms. Med. Sci. 2025, 13, 69. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. IARC Monographs Evaluate the Carcinogenicity of Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS). December 2023. Available online: https://www.iarc.who.int/news-events/iarc-monographs-evaluate-the-carcinogenicity-of-perfluorooctanoic-acid-pfoa-and-perfluorooctanesulfonic-acid-pfos/ (accessed on 11 May 2025).
- Blake, B.E.; Fenton, S.E. Early life exposure to per- and polyfluoroalkyl substances (PFAS) and latent health outcomes: A review including the placenta as a target tissue and possible driver of peri- and postnatal effects. Toxicology 2020, 443, 152565. [Google Scholar] [CrossRef]
- Starnes, H.M.; Rock, K.D.; Jackson, T.W.; Belcher, S.M. A Critical Review and Meta-Analysis of Impacts of Per- and Polyfluorinated Substances on the Brain and Behavior. Front. Toxicol. 2022, 4, 881584. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.; Wang, J.; Li, X.; Zhang, Y.; Yin, T.; Yang, P. Per- and Polyfluoroalkyl Substances (PFAS) Affect Female Reproductive Health: Epidemiological Evidence and Underlying Mechanisms. Toxics 2024, 12, 678. [Google Scholar] [CrossRef] [PubMed]
- Center for Health, Environment & Justice. (n.d.). Racial Disparities in PFAS Exposure Through Drinking Water. Available online: https://chej.org/racial-disparities-in-pfas-exposure-through-drinking-water/ (accessed on 1 July 2025).
- Liddie, J.M.; Schaider, L.A.; Sunderland, E.M. Sociodemographic factors are associated with the abundance of PFAS sources and detection in U.S. community water systems. Environ. Sci. Technol. 2023, 57, 7902–7912. [Google Scholar] [CrossRef] [PubMed]
- Libenson, A.; Karasaki, S.; Cushing, L.J.; Tran, T.; Rempel, J.L.; Morello-Frosch, R.; Pace, C.E. PFAS-contaminated pesticides applied near public supply wells disproportionately impact communities of color in California. ACS ES T Water 2024, 4, 2495–2503. [Google Scholar] [CrossRef]
- Mueller, R.; Salvatore, D.; Brown, P.; Cordner, A. Quantifying Disparities in Per- and Polyfluoroalkyl Substances (PFAS) Levels in Drinking Water from Overburdened Communities in New Jersey, 2019–2021. Environ. Health Perspect. 2024, 132, 47011. [Google Scholar] [CrossRef]
- DeLuca, N.M.; Thomas, K.; Mullikin, A.; Slover, R.; Stanek, L.W.; Pilant, A.N.; Cohen Hubal, E.A. Geographic and demographic variability in serum PFAS concentrations for pregnant women in the United States. J. Expo. Sci. Environ. Epidemiol. 2023, 33, 710–724. [Google Scholar] [CrossRef]
- Hammel, E.; Webster, T.F.; Gurney, R.; Heiger-Bernays, W. Implications of PFAS definitions using fluorinated pharmaceuticals. iScience 2022, 25, 104020. [Google Scholar] [CrossRef]
- Evich, M.G.; Davis, M.J.B.; McCord, J.P.; Acrey, B.; Awkerman, J.A.; Knappe, D.R.U.; Lindstrom, A.B.; Speth, T.F.; Tebes-Stevens, C.; Strynar, M.J.; et al. Per- and polyfluoroalkyl substances in the environment. Science 2022, 375, eabg9065. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Our Current Understanding of Human Health and Environmental Risks of PFAS. U.S. Environmental Protection Agency, November 2024. Available online: https://www.epa.gov/pfas/our-current-understanding-human-health-and-environmental-risks-pfas (accessed on 11 May 2025).
- National Institute of Environmental Health Sciences. PFAS-REACH (Research, Education, and Action for Community Health). September 2022. Available online: https://www.niehs.nih.gov/research/supported/translational/rta/cfg/ssi (accessed on 11 May 2025).
- Peritore, A.F.; Gugliandolo, E.; Cuzzocrea, S.; Crupi, R.; Britti, D. Current Review of Increasing Animal Health Threat of Per- and Polyfluoroalkyl Substances (PFAS): Harms, Limitations, and Alternatives to Manage Their Toxicity. Int. J. Mol. Sci. 2023, 24, 11707. [Google Scholar] [CrossRef]
- Fenton, S.E.; Ducatman, A.; Boobis, A.; DeWitt, J.C.; Lau, C.; Ng, C.; Smith, J.S.; Roberts, S.M. Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. Environ. Toxicol. Chem. 2021, 40, 606–630. [Google Scholar] [CrossRef] [PubMed]
- Brase, R.A.; Mullin, E.J.; Spink, D.C. Legacy and Emerging Per- and Polyfluoroalkyl Substances: Analytical Techniques, Environmental Fate, and Health Effects. Int. J. Mol. Sci. 2021, 22, 995. [Google Scholar] [CrossRef] [PubMed]
- Benaafi, M.; Bafaqeer, A. Comprehensive Review of Global Perspectives on Per- and Polyfluoroalkyl Compounds: Occurrence, Fate, and Remediation in Groundwater Systems. Water 2024, 16, 1583. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Per- and Polyfluoroalkyl Substances (PFAS). March 2025. Available online: https://www.epa.gov/pfas (accessed on 11 May 2025).
- Wisconsin Department of Health Services. Chemicals: Perfluoroalkyl and Polyfluoroalkyl (PFAS) Substances. February 2025. Available online: https://www.dhs.wisconsin.gov/chemical/pfas.htm (accessed on 11 May 2025).
- Agency for Toxic Substances and Disease Registry. Region 5|PFAS and Your Health. Centers for Disease Control and Prevention. November 2024. Available online: https://www.atsdr.cdc.gov/pfas/sites-map/region-5.html (accessed on 1 July 2025).
- Zahm, S.; Bonde, J.P.; Chiu, W.A.; Hoppin, J.; Kanno, J.; Abdallah, M.; Blystone, C.R.; Calkins, M.M.; Dong, G.H.; Dorman, D.C.; et al. Carcinogenicity of perfluorooctanoic acid and perfluorooctanesulfonic acid. Lancet Oncol. 2024, 25, 16–17. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (EFSA CONTAM Panel); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; Del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.R.; Leblanc, J.C.; et al. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J. 2020, 18, e06223. [Google Scholar] [CrossRef]
- Guo, W.; Hao, W.; Xiao, W. Emerging Perfluorinated Chemical GenX: Environmental and Biological Fates and Risks. Environ. Health 2024, 3, 338–351. [Google Scholar] [CrossRef]
- Smalling, K.L.; Romanok, K.M.; Bradley, P.M.; Morriss, M.C.; Gray, J.L.; Kanagy, L.K.; Gordon, S.E.; Williams, B.M.; Breitmeyer, S.E.; Jones, D.K.; et al. Per- and polyfluoroalkyl substances (PFAS) in United States tapwater: Comparison of underserved private-well and public-supply exposures and associated health implications. Environ. Int. 2023, 178, 108033. [Google Scholar] [CrossRef]
- Yoo, H.J.; Pyo, M.C.; Rhee, K.H.; Lim, J.-M.; Yang, S.-A.; Yoo, M.K.; Lee, K.-W. Perfluorooctanoic acid (PFOA) and hexafluoropropylene oxide-dimer acid (GenX): Hepatic stress and bile acid metabolism with different pathways. Ecotoxicol. Environ. Saf. 2023, 259, 115001. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Learn About the Human Health Toxicity Assessment for PFBS. August 2024. Available online: https://www.epa.gov/chemical-research/learn-about-human-health-toxicity-assessment-pfbs (accessed on 11 May 2025).
- Ding, N.; Harlow, S.D.; Randolph, J.F., Jr.; Loch-Caruso, R.; Park, S.K. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary. Hum. Reprod. Update 2020, 26, 724–752. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. IRIS Toxicological Review of Perfluorohexanesulfonic Acid (PFHxS, CASRN 335-46-4) and Related Salts. (Report No. EPA/635/R-25/012Fa). Integrated Risk Information System. January 2025. Available online: https://iris.epa.gov/static/pdfs/0705tr.pdf (accessed on 1 July 2025).
- Pierpont, T.M.; Elmore, J.; Redko, A.; Anannya, O.; Imbiakha, B.; O’Hare, K.; Villanueva, A.; Anronikov, S.; Bondah, N.; Chang, S.; et al. Effects of Perfluorohexane Sulfonate Exposure on Immune Cell Populations in Naive Mice. ImmunoHorizons 2024, 8, 538–549. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. IRIS Toxicological Review of Perfluorobutanoic Acid (PFBA, CASRN 375-22-4) and Related Salts (EPA/635/R-22/277Fa). Integrated Risk Information System. December 2022. Available online: https://iris.epa.gov/static/pdfs/0701tr.pdf (accessed on 11 May 2025).
- Health and Environment Alliance. The Curious Case of PFHpA and Why This and All “Forever Chemicals” Should Be Banned Under REACH. Health and Environment Alliance, December 2022. Available online: https://www.env-health.org/the-curious-case-of-pfhpa-and-why-this-and-all-forever-chemicals-should-be-banned-under-reach/ (accessed on 1 July 2025).
- Li, Z.; Li, C.; Wen, Z.; Yan, H.; Zou, C.; Li, Y.; Tian, L.; Lei, Z.; Li, H.; Wang, Y.; et al. Perfluoroheptanoic acid induces Leydig cell hyperplasia but inhibits spermatogenesis in rats after pubertal exposure. Toxicology 2021, 30, 152633. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Per- and Polyfluoroalkyl Substances (PFAS). February 2025. Available online: https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas (accessed on 11 May 2025).
- Dickman, R.A.; Aga, D.S. A review of recent studies on toxicity, sequestration, and degradation of per- and polyfluoroalkyl substances (PFAS). J. Hazard. Mater. 2022, 436, 129120. [Google Scholar] [CrossRef] [PubMed]
- Wee, S.Y.; Aris, A.Z. Revisiting the “forever chemicals”, PFOA and PFOS exposure in drinking water. npj Clean Water 2023, 6, 57. [Google Scholar] [CrossRef]
- Pelch, K.E.; Reade, A.; Wolffe, T.A.; Kwiatkowski, C.F. PFAS health effects database: Protocol for a systematic evidence map. Environ. Int. 2019, 130, 104851. [Google Scholar] [CrossRef] [PubMed]
- Gomis, M.I.; Vestergren, R.; Borg, D.; Cousins, I.T. Comparing the toxic potency in vivo of long-chain perfluoroalkyl acids and fluorinated alternatives. Environ. Int. 2018, 113, 1–9. [Google Scholar] [CrossRef]
- Solan, M.E.; Schackmuth, B.; Bruce, E.D.; Pradhan, S.; Sayes, C.M.; Lavado, R. Effects of short-chain per- and polyfluoroalkyl substances (PFAS) on toxicologically relevant gene expression profiles in a liver-on-a-chip model. Environ. Pollut. 2023, 337, 122610. [Google Scholar] [CrossRef]
- Zheng, G.; Eick, S.M.; Salamova, A. Elevated Levels of Ultrashort- and Short-Chain Perfluoroalkyl Acids in US Homes and People. Environ. Sci. Technol. 2023, 57, 15782–15793. [Google Scholar] [CrossRef]
- Cheng, B.; Alapaty, K.; Zartarian, V.; Poulakos, A.; Strynar, M.; Buckley, T. Per- and polyfluoroalkyl substances exposure science: Current knowledge, information needs, future directions. Int. J. Environ. Sci. Technol. 2021, 19, 10393–10408. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Environmental Contaminants in Food. January 2025. Available online: https://www.fda.gov/food/environmental-contaminants-food/and-polyfluoroalkyl-substances-pfas (accessed on 10 May 2025).
- U.S. Food and Drug Administration. Per and Polyfluoroalkyl Substances (PFAS) in Cosmetics. January 2024. Available online: https://www.fda.gov/cosmetics/cosmetic-ingredients/and-polyfluoroalkyl-substances-pfas-cosmetics (accessed on 9 May 2025).
- Cousins, I.T.; DeWitt, J.C.; Glüge, J.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Scheringer, M.; Wang, Z. The high persistence of PFAS is sufficient for their management as a chemical class. Environ. Sci. Process. Impacts 2020, 22, 2307–2312. [Google Scholar] [CrossRef]
- Environmental Advocates NY. Advocates: “Hudson Valley Water at Risk If State Regulations Aren’t Strengthened” [Press Release]. Environmental Advocates NY, December 2023. Available online: https://eany.org/press_release/advocates-hudson-valley-water-at-risk-if-state-regulations-arent-strengthened/ (accessed on 1 July 2025).
- New York State Department of Environmental Conservation. (n.d.). Per- and Polyfluoroalkyl Substances (PFAS). Available online: https://dec.ny.gov/environmental-protection/site-cleanup/pfas (accessed on 11 May 2025).
- Centers for Disease Control and Prevention. PFAS and Worker Health. National Institute for Occupational Safety and Health. September 2024. Available online: https://www.cdc.gov/niosh/pfas/about/index.html (accessed on 9 May 2025).
- Christensen, B.T.; Calkins, M.M. Occupational exposure to per- and polyfluoroalkyl substances: A scope review of the literature from 1980–2021. J. Expo. Sci. Environ. Epidemiol. 2023, 33, 673–686. [Google Scholar] [CrossRef]
- Paris-Davila, T.; Gaines, L.G.T.; Lucas, K.; Nylander-French, L.A. Occupational exposures to airborne per- and polyfluoroalkyl substances (PFAS)—A review. Am. J. Ind. Med. 2023, 66, 393–410. [Google Scholar] [CrossRef]
- Ayodele, A.; Obeng-Gyasi, E. Exploring the Potential Link Between PFAS Exposure and Endometrial Cancer: A Review of Environmental and Sociodemographic Factors. Cancers 2024, 16, 983. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Comptox Chemicals Dashboard: PFAS|EPA: PFAS Structures in DSSTox (Update August 2022). Available online: https://comptox.epa.gov/dashboard/chemical-lists/pfasstruct (accessed on 12 May 2025).
- Kurwadkar, S.; Dane, J.; Kanel, S.R.; Nadagouda, M.N.; Cawdrey, R.W.; Ambade, B.; Struckhoff, G.C.; Wilkin, R. Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Sci. Total Environ. 2022, 809, 151003. [Google Scholar] [CrossRef] [PubMed]
- U.S. Geological Survey (USGS) Communications and Publishing. Tap Water Study Detects PFAS ‘Forever Chemicals’ Across the US. July 2023. Available online: https://www.usgs.gov/news/national-news-release/tap-water-study-detects-pfas-forever-chemicals-across-us (accessed on 11 May 2025).
- Environmental Working Group. Mapping PFAS Chemical Contamination: 206 U.S. Military Sites. Environmental Working Group, March 2019. Available online: https://www.ewg.org/research/mapping-pfas-chemical-contamination-206-us-military-sites (accessed on 1 July 2025).
- Wee, S.Y.; Aris, A.Z. Environmental impacts, exposure pathways, and health effects of PFOA and PFOS. Ecotoxicol. Environ. Saf. 2023, 267, 115663. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, R.; Abass, K.; Bonefeld-Jørgensen, E.C.; Bossi, R.; Dietz, R.; Ferguson, S.; Fernie, K.J.; Grandjean, P.; Herzke, D.; Houde, M.; et al. Cross-cutting studies of per- and polyfluorinated alkyl substances (PFAS) in Arctic wildlife and humans. Sci. Total Environ. 2024, 954, 176274. [Google Scholar] [CrossRef] [PubMed]
- Michigan Department of Environment, Great Lakes, and Energy. (n.d.). Michigan PFAS Action Response Team (MPART). Michigan.Gov. Available online: https://www.michigan.gov/pfasresponse/ (accessed on 12 May 2025).
- National Wildlife Federation. (n.d.). PFAS Contamination at the Former Wurtsmith Air Force Base [Technical Report]. National Wildlife Federation. Available online: https://www.nwf.org/-/media/PDFs/Regional/Great-Lakes/PFAS-Contamination-at-the-Former-Wurtsmith-Air-Force-Base.pdf (accessed on 1 July 2025).
- Michigan Department of Environment, Great Lakes, and Energy. (n.d.). Former Wurtsmith Air Force Base (Iosco County). PFAS Response. Available online: https://www.michigan.gov/pfasresponse/investigations/sites-aoi/iosco-county/wurtsmith (accessed on 1 July 2025).
- Michigan Department of Environment, Great Lakes, and Energy, & United States Air Force. EGLE and USAF Announce Progress to Accelerate PFAS Investigation and Treatment at Former Wurtsmith Air Force Base. Michigan Department of Environment, Great Lakes, and Energy, July 2019. Available online: https://www.michigan.gov/pfasresponse/about/news/2019/07/01/egle-and-usaf-announce-progress-to-accelerate-pfas-investigation (accessed on 1 July 2025).
- Michigan Department of Environmental Quality. Addendum for Per- and Polyfluoroalkyl Substances (PFAS) in Michigan: Current State of Knowledge and Recommendations for Future Actions. Michigan Toxics Steering Group PFAS Workgroup. August 2017. Available online: https://www.michigan.gov/-/media/Project/Websites/egle/Documents/Groups/TSG/Presentations/presentation-2017-08-pfas.pdf?rev=6c6a8fe97b894d25ae675df80e2ef9d6 (accessed on 1 July 2025).
- Agency for Toxic Substances and Disease Registry. PFAS Exposure Assessment: Orange County, New York. November 2024. Available online: https://www.atsdr.cdc.gov/pfas/exposure-assessments/orange-county-new-york.html (accessed on 11 May 2025).
- TorHoerman Law. Wurtsmith Air Force Base PFAS Lawsuit [2024 Update]. PFAS Contamination at Wurtsmith United States Air Force Base: Legal Investigation. May 2025. Available online: https://www.torhoermanlaw.com/pfas-contamination/wurtsmith-air-force-base-pfas-lawsuit/ (accessed on 12 May 2025).
- U.S. Environmental Protection Agency. Data Summary of the Fifth Unregulated Contaminant Monitoring Rule. March 2025. Available online: https://www.epa.gov/dwucmr/data-summary-fifth-unregulated-contaminant-monitoring-rule (accessed on 11 May 2025).
- U.S. Food and Drug Administration. Questions and Answers on PFAS in Food. April 2025. Available online: https://www.fda.gov/food/process-contaminants-food/questions-and-answers-pfas-food (accessed on 9 May 2025).
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef]
- Wattigney, W.A.; Savadatti, S.S.; Liu, M.; Pavuk, M.; Lewis-Michl, E.; Kannan, K.; Wang, W.; Spliethoff, H.; Marquez-Bravo, L.; Hwang, S.A. Biomonitoring of per- and polyfluoroalkyl substances in minority angler communities in central New York State. Environ. Res. 2022, 204 Pt C, 112309. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Guidance on PFAS Exposure, Testing, and Clinical Follow-Up; Consensus Study Report; The National Academies Press: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention—National Center for Health Statistics. National Health and Nutrition Examination Survey: 2017–March 2020 Data Documentation, Codebook, and Frequencies: Perfluoroalkyl and Polyfluoroalkyl Substances (P_PFAS). U.S. Department of Health and Human Services, May 2024. Available online: https://wwwn.cdc.gov/Nchs/Data/Nhanes/Public/2017/DataFiles/P_PFAS.htm (accessed on 9 May 2025).
- Botelho, J.C.; Kato, K.; Wong, L.Y.; Calafat, A.M. Per- and polyfluoroalkyl substances (PFAS) exposure in the U.S. population: NHANES 1999-March 2020. Environ. Res. 2025, 270, 120916. [Google Scholar] [CrossRef]
- Di Nisio, A.; Pannella, M.; Vogiatzis, S.; Sut, S.; Zengin, G.; Rocca, M.S.; Antonini, A.; Porzionato, A.; De Caro, R.; Bortolozzi, M.; et al. Impairment of human dopaminergic neurons at different developmental stages by perfluoro-octanoic acid (PFOA) and differential human brain areas accumulation of perfluoroalkyl chemicals. Environ. Int. 2022, 158, 106982. [Google Scholar] [CrossRef]
- Norén, E.; Blomberg, A.J.; Lindh, C.; Pineda, D.; Jakobsson, K.; Nielsen, C. Transplacental transfer efficiency of perfluoroalkyl substances (PFAS) after long-term exposure to highly contaminated drinking water: A study in the Ronneby Mother-Child Cohort. J. Expo. Sci. Environ. Epidemiol. 2025, 35, 445–453. [Google Scholar] [CrossRef]
- Szilagyi, J.T.; Avula, V.; Fry, R.C. Perfluoroalkyl Substances (PFAS) and Their Effects on the Placenta, Pregnancy, and Child Development: A Potential Mechanistic Role for Placental Peroxisome Proliferator-Activated Receptors (PPARs). Curr. Environ. Health Rep. 2020, 7, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Sui, X.; Li, J.; Zhang, L.; Wang, P.; Liu, Y.; Shi, H.; Zhang, Y. Early-life exposure to per- and polyfluoroalkyl substances: Analysis of levels, health risk and binding abilities to transport proteins. Eco Environ. Health 2024, 3, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Ouidir, M.; Lemaitre, N.; Jovanovic, N.; Bayat, S.; Lyon-Caen, S.; Hoffmann, P.; Desseux, M.; Thomsen, C.; Couturier-Tarrade, A.; et al. PFAS exposure during pregnancy: Implications for placental health and functioning. Environ. Int. 2025, 197, 109308. [Google Scholar] [CrossRef] [PubMed]
- Brown-Leung, J.M.; Cannon, J.R. Neurotransmission targets of Per- and Polyfluoroalkyl substance neurotoxicity: Mechanisms and potential implications for adverse neurological outcomes. Chem. Res. Toxicol. 2022, 35, 1312–1333. [Google Scholar] [CrossRef]
- Wang, X.; Li, B.; Zhao, W.D.; Liu, Y.J.; Shang, D.S.; Fang, W.G.; Chen, Y.H. Perfluorooctane sulfonate triggers tight junction “opening” in brain endothelial cells via phosphatidylinositol 3-kinase. Biochem. Biophys. Res. Commun. 2011, 410, 258–263. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wang, G.J.; Kollins, S.H.; Wigal, T.L.; Newcorn, J.H.; Telang, F.; Fowler, J.S.; Zhu, W.; Logan, J.; Ma, Y.; et al. Evaluating dopamine reward pathway in ADHD: Clinical implications. JAMA 2009, 302, 1084–1091. [Google Scholar] [CrossRef]
- Kim, J.I.; Kim, B.N.; Lee, Y.A.; Shin, C.H.; Hong, Y.C.; Døssing, L.D.; Hildebrandt, G.; Lim, Y.H. Association between early-childhood exposure to perfluoroalkyl substances and ADHD symptoms: A prospective cohort study. Sci. Total Environ. 2023, 879, 163081. [Google Scholar] [CrossRef]
- Yao, H.; Fu, Y.; Weng, X.; Zeng, Z.; Tan, Y.; Wu, X.; Zeng, H.; Yang, Z.; Li, Y.; Liang, H.; et al. The Association Between Prenatal Per- and Polyfluoroalkyl Substances Exposure and Neurobehavioral Problems in Offspring: A Meta-Analysis. Int. J. Environ. Res. Public Health 2023, 20, 1668. [Google Scholar] [CrossRef]
- Peixoto-Rodrigues, M.C.; Neto, J.R.M.; Teglas, T.; Toborek, M.; Quinete, N.S.; Hauser-Davis, R.A.; Adesse, D. Early-life exposure to PCBs and PFAS exerts negative effects on the developing central nervous system. J. Hazard. Mater. 2025, 485, 136832. [Google Scholar] [CrossRef]
- Ríos-Bonilla, K.M.; Aga, D.S.; Lee, J.; König, M.; Qin, W.; Cristobal, J.R.; Atilla-Gokcumen, G.E.; Escher, B.I. Neurotoxic Effects of Mixtures of Perfluoroalkyl Substances (PFAS) at Environmental and Human Blood Concentrations. Environ. Sci. Technol. 2024, 58, 16774–16784. [Google Scholar] [CrossRef]
- Bharal, B.; Ruchitha, C.; Kumar, P.; Pandey, R.; Rachamalla, M.; Niyogi, S.; Naidu, R.; Kaundal, R.K. Neurotoxicity of per- and polyfluoroalkyl substances: Evidence and future directions. Sci. Total Environ. 2024, 955, 176941. [Google Scholar] [CrossRef]
- Wu, S.; Xie, J.; Zhao, H.; Zhao, X.; Sánchez, O.F.; Rochet, J.C.; Freeman, J.L.; Yuan, C. Developmental neurotoxicity of PFOA exposure on hiPSC-derived cortical neurons. Environ. Int. 2024, 190, 108914. [Google Scholar] [CrossRef] [PubMed]
- Cooper, G.M. The Cell: A Molecular Approach, 2nd ed.; Transport of Small Molecules; Sinauer Associates: Sunderland, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK9847/ (accessed on 1 July 2025).
- Rauh, V.A.; Margolis, A.E. Research Review: Environmental exposures, neurodevelopment, and child mental health—New paradigms for the study of brain and behavioral effects. J. Child Psychol. Psychiatry 2016, 57, 775–793. [Google Scholar] [CrossRef]
- Moro, G.; Liberi, S.; Vascon, F.; Linciano, S.; De Felice, S.; Fasolato, S.; Foresta, C.; De Toni, L.; Di Nisio, A.; Cendron, L.; et al. Investigation of the Interaction Between Human Serum Albumin and Branched Short-Chain Perfluoroalkyl Compounds. Chem. Res. Toxicol. 2022, 35, 2049–2058. [Google Scholar] [CrossRef]
- Zhao, L.; Teng, M.; Zhao, X.; Li, Y.; Sun, J.; Zhao, W.; Ruan, Y.; Leung, K.M.Y.; Wu, F. Insight into the binding model of per- and polyfluoroalkyl substances to proteins and membranes. Environ. Int. 2023, 175, 107951. [Google Scholar] [CrossRef]
- Maruzzo, A.J.; Hernandez, A.B.; Swartz, C.H.; Liddie, J.M.; Schaider, L.A. Socioeconomic Disparities in Exposures to PFAS and Other Unregulated Industrial Drinking Water Contaminants in US Public Water Systems. Environ. Health Perspect. 2025, 133, 17002. [Google Scholar] [CrossRef]
- Albavera, G. PFAS in Drinking Water and Implications for Latino Health [Policy Brief]. Congressional Hispanic Caucus Institute, March 2024. Available online: https://chci.org/wp-content/uploads/2024/04/FINAL.Albavera-Gabriela-1.pdf (accessed on 1 July 2025).
- Lendewig, M.; Marquez, R.; Franco, J.; Vera, R.E.; Vivas, K.A.; Forfora, N.; Venditti, R.A.; Gonzalez, R. PFAS regulations and economic impact: A review of U.S. pulp & paper and textiles industries. Chemosphere 2025, 377, 144301. [Google Scholar] [CrossRef]
- Barry, V.; Winquist, A.; Steenland, K. Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environ. Health Perspect. 2013, 121, 1313–1318. [Google Scholar] [CrossRef]
- Steenland, K.; Tinker, S.; Shankar, A.; Ducatman, A. Association of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) with uric acid among adults with elevated community exposure to PFOA. Environ. Health Perspect. 2010, 118, 229–233. [Google Scholar] [CrossRef]
- Howard, L. Residents in San Joaquin Valley Breathe Chemical Pesticides, According to New Study [News Release]. UC Davis Health. September 2024. Available online: https://health.ucdavis.edu/news/headlines/residents-in-san-joaquin-valley-breathe-chemical-pesticides-according-to-new-study/2024/09 (accessed on 1 July 2025).
- New Jersey Department of Environmental Protection, Division of Science and Research. PFAS (Per- and Polyfluoroalkyl Substances). April 2025. Available online: https://dep.nj.gov/dsr/pfas/ (accessed on 1 July 2025).
- U.S. Environmental Protection Agency. EPA Announces Final Rule to Improve Public Awareness of Drinking Water Quality [Press Release]. May 2024. Available online: https://www.epa.gov/newsreleases/epa-announces-final-rule-improve-public-awareness-drinking-water-quality (accessed on 1 July 2025).
- Landrigan, P.J.; Rauh, V.A.; Galvez, M.P. Environmental justice and the health of children. Mt. Sinai J. Med. 2010, 77, 178–187. [Google Scholar] [CrossRef]
- Gochfeld, M.; Burger, J. Disproportionate exposures in environmental justice and other populations: The importance of outliers. Am. J. Public Health 2011, 101 (Suppl. 1), S53–S63. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. Climate Change and the Health of Socially Vulnerable People. April 2025. Available online: https://www.epa.gov/climateimpacts/climate-change-and-health-socially-vulnerable-people (accessed on 1 July 2025).
- Ames, J.L.; Sharma, V.; Lyall, K. Effects of Early-Life PFAS Exposure on Child Neurodevelopment: A Review of the Evidence and Research Gaps. Curr. Environ. Health Rep. 2025, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Parithathvi, A.; Choudhari, N.; Dsouza, H.S. Prenatal and early life lead exposure induced neurotoxicity. Hum. Exp. Toxicol. 2024, 43, 9603271241285523. [Google Scholar] [CrossRef] [PubMed]
- Aschengrau, A.; Janulewicz, P.A.; White, R.F.; Vieira, V.M.; Gallagher, L.G.; Getz, K.D.; Webster, T.F.; Ozonoff, D.M. Long-Term Neurotoxic Effects of Early-Life Exposure to Tetrachloroethylene-Contaminated Drinking Water. Ann. Glob. Health 2016, 82, 169–179. [Google Scholar] [CrossRef]
- Percy, Z.; Chen, A.; Sucharew, H.; Yang, W.; Vuong, A.M.; Braun, J.M.; Lanphear, B.; Ospina, M.; Calafat, A.M.; Cecil, K.M.; et al. Early-life exposure to a mixture of organophosphate esters and child behavior. Int. J. Hyg. Environ. Health 2023, 250, 114162. [Google Scholar] [CrossRef]
- Hoover, E.; Cook, K.; Plain, R.; Sanchez, K.; Waghiyi, V.; Miller, P.; Dufault, R.; Sislin, C.; Carpenter, D.O. Indigenous peoples of North America: Environmental exposures and reproductive justice. Environ. Health Perspect. 2012, 120, 1645–1649. [Google Scholar] [CrossRef]
- Human Rights Research. Indigenous Survival in the Face of Environmental Damage. Human Rights Research. May 2025. Available online: https://www.humanrightsresearch.org/post/indigenous-survival-in-the-face-of-environmental-damage (accessed on 1 July 2025).
- Mok, K.; Salvatore, D.; Powers, M.; Brown, P.; Poehlein, M.; Conroy-Ben, O.; Cordner, A. Federal PFAS Testing and Tribal Public Water Systems. Environ. Health Perspect. 2022, 130, 127701. [Google Scholar] [CrossRef]
- Teodoro, M.P.; Haider, M.; Switzer, D.U.S. Environmental Policy Implementation on Tribal Lands: Trust, Neglect, and Justice. Policy Stud. J. 2018, 46, 37–59. [Google Scholar] [CrossRef]
- Eick, S.M.; Enright, E.A.; Geiger, S.D.; Dzwilewski, K.L.C.; DeMicco, E.; Smith, S.; Park, J.S.; Aguiar, A.; Woodruff, T.J.; Morello-Frosch, R.; et al. Associations of Maternal Stress, Prenatal Exposure to Per- and Polyfluoroalkyl Substances (PFAS), and Demographic Risk Factors with Birth Outcomes and Offspring Neurodevelopment: An Overview of the ECHO.CA.IL Prospective Birth Cohorts. Int. J. Environ. Res. Public Health 2021, 18, 742. [Google Scholar] [CrossRef]
- Eick, S.M.; Enright, E.A.; Padula, A.M.; Aung, M.; Geiger, S.D.; Cushing, L.; Trowbridge, J.; Keil, A.P.; Gee Baek, H.; Smith, S.; et al. Prenatal PFAS and psychosocial stress exposures in relation to fetal growth in two pregnancy cohorts: Applying environmental mixture methods to chemical and non-chemical stressors. Environ. Int. 2022, 163, 107238. [Google Scholar] [CrossRef]
- Eick, S.M.; Barr, D.B.; Brennan, P.A.; Taibl, K.R.; Tan, Y.; Robinson, M.; Kannan, K.; Panuwet, P.; Yakimavets, V.; Ryan, P.B.; et al. Per- and polyfluoroalkyl substances and psychosocial stressors have a joint effect on adverse pregnancy outcomes in the Atlanta African American Maternal-Child cohort. Sci. Total Environ. 2023, 857 Pt 2, 159450. [Google Scholar] [CrossRef]
- Schildroth, S.; Wesselink, A.K.; Bethea, T.N.; Claus Henn, B.; Friedman, A.; Fruh, V.; Coleman, C.M.; Lovett, S.M.; Vines, A.I.; Sjodin, A.; et al. A prospective cohort study of persistent endocrine-disrupting chemicals and perceived stress. Am. J. Epidemiol. 2024, 193, 1729–1740. [Google Scholar] [CrossRef]
- Eick, S.M.; Goin, D.E.; Cushing, L.; DeMicco, E.; Smith, S.; Park, J.S.; Padula, A.M.; Woodruff, T.J.; Morello-Frosch, R. Joint effects of prenatal exposure to per- and poly-fluoroalkyl substances and psychosocial stressors on corticotropin-releasing hormone during pregnancy. J. Expo. Sci. Environ. Epidemiol. 2022, 32, 27–36. [Google Scholar] [CrossRef]
- Lazarevic, N.; Smurthwaite, K.S.; Batterham, P.J.; Lane, J.; Trevenar, S.M.; D’Este, C.; Clements, A.C.A.; Joshy, A.L.; Hosking, R.; Gad, I.; et al. Psychological distress in three Australian communities living with environmental per- and polyfluoroalkyl substances contamination. Sci. Total Environ. 2023, 874, 162503. [Google Scholar] [CrossRef]
- Bashir, T.; Obeng-Gyasi, E. The Association Between Multiple Per- and Polyfluoroalkyl Substances’ Serum Levels and Allostatic Load. Int. J. Environ. Res. Public Health 2022, 19, 5455. [Google Scholar] [CrossRef]
- McAdam, J.; Bell, E.M. Determinants of maternal and neonatal PFAS concentrations: A review. Environ. Health 2023, 22, 41. [Google Scholar] [CrossRef]
- Williams, D.R. Stress and the Mental Health of Populations of Color: Advancing Our Understanding of Race-Related Stressors. J. Health Soc. Behav. 2018, 59, 466–485. [Google Scholar] [CrossRef]
- Subica, A.M.; Link, B.G. Mental Illness Stigma in Black, Latina/o, and Asian Americans. J. Racial Ethn. Health Disparities 2024. [Google Scholar] [CrossRef]
- Eylem, O.; De Wit, L.; Van Straten, A.; Steubl, L.; Melissourgaki, Z.; Danışman, G.T.; De Vries, R.; Kerkhof, A.J.F.M.; Bhui, K.; Cuijpers, P. Stigma for common mental disorders in racial minorities and majorities a systematic review and meta-analysis. BMC Public Health 2020, 20, 879. [Google Scholar] [CrossRef]
- DeFreitas, S.C.; Crone, T.; DeLeon, M.; Ajayi, A. Perceived and Personal Mental Health Stigma in Latino and African American College Students. Front. Public Health 2018, 6, 49. [Google Scholar] [CrossRef]
- Ward, E.C.; Heidrich, S.M. African American women’s beliefs about mental illness, stigma, and preferred coping behaviors. Res. Nurs. Health 2009, 32, 480–492. [Google Scholar] [CrossRef] [PubMed]
- White, B.P.; Breakey, S.; Brown, M.J.; Smith, J.R.; Tarbet, A.; Nicholas, P.K.; Ros, A.M.V. Mental Health Impacts of Climate Change Among Vulnerable Populations Globally: An Integrative Review. Ann. Glob. Health 2023, 89, 66. [Google Scholar] [CrossRef] [PubMed]
- Alarcón Garavito, G.A.; Toncón Chaparro, L.F.; Jasim, S.; Zanatta, F.; Miliou, I.; Bampa, M.; Huebner, G.; Keck, T. The Impact of Climate Change on the Mental Health of Populations at Disproportionate Risk of Health Impacts and Inequities: A Rapid Scoping Review of Reviews. Int. J. Environ. Res. Public Health 2024, 21, 1415. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Karvonen-Gutierrez, C.A.; Zota, A.R.; Mukherjee, B.; Harlow, S.D.; Park, S.K. The role of exposure to per- and polyfluoroalkyl substances in racial/ethnic disparities in hypertension: Results from the study of Women’s health across the nation. Environ. Res. 2023, 227, 115813. [Google Scholar] [CrossRef]
- European Chemicals Agency. Perfluoroalkyl Chemicals (PFAS). September 2024. Available online: https://echa.europa.eu/hot-topics/perfluoroalkyl-chemicals-pfas (accessed on 10 May 2025).
- Environment and Climate Change Canada. Canadian Environmental Protection Act: Annual Report for April 2020 to March 2021. 2022. Available online: https://www.canada.ca/content/dam/eccc/documents/pdf/cepa/CEPAAnnualReport2021-eng.pdf (accessed on 9 May 2025).
- Department of Climate Change, Energy, the Environment and Water. PFAS National Environmental Management Plan: Version 3.0. Heads of EPA Australia and New Zealand. 2025. Available online: https://www.dcceew.gov.au/sites/default/files/documents/pfas-nemp-3.pdf (accessed on 11 May 2025).
- Interstate Technology & Regulatory Council. Biosolids and PFAS Fact Sheet. Interstate Technology & Regulatory Council, September 2023. Available online: https://pfas-1.itrcweb.org/wp-content/uploads/2023/10/Biosolids_PFAS_Fact_Sheet_Sept2023_final.pdf (accessed on 11 May 2025).
- American Water. PFAS. August 2024. Available online: https://www.amwater.com/resources/pdf/american-water-PFAS.pdf (accessed on 12 May 2025).
- Safer States, PFAS “Forever Chemicals”. (n.d). Available online: https://www.saferstates.org/priorities/pfas/#:~:text=Delaware%20and%20Virginia%20have%20also,levels%20for%20%20certain%20PF%20AS%20%20chemicals (accessed on 10 May 2025).
- U.S. Environmental Protection Agency. Key EPA Actions to Address PFAS. January 2025. Available online: https://www.epa.gov/pfas/key-epa-actions-address-pfas (accessed on 13 June 2025).
- Münzel, T.; Hahad, O.; Daiber, A.; Landrigan, P.J. Soil and water pollution and human health: What should cardiologists worry about? Cardiovasc. Res. 2023, 119, 440–449. [Google Scholar] [CrossRef]
- Brusseau, M.L.; Anderson, R.H.; Guo, B. PFAS concentrations in soils: Background levels versus contaminated sites. Sci. Total Environ. 2020, 740, 140017. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Interim Guidance on the Destruction and Disposal of Perfluoroalkyl and Polyfluoroalkyl Substances and Materials Containing Perfluoroalkyl and Polyfluoroalkyl Substances—Version 2 (2024). April 2024. Available online: https://www.epa.gov/system/files/documents/2024-04/2024-interim-guidance-on-pfas-destruction-and-disposal.pdf (accessed on 11 May 2025).
- National Caucus of Environmental Legislators. Confronting Forever Chemicals: States Continue to Lead the Way in 2025. May 2025. Available online: https://www.ncelenviro.org/articles/confronting-forever-chemicals-states-continue-to-lead-the-way-in-2025/ (accessed on 11 May 2025).
- Silent Spring Institute. (n.d.). PFAS-REACH (Research, Education, and Action for Community Health). Available online: https://silentspring.org/project/pfas-reach (accessed on 11 May 2025).
- Alliance for a Healthy Tomorrow. (n.d.). Governor Healey Signs New Law to Ban PFAS in Firefighter Protective Gear. Clean Water Action. Available online: https://www.healthytomorrow.org/news/press-releases-3/ (accessed on 11 May 2025).
- University of Rhode Island. (n.d.). STEEP—Sources, Transport, Exposure & Effects of PFAS. Available online: https://web.uri.edu/steep/ (accessed on 10 May 2025).
- BUND (Friends of the Earth). Fluorochemicals: Persistent, Dangerous, Avoidable. BMU. October 2021. Available online: https://www.bund.net/fileadmin/user_upload_bund/publikationen/chemie/Background_Fluorochemicals_Web_EN.pdf (accessed on 11 May 2025).
- International Groundwater Resources. Assessment Centre Dutch Court Holds Chemical Factory Accountable for Leaching PFAS. November 2023. Available online: https://un-igrac.org/latest/stories/dutch-court-holds-chemical-factory-accountable-for-leaching-pfas/ (accessed on 11 May 2025).
- United Nations Environment Programme. National Implementation Plan (NIP) for the Stockholm Convention on Persistent Organic Pollutants: Republic of Korea. FAOLEX. January 2019. Available online: https://faolex.fao.org/docs/pdf/kor217635.pdf (accessed on 11 May 2025).
- Velasco, M. Researchers Team up with Tribe, Community to Fight PFAS with Plants. Environmental Factor. National Institute of Environmental Health Sciences. April 2024. Available online: https://factor.niehs.nih.gov/2024/4/feature/3-feature-PFAS-plants (accessed on 11 May 2025).
- New Jersey Department of Environmental Protection. DEP Presents Inaugural Our Water’s Worth It Award to Ridgewood Water for Efforts to Conserve Water and Address PFAS (24/P026). July 2024. Available online: https://dep.nj.gov/newsrel/24_0026/ (accessed on 6 May 2025).
- U.S. Environmental Protection Agency. PFAS Communications Toolkit. April 2025. Available online: https://www.epa.gov/sdwa/pfas-communications-toolkit (accessed on 11 May 2025).
- United Nations Sustainable Development Goals Action Awards. (n.d). Fight Forever Chemicals Campaign. Available online: https://sdgactionawards.org/fight-forever-chemicals-campaign/ (accessed on 11 May 2025).
- Brown, P.; Cordner, A.; Richter, L.; Andrews, D.; Naidenko, O. Mapping the PFAS Contamination Crisis. The PFAS Project Lab. April 2020. Available online: https://pfasproject.com/2020/04/23/mapping-the-pfas-contamination-crisis/ (accessed on 11 May 2025).
- Environmental Working Group. Interactive Map: PFAS Contamination Crisis: New data Show 9166 Sites in 50 States. March 2025. Available online: https://www.ewg.org/interactive-maps/pfas_contamination/ (accessed on 11 May 2025).
- U.S. Air Force Installation & Mission Support Center. Department of Defense Announces PFAS Interim Cleanup Actions at Former Wurtsmith Air Force Base [News Release]. U.S. Department of Defense. Retrieved. August 2023. Available online: https://www.afimsc.af.mil/News/Article-Display/Article/3496338/department-of-defense-announces-pfas-interim-cleanup-actions-at-former-wurtsmit/ (accessed on 1 July 2025).
- National PFAS Contamination Coalition. Grassroots Community Groups Celebrate Ruling That Will Make PFAS Polluters Pay. April 2024. Available online: https://pfasproject.net/updates/ (accessed on 11 May 2025).
Organization/Agency | Key PFAS Roles and Activities | Type |
---|---|---|
Environmental Protection Agency | PFAS Strategic Roadmap; drinking water regulations; Superfund site designations; national testing strategy; risk assessments | Federal Regulator |
Agency for Toxic Substances and Disease Registry | PFAS Exposure Assessment Studies (PEAS); Multi-Site Health Study; toxicological profiles | Federal Public Health |
Centers for Disease Control and Prevention | Biomonitoring through NHANES; collaboration with ATSDR on health studies | Federal Public Health |
Department of Defense | Remediation of PFASs at military installations; research on AFFF contamination | Federal Defense |
Food and Drug Administration | Surveillance of PFASs in food, food packaging, and the food supply chain | Federal Regulator |
National Institute of Environmental Health Sciences | Superfund Research Program (SRP); PFAS toxicity studies; grant funding | Federal Research |
U.S. Geological Survey | Environmental monitoring and mapping of PFASs in water, soil, and wildlife | Federal Scientific Agency |
White House Council on Environmental Quality | Interagency PFAS Council to coordinate federal PFAS activities | Federal Executive |
State-Level Agencies | Independent PFAS regulations, health advisories, and site monitoring | State Regulators |
Environmental Working Group | PFAS mapping; public education; policy advocacy | NGO |
Natural Resources Defense Council | Legal and policy advocacy; PFAS litigation | NGO |
Safer States | State-level PFAS regulation tracking; coalition building | NGO |
Green Science Policy Institute | Research and advocacy for eliminating PFASs in products | NGO |
National Academies of Sciences, Engineering, and Medicine | Scientific reports; guidance for PFAS health monitoring | Academia |
Academic PFAS Consortia | PFAS research; NIEHS-funded Superfund centers; health outcome studies | Academia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukhram, S.D.; Kim, J.; Musovic, S.; Anidugbe, A.; Corte, E.; Ahsan, T.; Rofail, S.; Mesquita, N.; Padilla, M. PFAS Exposure, Mental Health, and Environmental Justice in the United States: Impacts on Marginalized Communities. Int. J. Environ. Res. Public Health 2025, 22, 1116. https://doi.org/10.3390/ijerph22071116
Sukhram SD, Kim J, Musovic S, Anidugbe A, Corte E, Ahsan T, Rofail S, Mesquita N, Padilla M. PFAS Exposure, Mental Health, and Environmental Justice in the United States: Impacts on Marginalized Communities. International Journal of Environmental Research and Public Health. 2025; 22(7):1116. https://doi.org/10.3390/ijerph22071116
Chicago/Turabian StyleSukhram, Shiryn D., Ji Kim, Sabrina Musovic, Ayotunde Anidugbe, Emiliano Corte, Tasneem Ahsan, Selvia Rofail, Nicolli Mesquita, and Miguel Padilla. 2025. "PFAS Exposure, Mental Health, and Environmental Justice in the United States: Impacts on Marginalized Communities" International Journal of Environmental Research and Public Health 22, no. 7: 1116. https://doi.org/10.3390/ijerph22071116
APA StyleSukhram, S. D., Kim, J., Musovic, S., Anidugbe, A., Corte, E., Ahsan, T., Rofail, S., Mesquita, N., & Padilla, M. (2025). PFAS Exposure, Mental Health, and Environmental Justice in the United States: Impacts on Marginalized Communities. International Journal of Environmental Research and Public Health, 22(7), 1116. https://doi.org/10.3390/ijerph22071116