Exposure to Toxic Compounds Using Alternative Smoking Products: Analysis of Empirical Data
Abstract
1. Introduction
1.1. The Combustion Process of the Cigarette
1.2. Comparison of the Principles of Operation of HTP and E-Cigarettes
1.3. Comparison of Emissions
2. Methods
2.1. Criteria for Literature Selection
2.2. Data Normalization/Conversion
2.3. Statistical Analysis Methods
The Calculation of the Risk Reduction Potential of HPHCs
3. Results
3.1. Comparative Data on Smoking Product Emissions
3.2. Reduced Emission Profiles of Alternative Products
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CC | Combustible cigarettes |
E-cigs | Electronic cigarettes |
HPHCs | Harmful and potentially harmful constituents |
HTPs | Heated tobacco products |
VOCs | Volatile organic compounds |
References
- Tobacco. Available online: https://www.who.int/news-room/fact-sheets/detail/tobacco (accessed on 9 June 2025).
- Dai, X.; Gakidou, E.; Lopez, A.D. Evolution of the Global Smoking Epidemic over the Past Half Century: Strengthening the Evidence Base for Policy Action. Tob. Control 2022, 31, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Attitudes of Europeans towards Tobacco and Related Products—Birželis 2024—Eurobarometer Survey. Available online: https://europa.eu/eurobarometer/surveys/detail/2995 (accessed on 29 March 2025).
- Effects of Smoking and Tobacco|Australian Government Department of Health and Aged Care. Available online: https://www.health.gov.au/topics/smoking-vaping-and-tobacco/about-smoking/effects (accessed on 4 August 2024).
- St Claire, S.; Fayokun, R.; Commar, A.; Schotte, K.; Prasad, V.M. The World Health Organization’s World No Tobacco Day 2020 Campaign Exposes Tobacco and Related Industry Tactics to Manipulate Children and Young People and Hook a New Generation of Users. J. Adolesc. Heal. 2020, 67, 334. [Google Scholar] [CrossRef] [PubMed]
- Saint-André, V.; Charbit, B.; Biton, A.; Rouilly, V.; Possémé, C.; Bertrand, A.; Rotival, M.; Bergstedt, J.; Patin, E.; Albert, M.L.; et al. Smoking Changes Adaptive Immunity with Persistent Effects. Nature 2024, 626, 827–835. [Google Scholar] [CrossRef]
- The Effects of Tobacco Use on Health the Toxins in Tobacco. 2014. Available online: https://www.who.int/europe/news-room/fact-sheets/item/effects-of-tobacco-on-health (accessed on 5 May 2025).
- Is Nicotine Addictive?|National Institute on Drug Abuse (NIDA). Available online: https://nida.nih.gov/publications/research-reports/tobacco-nicotine-e-cigarettes/nicotine-addictive (accessed on 4 August 2024).
- O’Connor, R.J. Non-Cigarette Tobacco Products: What Have We Learned and Where Are We Headed? Tob. Control 2012, 21, 181. [Google Scholar] [CrossRef] [PubMed]
- Giebe, S.; Hofmann, A.; Brux, M.; Lowe, F.; Breheny, D.; Morawietz, H.; Brunssen, C. Comparative Study of the Effects of Cigarette Smoke versus next Generation Tobacco and Nicotine Product Extracts on Endothelial Function. Redox Biol. 2021, 47, 102150. [Google Scholar] [CrossRef] [PubMed]
- Lietzmann, J.; Moulac, M. Novel Tobacco and Nicotine Products and Their Effects on Health; Policy Department for Economic, Scientific and Quality of Life Policies Directorate-General for Internal Policies, European Parliament: Luxembourg, 2023. [Google Scholar]
- E-Cigarettes, Vapes, and Other Electronic Nicotine Delivery Systems (ENDS)|FDA. Available online: https://www.fda.gov/tobacco-products/products-ingredients-components/e-cigarettes-vapes-and-other-electronic-nicotine-delivery-systems-ends (accessed on 4 August 2024).
- Eaton, D.; Jakaj, B.; Forster, M.; Nicol, J.; Mavropoulou, E.; Scott, K.; Liu, C.; McAdam, K.; Murphy, J.; Proctor, C.J. Assessment of Tobacco Heating Product THP1.0. Part 2: Product Design, Operation and Thermophysical Characterisation. Regul. Toxicol. Pharmacol. 2018, 93, 4–13. [Google Scholar] [CrossRef]
- Mitova, M.I.; Campelos, P.B.; Goujon-Ginglinger, C.G.; Maeder, S.; Mottier, N.; Rouget, E.G.R.; Tharin, M.; Tricker, A.R. Comparison of the Impact of the Tobacco Heating System 2.2 and a Cigarette on Indoor Air Quality. Regul. Toxicol. Pharmacol. 2016, 80, 91–101. [Google Scholar] [CrossRef]
- Schaller, J.P.; Keller, D.; Poget, L.; Pratte, P.; Kaelin, E.; McHugh, D.; Cudazzo, G.; Smart, D.; Tricker, A.R.; Gautier, L.; et al. Evaluation of the Tobacco Heating System 2.2. Part 2: Chemical Composition, Genotoxicity, Cytotoxicity, and Physical Properties of the Aerosol. Regul. Toxicol. Pharmacol. 2016, 81, S27–S47. [Google Scholar] [CrossRef]
- Forster, M.; Fiebelkorn, S.; Yurteri, C.; Mariner, D.; Liu, C.; Wright, C.; McAdam, K.; Murphy, J.; Proctor, C. Assessment of Novel Tobacco Heating Product THP1.0. Part 3: Comprehensive Chemical Characterisation of Harmful and Potentially Harmful Aerosol Emissions. Regul. Toxicol. Pharmacol. 2018, 93, 14–33. [Google Scholar] [CrossRef]
- Chemicals in Cigarettes: From Plant to Product to Puff|FDA. Available online: https://www.fda.gov/tobacco-products/products-ingredients-components/chemicals-cigarettes-plant-product-puff (accessed on 1 May 2025).
- Rodgman, A.; Perfetti, T.A. The Chemical Components of Tobacco and Tobacco Smoke; CRC Press: Boca Raton, FL, USA, 2012; pp. 1–1785. [Google Scholar] [CrossRef]
- Holme, J.A.; Vondráček, J.; Machala, M.; Lagadic-Gossmann, D.; Vogel, C.F.A.; Le Ferrec, E.; Sparfel, L.; Øvrevik, J. Lung Cancer Associated with Combustion Particles and Fine Particulate Matter (PM2.5)—The Roles of Polycyclic Aromatic Hydrocarbons (PAHs) and the Aryl Hydrocarbon Receptor (AhR). Biochem. Pharmacol. 2023, 216, 115801. [Google Scholar] [CrossRef]
- Odinga, E.S.; Gudda, F.O.; Waigi, M.G.; Wang, J.; Gao, Y. Occurrence, Formation and Environmental Fate of Polycyclic Aromatic Hydrocarbons in Biochars. Fundam. Res. 2021, 1, 296–305. [Google Scholar] [CrossRef]
- Tane, E.G.; Martínez-Gómez, L.; Amorós-Pérez, A.; Román-Martínez, M.C.; Lillo-Ródenas, M.A. A Novel Approach to the Quantitative Analysis of the Particulate Matter in Conventional Cigarette Smoke and Heated Tobacco Product Aerosols. Heliyon 2024, 10, e35028. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Heated Tobacco Products: Summary of Research and Evidence of Health Impacts; World Health Organization: Geneva, Switzerland, 2023; ISBN 9789240042490. [Google Scholar]
- Vukas, J.; Mallock-Ohnesorg, N.; Rüther, T.; Pieper, E.; Romano-Brandt, L.; Stoll, Y.; Hoehne, L.; Burgmann, N.; Laux, P.; Luch, A.; et al. Two Different Heated Tobacco Products vs. Cigarettes: Comparison of Nicotine Delivery and Subjective Effects in Experienced Users. Toxics 2023, 11, 525. [Google Scholar] [CrossRef]
- Kaisar, M.A.; Prasad, S.; Liles, T.; Cucullo, L. A Decade of E-Cigarettes: Limited Research & Unresolved Safety Concerns. Toxicology 2016, 365, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Travis, N.; Knoll, M.; Cook, S.; Oh, H.; Cadham, C.J.; Sánchez-Romero, L.M.; Levy, D.T. Chemical Profiles and Toxicity of Electronic Cigarettes: An Umbrella Review and Methodological Considerations. Int. J. Environ. Res. Public Health 2023, 20, 1908. [Google Scholar] [CrossRef]
- Heywood, J.; Abele, G.; Langenbach, B.; Litvin, S.; Smallets, S.; Paustenbach, D. Composition of E-Cigarette Aerosols: A Review and Risk Assessment of Selected Compounds. J. Appl. Toxicol. 2024, 45, 364–386. [Google Scholar] [CrossRef]
- Harmful and Potentially Harmful Constituents in Tobacco Products and Tobacco Smoke: Established List|FDA. Available online: https://www.fda.gov/tobacco-products/rules-regulations-and-guidance-related-tobacco-products/harmful-and-potentially-harmful-constituents-tobacco-products-and-tobacco-smoke-established-list (accessed on 16 March 2025).
- Burns, D.M.; Dybing, E.; Gray, N.; Hecht, S.; Anderson, C.; Sanner, T.; O’Connor, R.; Djordjevic, M.; Dresler, C.; Hainaut, P.; et al. Mandated Lowering of Toxicants in Cigarette Smoke: A Description of the World Health Organization TobReg Proposal. Tob. Control 2008, 17, 132–141. [Google Scholar] [CrossRef]
- World Health Organization. The Scientific Basis of Tobacco Product Regulation; World Health Organization: Geneva, Switzerland, 2009; pp. 1–287. [Google Scholar]
- CTRP. 3R4F Composition: Preliminary Analysis. Available online: https://ctrp.uky.edu/products/gallery/Reference%20Cigarettes/detail/936 (accessed on 19 May 2025).
- Sansone, L.; Milani, F.; Fabrizi, R.; Belli, M.; Cristina, M.; Zagà, V.; de Iure, A.; Cicconi, L.; Bonassi, S.; Russo, P. Nicotine: From Discovery to Biological Effects. Int. J. Mol. Sci. 2023, 24, 14570. [Google Scholar] [CrossRef]
- Münzel, T.; Hahad, O.; Kuntic, M.; Keaney, J.F.; Deanfield, J.E.; Daiber, A. Effects of Tobacco Cigarettes, e-Cigarettes, and Waterpipe Smoking on Endothelial Function and Clinical Outcomes. Eur. Heart J. 2020, 41, 4057. [Google Scholar] [CrossRef]
- Bekki, K.; Inaba, Y.; Uchiyama, S.; Kunugita, N. Comparison of Chemicals in Mainstream Smoke in Heat-Not-Burn Tobacco and Combustion Cigarettes. J. UOEH 2017, 39, 201–207. [Google Scholar] [CrossRef]
- Mallock, N.; Böss, L.; Burk, R.; Danziger, M.; Welsch, T.; Hahn, H.; Trieu, H.L.; Hahn, J.; Pieper, E.; Henkler-Stephani, F.; et al. Levels of Selected Analytes in the Emissions of “Heat Not Burn” Tobacco Products That Are Relevant to Assess Human Health Risks. Arch. Toxicol. 2018, 92, 2145–2149. [Google Scholar] [CrossRef]
- Li, X.; Luo, Y.; Jiang, X.; Zhang, H.; Zhu, F.; Hu, S.; Hou, H.; Hu, Q.; Pang, Y. Chemical Analysis and Simulated Pyrolysis of Tobacco Heating System 2.2 Compared to Conventional Cigarettes. Nicotine Tob. Res. 2019, 21, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, H.; Huang, L.; Li, X.; Wang, L.; Li, S.; Liu, M.; Zhang, M.; Han, S.; Jiang, X.; et al. In Vitro Toxicological Evaluation of a Tobacco Heating Product THP COO and 3R4F Research Reference Cigarette on Human Lung Cancer Cells. Toxicol. Vitr. 2021, 74, 105173. [Google Scholar] [CrossRef]
- Grech, A.K.; Keating, D.T.; Garner, D.J.; Naughton, M.T. A Case of Extreme Carboxyhaemoglominemia Due to Vaping. Respirol. Case Rep. 2022, 10, e0942. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.I.; Thissen, J.; Hermes, N.; Cunningham, A.; Digard, H.; Murphy, J. Chemical Characterisation of the Vapour Emitted by an E-Cigarette Using a Ceramic Wick-Based Technology. Sci. Rep. 2022, 12, 16497. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Yu, M.; Chen, C.; Liu, L.; Zhao, P.; Shen, B.; Sun, R. The Emission of VOCs and CO from Heated Tobacco Products, Electronic Cigarettes, and Conventional Cigarettes, and Their Health Risk. Toxics 2022, 10, 8. [Google Scholar] [CrossRef]
- Leigh, N.J.; Palumbo, M.N.; Marino, A.M.; O’Connor, R.J.; Goniewicz, M.L. Tobacco-Specific Nitrosamines (TSNA) in Heated Tobacco Product IQOS. Tob. Control 2018, 27, s37–s38. [Google Scholar] [CrossRef]
- Olasehinde, T.A.; Olaniran, A.O. Neurotoxicity of Anthracene and Benz[a]Anthracene Involves Oxidative Stress-Induced Neuronal Damage, Cholinergic Dysfunction and Disruption of Monoaminergic and Purinergic Enzymes. Toxicol. Res. 2022, 38, 365–377. [Google Scholar] [CrossRef]
- Adesina, O.A.; Olowolafe, T.I.; Igbafe, A. Levels of Polycyclic Aromatic Hydrocarbon from Mainstream Smoke of Tobacco Products and Its Risks Assessment. J. Hazard. Mater. Adv. 2022, 5, 100053. [Google Scholar] [CrossRef]
- Uchiyama, S.; Noguchi, M.; Takagi, N.; Hayashida, H.; Inaba, Y.; Ogura, H.; Kunugita, N. Simple Determination of Gaseous and Particulate Compounds Generated from Heated Tobacco Products. Chem. Res. Toxicol. 2018, 31, 585–593. [Google Scholar] [CrossRef]
- Xu, Y.; Williams, S.J.; O’brien, D.; Davidge, S.T.; Xu, Y.; Williams, S.J.; O’brien, D.; Davidge, S.T. Polycyclic Aromatic Hydrocarbons. FASEB J. 2010, 20, 1251–1253. [Google Scholar] [CrossRef] [PubMed]
- Vu, A.T.; Taylor, K.M.; Holman, M.R.; Ding, Y.S.; Hearn, B.; Watson, C.H. Polycyclic Aromatic Hydrocarbons in the Mainstream Smoke of Popular U.S. Cigarettes. Chem. Res. Toxicol. 2015, 28, 1616. [Google Scholar] [CrossRef] [PubMed]
- Simonavicius, E.; McNeill, A.; Shahab, L.; Brose, L.S. Heat-Not-Burn Tobacco Products: A Systematic Literature Review. Tob. Control 2019, 28, 582–594. [Google Scholar] [CrossRef]
- Goniewicz, M.L.; Knysak, J.; Gawron, M. Levels of Selected Carcinogens and Toxicants in Vapour from Electronic Cigarettes. Tob. Control 2014, 23, 133–139. [Google Scholar] [CrossRef]
- Formaldehyde and Cancer Risk|American Cancer Society. Available online: https://www.cancer.org/cancer/risk-prevention/chemicals/formaldehyde.html (accessed on 14 March 2025).
- Ruggiero, J.L.; Voller, L.M.; Shaik, J.A.; Hylwa, S. Formaldehyde in Electronic Cigarette Liquid (Aerosolized Liquid). Dermatitis 2022, 33, 332–336. [Google Scholar] [CrossRef]
- Samburova, V.; Bhattarai, C.; Strickland, M.; Darrow, L.; Angermann, J.; Son, Y.; Khlystov, A. Aldehydes in Exhaled Breath during E-Cigarette Vaping: Pilot Study Results. Toxics 2018, 6, 46. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, M.; Villalta, P.W.; Luo, X.; Feuer, R.; Jensen, J.; Hatsukami, D.K.; Hecht, S.S. Quantitation of an Acetaldehyde Adduct in Human Leukocyte DNA and the Effect of Smoking Cessation. Chem. Res. Toxicol. 2007, 20, 108–113. [Google Scholar] [CrossRef]
- Nabavizadeh, P.; Liu, J.; Rao, P.; Ibrahim, S.; Han, D.D.; Derakhshandeh, R.; Qiu, H.; Wang, X.; Glantz, S.A.; Schick, S.F.; et al. Impairment of Endothelial Function by Cigarette Smoke Is Not Caused by a Specific Smoke Constituent, but by Vagal Input from the Airway. Arter. Thromb. Vasc. Biol. 2022, 42, 1324. [Google Scholar] [CrossRef]
- Srivastava, S.; Sithu, S.D.; Vladykovskaya, E.; Haberzettl, P.; Hoetker, D.J.; Siddiqui, M.A.; Conklin, D.J.; D’Souza, S.E.; Bhatnagar, A. Oral Exposure to Acrolein Exacerbates Atherosclerosis in Apo E-Null Mice. Atherosclerosis 2011, 215, 301. [Google Scholar] [CrossRef]
- Sithu, S.D.; Srivastava, S.; Siddiqui, M.A.; Vladykovskaya, E.; Riggs, D.W.; Conklin, D.J.; Haberzettl, P.; O’Toole, T.E.; Bhatnagar, A.; D’Souza, S.E. Exposure to Acrolein by Inhalation Causes Platelet Activation. Toxicol. Appl. Pharmacol. 2010, 248, 100–110. [Google Scholar] [CrossRef]
- DeJarnett, N.; Yeager, R.; Conklin, D.J.; Lee, J.; O’Toole, T.E.; McCracken, J.; Abplanalp, W.; Srivastava, S.; Riggs, D.W.; Hamzeh, I.; et al. Residential Proximity to Major Roadways Is Associated with Increased Levels of AC133+ Circulating Angiogenic Cells. Arter. Thromb. Vasc. Biol. 2015, 35, 2468–2477. [Google Scholar] [CrossRef] [PubMed]
- Conklin, D.J.; Barski, O.A.; Lesgards, J.F.; Juvan, P.; Rezen, T.; Rozman, D.; Prough, R.A.; Vladykovskaya, E.; Liu, S.Q.; Srivastava, S.; et al. Acrolein Consumption Induces Systemic Dyslipidemia and Lipoprotein Modification. Toxicol. Appl. Pharmacol. 2010, 243, 1–12. [Google Scholar] [CrossRef] [PubMed]
- ICSC. 0550—Propionaldehyde. Available online: https://chemicalsafety.ilo.org/dyn/icsc/showcard.display?p_card_id=0550 (accessed on 17 March 2025).
- Xie, M.Z.; Liu, J.L.; Gao, Q.Z.; Bo, D.Y.; Wang, L.; Zhou, X.C.; Zhao, M.M.; Zhang, Y.C.; Zhang, Y.J.; Zhao, G.A.; et al. Proteomics-Based Evaluation of the Mechanism Underlying Vascular Injury via DNA Interstrand Crosslinks, Glutathione Perturbation, Mitogen-Activated Protein Kinase, and Wnt and ErbB Signaling Pathways Induced by Crotonaldehyde. Clin. Proteom. 2022, 19, 33. [Google Scholar] [CrossRef]
- Jin, L.; Jagatheesan, G.; Lynch, J.; Guo, L.; Conklin, D.J. Crotonaldehyde-Induced Vascular Relaxation and Toxicity: Role of Endothelium and Transient Receptor Potential Ankyrin-1 (TRPA1). Toxicol. Appl. Pharmacol. 2020, 398, 115012. [Google Scholar] [CrossRef]
- Pauwels, C.G.G.M.; Klerx, W.N.M.; Pennings, J.L.A.; Boots, A.W.; Van Schooten, F.J.; Opperhuizen, A.; Talhout, R. Cigarette Filter Ventilation and Smoking Protocol Influence Aldehyde Smoke Yields. Chem. Res. Toxicol. 2018, 31, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Farsalinos, K.E.; Yannovits, N.; Sarri, T.; Voudris, V.; Poulas, K.; Leischow, S.J. Carbonyl Emissions from a Novel Heated Tobacco Product (IQOS): Comparison with an e-Cigarette and a Tobacco Cigarette. Addiction 2018, 113, 2099–2106. [Google Scholar] [CrossRef]
- Health Effects—Toxicological Profile for Toluene—NCBI Bookshelf. Available online: https://www.ncbi.nlm.nih.gov/books/NBK592498/ (accessed on 14 March 2025).
- Abplanalp, W.; DeJarnett, N.; Riggs, D.W.; Conklin, D.J.; McCracken, J.P.; Srivastava, S.; Xie, Z.; Rai, S.; Bhatnagar, A.; O’Toole, T.E. Benzene Exposure Is Associated with Cardiovascular Disease Risk. PLoS ONE 2017, 12, e0183602. [Google Scholar] [CrossRef]
- Ong, C.N.; Lee, B.L.; Shi, C.Y.; Ong, H.Y.; Lee, H.P. Elevated Levels of Benzene-Related Compounds in the Urine of Cigarette Smokers. Int. J. Cancer 1994, 59, 177–180. [Google Scholar] [CrossRef]
- Korte, J.E.; Hertz-Picciotto, I.; Schulz, M.R.; Ball, L.M.; Duell, E.J. The Contribution of Benzene to Smoking-Induced Leukemia. Environ. Health Perspect. 2000, 108, 333. [Google Scholar] [CrossRef]
- Casalegno, C.; Schifanella, O.; Zennaro, E.; Marroncelli, S.; Briant, R. Collate Literature Data on Toxicity of Chromium (Cr) and Nickel (Ni) in Experimental Animals and Humans. EFSA Support. Publ. 2015, 12, 478E. [Google Scholar] [CrossRef]
- Haleem, A.M.; Amin, S.; Mahmood, U.H. Heavy Metal and Polycyclic Aromatic Hydrocarbons in Cigarettes: An Analytical Assessment. Popul. Med. 2020, 2, 19. [Google Scholar] [CrossRef]
- Cadmium—Health Effects|Occupational Safety and Health Administration. Available online: https://www.osha.gov/cadmium/health-effects (accessed on 17 March 2025).
- Williams, M.; Villarreal, A.; Bozhilov, K.; Lin, S.; Talbot, P. Metal and Silicate Particles Including Nanoparticles Are Present in Electronic Cigarette Cartomizer Fluid and Aerosol. PLoS ONE 2013, 8, e57987. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.W. Levels of Heavy Metals in Popular Cigarette Brands and Exposure to These Metals via Smoking. Sci. World J. 2012, 2012, 729430. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.T.; Bellinger, D.C.; Shaywitz, B.A. A Quantitative Analysis of Prenatal Methyl Mercury Exposure and Cognitive Development. Am. J. Prev. Med. 2005, 29, 353. [Google Scholar] [CrossRef]
- Son, Y.; Bhattarai, C.; Samburova, V.; Khlystov, A. Carbonyls and Carbon Monoxide Emissions from Electronic Cigarettes Affected by Device Type and Use Patterns. Int. J. Environ. Res. Public. Health 2020, 17, 2767. [Google Scholar] [CrossRef]
- Lechasseur, A.; Morissette, M.C. The Fog, the Attractive and the Addictive: Pulmonary Effects of Vaping with a Focus on the Contribution of Each Major Vaping Liquid Constituent. Eur. Respir. Rev. 2020, 29, 200268. [Google Scholar] [CrossRef]
- Komura, M.; Sato, T.; Yoshikawa, H.; Nitta, N.A.; Suzuki, Y.; Koike, K.; Kodama, Y.; Seyama, K.; Takahashi, K. Propylene Glycol, a Component of Electronic Cigarette Liquid, Damages Epithelial Cells in Human Small Airways. Respir. Res. 2022, 23, 216. [Google Scholar] [CrossRef]
- Eaton DL, K.L.; Stratton, K. (Eds.) Public Health Consequences of E-Cigarettes; National Academies Press: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Strongin, R.M. E-Cigarette Chemistry and Analytical Detection. Annu. Rev. Anal. Chem. 2019, 12, 23–39. [Google Scholar] [CrossRef]
- Sassano, M.F.; Davis, E.S.; Keating, J.E.; Zorn, B.T.; Kochar, T.K.; Wolfgang, M.C.; Glish, G.L.; Tarran, R. Evaluation of E-Liquid Toxicity Using an Open-Source High-Throughput Screening Assay. PLoS Biol. 2018, 16, e2003904. [Google Scholar] [CrossRef]
Compound | Harm Caused | Concentration per 1 Puff Median [Min–Max] | References | ||
---|---|---|---|---|---|
3R4F | Heated Tobacco Products | Electronic Cigarettes | |||
Nicotine, mg | Causes addiction, has inflammatory and anti-inflammatory properties [31]. | 0.17 [0.09–0.22] | 0.1 [0.09–0.11] | 0.05 [0.02–0.32] | [32,33,34,35,36] |
Carbon monoxide, mg | Is associated with chronic carboxyhaemoglobinemia and the development of cardiorespiratory disease [37]. | 2.78 [1.32–3.7] | 0.04 [0.03–0.06] | 0.002 [0.001–0.003] | [33,35,36,38,39,40] |
Polycyclic aromatic Hydrocarbons (PAH) | |||||
Benz[a]anthracene | Oxidative stress inducer leading neuronal damage [41]. | 2.84 [2.47–3.21] | 0.13 [0.12–0.22] | <LOD | [38,40,42,43] |
Benzo[b+k]fluoranthene, ng | Carcinogen [44]. | 0.62 [0.4–0.83] | 0.03 [0.01–0.04] | 0.016 [0.01–0.018] | [38,40,42,43] |
Benzo[a]pyrene, ng | The most potent carcinogen among polycyclic aromatic hydrocarbons [45]. | 1.40 [0.69–1.67] | 0.05 [0.04–0.06] | 0.003 [0.002–0.006] | [38,40,42,43] |
Tobacco-specific Nitrosamines | |||||
N′-nitrosonornicotine (NNN), ng | Carcinogen [46]. | 24.68 [12.89–34.57] | 0.96 [0.87–1.75] | - [<LOD–0.002] | [32,33,35,36,38,47] |
N′-nitrosoanabasine (NAB), ng | Carcinogen [46]. | 2.67 [1.6–3.64] | 0.26 [0.2–0.47] | - <LOD | [32,33,35,36,38,47] |
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), ng | Carcinogen [46]. | 22.25 [14.3–27.82] | 0.61 [0.2–0.88] | - [<LOD–0.004] | [32,33,35,36,38,47] |
N′-nitrosoanatabine (NAT), ng | Carcinogen [46]. | 20.98 [14.3–27.82] | 1.51 [1.23–1.75] | - [<LOD–0.005] | [32,33,35,36,38,47] |
Carbonyls | |||||
Formaldehyde, μg | Carcinogen [48], has a toxic effect at the cellular level. Causes irritation of the airways and damage to airway cells, a source of contact dermatitis [49]. | 4.7 [1.88–8.09] | 0.53 [0.11–1.9] | 0.04 [0.03–0.12] | [32,34,35,36,43,47,50] |
Acetaldehyde, μg | One of the most common carcinogens in cigarette smoke [51]. | 127.1 [136.4–154] | 16.5 [9.5–18.26] | 0.01 [0.01–0.1] | [32,34,35,36,43,47,50] |
Acroleine, μg | Promotes endothelial dysfunction, oxidative stress, dyslipidemia, and platelet activation [52]. Chronic exposure to acrolein through cigarette smoke has been associated with asthma, acute lung damage, chronic obstructive pulmonary disease (COPD), and respiratory cancer [53,54,55,56]. | 12.37 [11.82–16.22] | 0.67 [0.04–0.94] | 0.06 [0.003–0.17] | [32,34,35,36,43,47,50] |
Propionaldehyde, μg | Causes cough and sore throat [57]. | 10.67 [6.2–13.02] | 1.07 [0.56–1.61] | - [<LOD–0.002] | [32,34,35,36,43,47,50] |
Crotonaldehyde, μg | A potent eye, respiratory, and skin irritant, associated with cardiopulmonary toxicity and cardiovascular disease [56,58,59]. | 4.36 [1.29–4.7] | 0.4 [0.05–0.83] | - [<LOD–0.001] | [35,36,47,60,61] |
Volatile organic compounds | |||||
Toluene μg | Negatively affects the brain and central nervous system [62] | 14.89 [10.38–21.41] | 0.14 [0.12–0.22] | - [<LOD–0.003] | [34,35,36,38,43] |
Benzene, μg | Increases the risk of leukemia, lymphoma, and cardiovascular disease. Causes a deficiency of circulating angiogenic cells and increases low-density lipoprotein levels [63,64,65]. | 7.91 [6.62–10] | 0.05 [0.04–0.08] | - [<LOD–0.0008] | [34,35,36,38,43] |
Inorganic compounds | |||||
Nickel, ng | Genotoxic effects, may increase the risk of oral cancer [66]. | 0.41 [0.39–1.43] | <LOD | 0.0015 [0.001–0.002] | [35,36,47,61,67] |
Cadmium, ng | Acute inhalation exposure may result in flu-like symptoms and may damage the lungs. Chronic exposure can result in kidney, bone, and lung disease [68]. | 11.87 [8.54–15.2] | - <LOD | - <LOD | [35,36,47,61,67] |
Chromium, ng | Inhalation may cause respiratory irritation [69]. | 0.09 [0.09–0.19] | <LOD | <LOD | [35,36,47,61,67] |
Lead, ng | Causes oxidative stress in cells, may cause lung cancer, has a strong negative effect on the brain, nervous system and red blood cells [70]. | 3.26 [2.9–3.62] | - [<LOD–0.76] | - [<LOD-003] | [35,36,47,61,67] |
Mercury, ng | May have toxic effects on the nervous, digestive, and immune systems, and on lungs, kidneys, skin, and eyes [71]. | 0.42 [0.25–0.48] | <LOD | <LOD | [35,36,47,61,67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakalauskaite, S.; Zdanavicius, L.; Šteinmiller, J.; Istomina, N. Exposure to Toxic Compounds Using Alternative Smoking Products: Analysis of Empirical Data. Int. J. Environ. Res. Public Health 2025, 22, 1010. https://doi.org/10.3390/ijerph22071010
Sakalauskaite S, Zdanavicius L, Šteinmiller J, Istomina N. Exposure to Toxic Compounds Using Alternative Smoking Products: Analysis of Empirical Data. International Journal of Environmental Research and Public Health. 2025; 22(7):1010. https://doi.org/10.3390/ijerph22071010
Chicago/Turabian StyleSakalauskaite, Sandra, Linas Zdanavicius, Jekaterina Šteinmiller, and Natalja Istomina. 2025. "Exposure to Toxic Compounds Using Alternative Smoking Products: Analysis of Empirical Data" International Journal of Environmental Research and Public Health 22, no. 7: 1010. https://doi.org/10.3390/ijerph22071010
APA StyleSakalauskaite, S., Zdanavicius, L., Šteinmiller, J., & Istomina, N. (2025). Exposure to Toxic Compounds Using Alternative Smoking Products: Analysis of Empirical Data. International Journal of Environmental Research and Public Health, 22(7), 1010. https://doi.org/10.3390/ijerph22071010