The Effectiveness of Indoor Residual Spraying for Malaria Control in Sub-Saharan Africa: A Systematic Protocol Review and Meta-Analysis
Abstract
1. Introduction
1.1. Rationale
1.2. How the Intervention Might Work
2. Materials and Methods
2.1. Protocol Registration
2.2. Primary Review Question
- What is the prevalence of genotypic resistance to the insecticides used in IRS among mosquito vectors in sub-Saharan Africa?
- What are the species of malaria mosquito vectors prevalent in sub-Saharan Africa?
- What factors are associated with the effectiveness of indoor residual spraying for malaria mosquito vector control in sub-Saharan Africa?
2.3. Key Elements of the Review Question (PICOST)
2.4. Eligibility Criteria
2.4.1. Inclusion
- Articles that report on the impact of IRS performed using WHO pre-qualified insecticides.
- Articles published in peer-reviewed journals.
- Articles published in all languages (no language restriction).
2.4.2. Exclusion
- Articles that do not segregate the effects of multiple mosquito vector control measures on the malaria burden in sub-Saharan African countries.
- Articles that report on vector insecticide susceptibility outside of the context of IRS.
- Articles that did not obtain and report ethical review and approval.
2.5. Identification of Primary Studies
2.6. Information Sources
2.7. Search Strategy
2.8. Search Terms
2.9. Data Management and Study Selection
2.10. Data Abstraction and Coding
2.11. Data Items
2.12. Outcomes and Prioritization
2.12.1. Dependent Variables
- Prevalence of malaria in communities following indoor residual spraying (IRS) using insecticides for mosquito vector control in sub-Saharan Africa.
- Mosquito vector knockdown effect.
- Residuality (residual efficacy).
2.12.2. Independent Variables
- Types of mosquito vectors
- Insecticides used in indoor residual spraying for mosquito vector control in sub-Saharan Africa.
- Types of insecticides (single or combination compound).
- Factors associated with efficacy of insecticides in indoor residual spraying in sub-Saharan Africa (SSA).
2.13. Risk of Bias Assessment
2.14. Publication Bias
2.15. Assessment of Strength and Confidence of Cumulative Evidence
2.16. Heterogeneity
2.17. Criteria for Determination of Independent Findings
2.17.1. Missing Data
2.17.2. Data Analysis and Synthesis
2.18. Sensitivity Analysis
3. Results
4. Discussion
5. Amendments
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IRS | Indoor Residual Spraying |
LLINs | Long-Lasting Insecticide-Treated Nets |
ITNs | Insecticide-Treated Nets |
PRISMA-P | Preferred Reporting Items for Systematic Review and Meta-Analysis Protocol |
WHO | World Health Organization |
USAID | United States Agency for International Development |
PMI | President’s Malaria Initiative |
DDT | Dichlorodiphenyltrichloroethane |
References
- WHO. Malaria treatment and intervention coverage: Number of people protected from malaria by indoor residual spraying (IRS). In The Global Health Observatory Explore a World of Health Data; World Health Organization, Ed.; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- WHO. World Malaria Report 2024: Addressing Inequity in the Global Malaria Response; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Venkatesan, P. WHO world malaria report 2024. Lancet Microbe 2025, 6, 101073. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Indoor Residual Spraying: An Operational Manual for Indoor Residual Spraying (IRS) for Malaria Transmission Control and Elimination; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- WHO. Operational Manual on Indoor Residual Spraying: Control of Vectors of Malaria, Aedes-Borne Diseases, Chagas Disease, Leishmaniases and Lymphatic Filariasis; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Frischknecht, F.; Matuschewski, K. Plasmodium Sporozoite Biology. Cold Spring Harb. Perspect. Med. 2017, 7, a025478. [Google Scholar]
- Tukei, B.B.; Beke, A.; Lamadrid-Figueroa, H. Assessing the effect of indoor residual spraying (IRS) on malaria morbidity in Northern Uganda: A before and after study. Malar. J. 2017, 16, 4. [Google Scholar] [CrossRef]
- World Health Organization. Global Malaria Programme. Global Plan for Insecticide Resistance Management in Malaria Vectors; World Health Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Tangena, J.-A.A.; Hendriks, C.M.; Devine, M.; Tammaro, M.; Trett, A.E.; Williams, I.; DePina, A.J.; Sisay, A.; Herizo, R.; Kafy, H.T. Indoor residual spraying for malaria control in sub-Saharan Africa 1997 to 2017: An adjusted retrospective analysis. Malar. J. 2020, 19, 150. [Google Scholar]
- Mint Mohamed Lemine, A.; Ould Lemrabott, M.A.; Niang, E.H.A.; Basco, L.K.; Bogreau, H.; Faye, O.; Ould Mohamed Salem Boukhary, A. Pyrethroid resistance in the major malaria vector Anopheles arabiensis in Nouakchott, Mauritania. Parasites Vectors 2018, 11, 344. [Google Scholar] [CrossRef] [PubMed]
- Abeku, T.A.; Helinski, M.E.; Kirby, M.J.; Ssekitooleko, J.; Bass, C.; Kyomuhangi, I.; Okia, M.; Magumba, G.; Meek, S.R. Insecticide resistance patterns in Uganda and the effect of indoor residual spraying with bendiocarb on kdr L1014S frequencies in Anopheles gambiae ss. Malar. J. 2017, 16, 156. [Google Scholar] [CrossRef]
- Epstein, A.; Maiteki-Sebuguzi, C.; Namuganga, J.F.; Nankabirwa, J.I.; Gonahasa, S.; Opigo, J.; Staedke, S.G.; Rutazaana, D.; Arinaitwe, E.; Kamya, M.R. Resurgence of malaria in Uganda despite sustained indoor residual spraying and repeated long lasting insecticidal net distributions. PLoS Glob. Public Health 2022, 2, e0000676. [Google Scholar]
- Coleman, M.; Hemingway, J.; Gleave, K.A.; Wiebe, A.; Gething, P.W.; Moyes, C.L. Developing global maps of insecticide resistance risk to improve vector control. Malar. J. 2017, 16, 86. [Google Scholar] [CrossRef]
- Syme, T.; Fongnikin, A.; Todjinou, D.; Govoetchan, R.; Gbegbo, M.; Rowland, M.; Akogbeto, M.; Ngufor, C. Which indoor residual spraying insecticide best complements standard pyrethroid long-lasting insecticidal nets for improved control of pyrethroid resistant malaria vectors? PLoS ONE 2021, 16, e0245804. [Google Scholar] [CrossRef]
- Fongnikin, A.; Houeto, N.; Agbevo, A.; Odjo, A.; Syme, T.; N’Guessan, R.; Ngufor, C. Efficacy of Fludora® Fusion (a mixture of deltamethrin and clothianidin) for indoor residual spraying against pyrethroid-resistant malaria vectors: Laboratory and experimental hut evaluation. Parasites Vectors 2020, 13, 466. [Google Scholar] [CrossRef]
- Chanda, E.; Hemingway, J.; Kleinschmidt, I.; Rehman, A.M.; Ramdeen, V.; Phiri, F.N.; Coetzer, S.; Mthembu, D.; Shinondo, C.J.; Chizema-Kawesha, E.; et al. Insecticide resistance and the future of malaria control in Zambia. PLoS ONE 2011, 6, e24336. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, K.; Koekemoer, L.L.; Brooke, B.D.; Hunt, R.H.; Mthembu, J.; Coetzee, M. Anopheles funestus resistant to pyrethroid insecticides in South Africa. Med. Vet. Entomol. 2000, 14, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Mzilahowa, T.; Chiumia, M.; Mbewe Rex, B.; Uzalili Veronica, T.; Luka-Banda, M.; Kutengule, A.; Mathanga Don, P.; Ali, D.; Chiphwanya, J.; Zoya, J. Increasing insecticide resistance in Anopheles funestus and Anopheles arabiensis in Malawi, 2011–2015. Malar. J. 2016, 15, 563. [Google Scholar] [CrossRef]
- Protopopoff, N.; Matowo, J.; Malima, R.; Kavishe, R.; Kaaya, R.; Wright, A.; West Philippa, A.; Kleinschmidt, I.; Kisinza, W.; Mosha Franklin, W. High level of resistance in the mosquito Anopheles gambiae to pyrethroid insecticides and reduced susceptibility to bendiocarb in north-western Tanzania. Malar. J. 2013, 12, 149. [Google Scholar] [CrossRef]
- Soma, D.D.; Zogo, B.; Hien, D.F.S.; Hien, A.S.; Kabore, D.A.; Kientega, M.; Ouedraogo, A.G.; Pennetier, C.; Koffi, A.A.; Moiroux, N.; et al. Insecticide resistance status of malaria vectors Anopheles gambiae (s.l.) of southwest Burkina Faso and residual efficacy of indoor residual spraying with microencapsulated pirimiphos-methyl insecticide. Parasites Vectors 2021, 14, 58. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, W.-X.; Tembo, E.; Xie, M.-Z.; Zhang, S.-S.; Wang, X.-R.; Wei, T.-T.; Feng, X.; Zhang, Y.-L.; Du, J. Effectiveness of indoor residual spraying on malaria control: A systematic review and meta-analysis. Infect. Dis. Poverty 2022, 11, 29–42. [Google Scholar] [CrossRef]
- Chanda, E.; Chanda, J.; Kandyata, A.; Phiri, F.N.; Muzia, L.; Haque, U.; Baboo, K.S. Efficacy of ACTELLIC 300 CS, pirimiphos methyl, for indoor residual spraying in areas of high vector resistance to pyrethroids and carbamates in Zambia. J. Med. Entomol. 2013, 50, 1275–1281. [Google Scholar] [CrossRef]
- Hailu, A.; Yewhalaw, D.; Ambelu, A. Evaluation of the efficacy and residual activity of three candidate insecticide formulations for Anopheles gambiae sl in Jimma Zone, Southwestern Ethiopia. Evaluation 2016, 6. Available online: https://repository.ju.edu.et//handle/123456789/4801 (accessed on 29 March 2025).
- Kafy, H.T.; Ismail, B.A.; Mnzava, A.P.; Lines, J.; Abdin, M.S.E.; Eltaher, J.S.; Banaga, A.O.; West, P.; Bradley, J.; Cook, J. Impact of insecticide resistance in Anopheles arabiensis on malaria incidence and prevalence in Sudan and the costs of mitigation. Proc. Natl. Acad. Sci. USA 2017, 114, E11267–E11275. [Google Scholar] [CrossRef]
- Sinka, M.; Pironon, S.; Massey, N.; Longbottom, J.; Hemingway, J.; Moyes, C.; Willis, K. A new malaria vector in Africa: Predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proc. Natl. Acad. Sci. USA 2020, 117, 24900–24908. [Google Scholar] [CrossRef]
- Gimnig, J.E.; Steinhardt, L.C.; Awolola, T.S.; Impoinvil, D.; Zohdy, S.; Lindblade, K.A. Reducing Malaria Transmission through Reactive Indoor Residual Spraying: A Systematic Review. Am. J. Trop. Med. Hyg. 2023, 110, 94. [Google Scholar] [PubMed]
- Pryce, J.; Medley, N.; Choi, L. Indoor residual spraying for preventing malaria in communities using insecticide-treated nets. Cochrane Database Syst. Rev. 2022, 1, CD012688. [Google Scholar] [CrossRef] [PubMed]
- Damien, B.G.; Kesteman, T.; Dossou-Yovo, G.A.; Dahounto, A.; Henry, M.-C.; Rogier, C.; Remoué, F. Long-Lasting Insecticide-Treated Nets Combined or Not with Indoor Residual Spraying May Not Be Sufficient to Eliminate Malaria: A Case-Control Study, Benin, West Africa. Trop. Med. Infect. Dis. 2023, 8, 475. [Google Scholar] [CrossRef]
- Page, M.A.-O.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Group, P.-P. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [PubMed]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar]
- Stemler, S.E. A comparison of consensus, consistency, and measurement approaches to estimating interrater reliability. Pract. Assess. Res. Eval. 2004, 9, 4. [Google Scholar]
- Wells, G. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analysis. 2004. Available online: http://www.evidencebasedpublichealth.de/download/Newcastle_Ottowa_Scale_Pope_Bruce.pdf (accessed on 29 March 2025).
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [PubMed]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar]
- Thomson, H.; Craig, P.; Hilton-Boon, M.; Campbell, M.; Katikireddi, S.V. Applying the ROBINS-I tool to natural experiments: An example from public health. Syst. Rev. 2018, 7, 15. [Google Scholar]
- Duval, S.; Tweedie, R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Schünemann, H.J.; Cuello, C.; Akl, E.A.; Mustafa, R.A.; Meerpohl, J.J.; Thayer, K.; Morgan, R.L.; Gartlehner, G.; Kunz, R.; Katikireddi, S.V.; et al. GRADE guidelines: 18. How ROBINS-I and other tools to assess risk of bias in nonrandomized studies should be used to rate the certainty of a body of evidence. J. Clin. Epidemiol. 2019, 111, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P. Commentary: Heterogeneity in meta-analysis should be expected and appropriately quantified. Int. J. Epidemiol. 2009, 37, 1158–1160. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Borenstein, M.; Cooper, H.; Hedges, L.; Valentine, J. Heterogeneity in meta-analysis. Handb. Res. Synth. Meta-Anal. 2019, 3, 453–470. [Google Scholar]
- Huedo-Medina, T.B.; Sánchez-Meca, J.; Marín-Martínez, F.; Botella, J. Assessing heterogeneity in meta-analysis: Q statistic or I² index? Psychol. Methods 2006, 11, 193. [Google Scholar] [CrossRef]
- López-López, J.A.-O.; Page, M.J.; Lipsey, M.W.; Higgins, J.P.T. Dealing with effect size multiplicity in systematic reviews and meta-analyses. Res. Synth. Methods 2018, 9, 336–351. [Google Scholar] [CrossRef]
- Hunter, J.E.; Schmidt, F.L. Methods of Meta-Analysis: Correcting Error and Bias in Research Findings; Sage: Newcastle upon Tyne, UK, 2004. [Google Scholar]
- Gegenfurtner, A. Comparing Two Handbooks of Meta-Analysis: Review of Hunter & Schmidt, Methods of Meta-Analysis: Correcting Error and Bias in Research Findings, and Borenstein, Hedges, Higgins, and Rothstein, Introduction to Meta-Analysis; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Basu, A. An Introduction to Meta-Analysis. In A Guide to the Scientific Career: Virtues, Communication, Research and Academic Writing; Wiley Online Librabry: Hoboken, NJ, USA, 2019; pp. 615–638. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118907283 (accessed on 29 March 2025).
- Ryan, R. Cochrane Consumers and Communication Review Group: Data synthesis and analysis. Cochrane Consum. Commun. Rev. Group 2013, 2013, 216–220. [Google Scholar]
- Copas, J.; Shi, J.Q. Meta-analysis, funnel plots and sensitivity analysis. Biostatistics 2000, 1, 247–262. [Google Scholar] [CrossRef]
Item | Description |
---|---|
Administrative data | This will collect data to identify the articles, including the authors, citations, funding and countries |
Method | Data will be collected on the study designs, insecticides (name, formulation and strength), combinations, seasons, susceptibility procedures used, vector control interventions, populations and mosquito species |
Results | Malaria incidence, malaria prevalence, insecticide efficacy, susceptibility (phenotypic resistance), genotypic resistance, vector mortality and knockdown effect |
Setting | Countries in sub-Saharan Africa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ocan, M.; Ojiambo, K.O.; Nakalembe, L.; Kinalwa, G.; Kinengyere, A.A.; Nsobya, S.; Arinaitwe, E.; Mawejje, H. The Effectiveness of Indoor Residual Spraying for Malaria Control in Sub-Saharan Africa: A Systematic Protocol Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2025, 22, 822. https://doi.org/10.3390/ijerph22060822
Ocan M, Ojiambo KO, Nakalembe L, Kinalwa G, Kinengyere AA, Nsobya S, Arinaitwe E, Mawejje H. The Effectiveness of Indoor Residual Spraying for Malaria Control in Sub-Saharan Africa: A Systematic Protocol Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2025; 22(6):822. https://doi.org/10.3390/ijerph22060822
Chicago/Turabian StyleOcan, Moses, Kevin Ouma Ojiambo, Loyce Nakalembe, Geofrey Kinalwa, Alison A. Kinengyere, Sam Nsobya, Emmanuel Arinaitwe, and Henry Mawejje. 2025. "The Effectiveness of Indoor Residual Spraying for Malaria Control in Sub-Saharan Africa: A Systematic Protocol Review and Meta-Analysis" International Journal of Environmental Research and Public Health 22, no. 6: 822. https://doi.org/10.3390/ijerph22060822
APA StyleOcan, M., Ojiambo, K. O., Nakalembe, L., Kinalwa, G., Kinengyere, A. A., Nsobya, S., Arinaitwe, E., & Mawejje, H. (2025). The Effectiveness of Indoor Residual Spraying for Malaria Control in Sub-Saharan Africa: A Systematic Protocol Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 22(6), 822. https://doi.org/10.3390/ijerph22060822