Exploring Sedentary and Nutritional Behaviour Patterns in Relation to Overweight and Obesity Among Youth from Different Demographic Backgrounds in Saudi Arabia
Abstract
1. Background
2. Methods
2.1. Participants and Procedure
2.2. Measures
Anthropometric Measurements
2.3. Statistical Analysis
3. Results
3.1. Differences in Dietary Habits
3.1.1. Inferential Nutritional Statistics Across Age
3.1.2. Inferential Nutritional Statistics Across Geographical Locations
3.1.3. Inferential Nutritional Statistics Across State and Private Schools
3.1.4. Cluster Analysis
3.1.5. Breakfast
3.1.6. Fruit
3.1.7. Vegetables
3.1.8. Milk and Dairy Product
3.1.9. Fast Food
3.1.10. Chips/Crisps
3.1.11. Soft Drinks
3.1.12. Cakes/Doughnuts
3.1.13. Sweets/Candy
3.1.14. Energy Drinks
4. Discussion
Study Strength and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alsaqaaby, M.S.; Cooney, S.; le Roux, C.W.; Pournaras, D.J. Sex, race, and BMI in clinical trials of medications for obesity over the past three decades: A systematic review. Lancet Diabetes Endocrinol. 2024, 12, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, A.; Nakhaee, Z.; Bahri, R.A.; Amini, M.J.; Salehi, A.; Jafarabady, K.; Seighali, N.; Rashidian, P.; Fathi, H.; Esmaeilpur Abianeh, F. Global prevalence of obesity and overweight among medical students: A systematic review and meta-analysis. BMC Public Health 2024, 24, 1673. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, R.; Bajpai, R.; Shukla, S.K.; Singh, N.; Singh, N. Sedentary work and expanding waistlines: A cross-sectional study on occupational roles and abdominal obesity in India. BMC Public Health 2025, 25, 748. [Google Scholar] [CrossRef]
- Lewandowska, A.; Rudzki, G.; Lewandowski, T.; Bartosiewicz, A.; Próchnicki, M.; Stryjkowska-Góra, A.; Laskowska, B.; Sierpińska, M.; Rudzki, S.; Pavlov, S. Overweight and obesity among adolescents: Health-conscious behaviours, acceptance, and the health behaviours of their parents. BMC Public Health 2025, 25, 418. [Google Scholar] [CrossRef]
- Ma, S.; Liu, X.; Lin, R.; Yao, Y.; Zhao, M.; Yu, Y.; Magnussen, C.G.; Xi, B. Childhood body size, adulthood adiposity, underlying mechanisms, and risk of incident hypertension: A prospective cohort study of 180,527 participants. BMC Med. 2025, 23, 47. [Google Scholar] [CrossRef]
- Alqurashi, R.M.; Abdalla, S.M.; Ammar, A.B.; Shatwan, I.M.; Alsayegh, A.A.; Alnasser, A.N.; Alfadhliah, J.T.; Fallata, G.A.; Alhumaidan, O.A.; Bawazeer, N.M. Food consumption patterns in different regions of the Kingdom of Saudi Arabia: Household cross-sectional study. Appl. Food Res. 2025, 5, 100666. [Google Scholar] [CrossRef]
- Althumiri, N.A.; Basyouni, M.H.; AlMousa, N.; AlJuwaysim, M.F.; Almubark, R.A.; BinDhim, N.F.; Alkhamaali, Z.; Alqahtani, S.A. Obesity in Saudi Arabia in 2020: Prevalence, Distribution, and Its Current Association with Various Health Conditions. Healthcare 2021, 9, 311. [Google Scholar] [CrossRef]
- Boakye, K.; Bovbjerg, M.; Schuna, J., Jr.; Branscum, A.; Varma, R.P.; Ismail, R.; Barbarash, O.; Dominguez, J.; Altuntas, Y.; Anjana, R.M. Urbanization and physical activity in the global Prospective Urban and Rural Epidemiology study. Sci. Rep. 2023, 13, 290. [Google Scholar] [CrossRef]
- Badawi, S.; Farag, A.A. Young Saudi Women’s travel behavior change over 2015/2020. J. Transp. Health 2021, 21, 101080. [Google Scholar] [CrossRef]
- Al-Nuaim, A.; Safi, A. Factors Influencing Saudi Youth Physical Activity Participation: A Qualitative Study Based on the Social Ecological Model. Int. J. Environ. Res. Public Health 2023, 20, 5785. [Google Scholar] [CrossRef]
- Al-Nuaim, A.; Safi, A. The Correlation of Built Environment on Hypertension, and Weight Status amongst Adolescence in Saudi Arabia. Int. J. Environ. Res. Public Health 2022, 19, 16763. [Google Scholar] [CrossRef] [PubMed]
- Al-Jawaldeh, A.; Abbass, M.M. Unhealthy dietary habits and obesity: The major risk factors beyond non-communicable diseases in the eastern mediterranean region. Front. Nutr. 2022, 9, 817808. [Google Scholar] [CrossRef] [PubMed]
- Al-Nuaim, A.; Bursais, A.K.; Hassan, M.M.; Alaqil, A.I.; Collins, P.; Safi, A. Association between Young People’s Neighbourhoods’ Characteristics and Health Risk Factors in Saudi Arabia. Healthcare 2024, 12, 1120. [Google Scholar] [CrossRef]
- Alhyas, L.; McKay, A.; Balasanthiran, A.; Majeed, A. Prevalences of overweight, obesity, hyperglycaemia, hypertension and dyslipidaemia in the Gulf: Systematic review. JRSM Short Rep. 2011, 2, 55. [Google Scholar] [CrossRef]
- Al-Nuaim, A.A.; Al-Nakeeb, Y.; Lyons, M.; Al-Hazzaa, H.M.; Nevill, A.; Collins, P.; Duncan, M.J. The prevalence of physical activity and sedentary behaviours relative to obesity among adolescents from Al-Ahsa, Saudi Arabia: Rural versus urban variations. J. Nutr. Metab. 2012, 2012, 417589. [Google Scholar] [CrossRef]
- Maffeis, C.; Banzato, C.; Talamini, G. Waist-to-height ratio, a useful index to identify high metabolic risk in overweight children. J. Pediatr. 2008, 152, 207–213. [Google Scholar] [CrossRef]
- Spolidoro, J.V.; Pitrez Filho, M.L.; Vargas, L.T.; Santana, J.C.; Pitrez, E.; Hauschild, J.A.; Bruscato, N.M.; Moriguchi, E.H.; Medeiros, A.K.; Piva, J.P. Waist circumference in children and adolescents correlate with metabolic syndrome and fat deposits in young adults. Clin. Nutr. 2013, 32, 93–97. [Google Scholar] [CrossRef]
- Al-Hazzaa, H.M.; Musaiger, A.O.; Group, A.R. Arab Teens Lifestyle Study (ATLS): Objectives, design, methodology and implications. Diabetes Metab. Syndr. Obes. Targets Ther. 2011, 4, 417–426. [Google Scholar] [CrossRef]
- Woodman, A.; Coffey, M.; Cooper-Ryan, A.-M.; Jaoua, N. The relationship between lifestyle habits and obesity among students in the Eastern province of Saudi Arabia: Using the Arab Teens Lifestyle (ATLS) questionnaire. BMC Public Health 2024, 24, 2267. [Google Scholar] [CrossRef]
- LeBlanc, A.G.; Katzmarzyk, P.T.; Barreira, T.V.; Broyles, S.T.; Chaput, J.-P.; Church, T.S.; Fogelholm, M.; Harrington, D.M.; Hu, G.; Kuriyan, R. Correlates of total sedentary time and screen time in 9–11 year-old children around the world: The international study of childhood obesity, lifestyle and the environment. PLoS ONE 2015, 10, e0129622. [Google Scholar] [CrossRef]
- Haghjoo, P.; Siri, G.; Soleimani, E.; Farhangi, M.A.; Alesaeidi, S. Screen time increases overweight and obesity risk among adolescents: A systematic review and dose-response meta-analysis. BMC Prim. Care 2022, 23, 161. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, V.; Hussain, A.; Srinivasan, A.; VV, A. Impact of Screen Time and Sleep Duration on Adults’ Body Mass Index in A University in Chengalpattu District–A Cross-Sectional Study. Natl. J. Community Med. 2025, 16, 28–34. [Google Scholar] [CrossRef]
- Jin, H.; Zhou, H.; Chen, K. Analysis of risk factors for the development of obesity in preschool children: A logistic model analysis. Front. Pediatr. 2025, 13, 1497962. [Google Scholar] [CrossRef]
- Nakshine, V.S.; Thute, P.; Khatib, M.N.; Sarkar, B. Increased screen time as a cause of declining physical, psychological health, and sleep patterns: A literary review. Cureus 2022, 14, e30051. [Google Scholar] [CrossRef]
- Elma, Ö.; Brain, K.; Dong, H.-J. The importance of nutrition as a lifestyle factor in chronic pain management: A narrative review. J. Clin. Med. 2022, 11, 5950. [Google Scholar] [CrossRef]
- Rippe, J.M. Lifestyle Nutrition: Eating for Good Health by Lowering the Risk of Chronic Diseases; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Wang, P.; Song, M.; Eliassen, A.H.; Wang, M.; Fung, T.T.; Clinton, S.K.; Rimm, E.B.; Hu, F.B.; Willett, W.C.; Tabung, F.K. Optimal dietary patterns for prevention of chronic disease. Nat. Med. 2023, 29, 719–728. [Google Scholar] [CrossRef]
- Xiao, Y.; Xiao, X.; Zhang, X.; Yi, D.; Li, T.; Hao, Q.; Zhang, F.; Li, X.; Wang, N. Mediterranean diet in the targeted prevention and personalized treatment of chronic diseases: Evidence, potential mechanisms, and prospects. EPMA J. 2024, 15, 207–220. [Google Scholar] [CrossRef]
- Samuel, P.O.; Edo, G.I.; Emakpor, O.L.; Oloni, G.O.; Ezekiel, G.O.; Essaghah, A.E.A.; Agoh, E.; Agbo, J.J. Lifestyle modifications for preventing and managing cardiovascular diseases. Sport Sci. Health 2024, 20, 23–36. [Google Scholar] [CrossRef]
- Alaamri, S.; Naser, A.Y. Knowledge, attitude, and practice regarding cardiovascular diseases in Saudi Arabia: A cross-sectional study. Medicine 2025, 104, e41597. [Google Scholar] [CrossRef]
- Babakhanlou, R.; Gowin, K. The Impact of Diet and Nutrition on Prostate Cancer–Food for Thought? Curr. Oncol. Rep. 2025, 127, 278–289. [Google Scholar] [CrossRef]
- Mullan, K.; Hofferth, S.L. A comparative time-diary analysis of UK and US children’s screen time and device use. Child. Indic. Res. 2021, 15, 795–818. [Google Scholar] [CrossRef] [PubMed]
- Tak, S.; Catsambis, S. “Video games for boys and chatting for girls?”: Gender, screen time activities and academic achievement in high school. Educ. Inf. Technol. 2023, 28, 15415–15443. [Google Scholar] [CrossRef]
- Xian, J.; Ren, T.; Kuang, M. Influence of eating while watching TV on food preference and overweight/obesity among adolescents in China: A longitudinal study. Front. Public Health 2024, 12, 1423383. [Google Scholar] [CrossRef]
- Ahammed, B.; Haque, R.; Rahman, S.M.; Keramat, S.A.; Mahbub, A.; Ferdausi, F.; Alam, K. Frequency of watching television, owning a mobile phone and risk of being overweight/obese among reproductive-aged women in low-and lower-middle-income countries: A pooled analysis from Demographic and Health Survey data. J. Biosoc. Sci. 2023, 55, 509–522. [Google Scholar] [CrossRef]
- Wagnild, J.M.; Pollard, T.M. How is television time linked to cardiometabolic health in adults? A critical systematic review of the evidence for an effect of watching television on eating, movement, affect and sleep. BMJ Open 2021, 11, e040739. [Google Scholar] [CrossRef]
- Cui, Z.; Hardy, L.L.; Dibley, M.J.; Bauman, A. Temporal trends and recent correlates in sedentary behaviours in Chinese children. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 93. [Google Scholar] [CrossRef]
- Carson, V.; Iannotti, R.J.; Pickett, W.; Janssen, I. Urban and rural differences in sedentary behavior among American and Canadian youth. Health Place 2011, 17, 920–928. [Google Scholar] [CrossRef]
- Dollman, J.; Maher, C.; Olds, T.S.; Ridley, K. Physical activity and screen time behaviour in metropolitan, regional and rural adolescents: A-sectional study of Australians aged 9–16 years. J. Sci. Med. Sport 2012, 15, 32–37. [Google Scholar] [CrossRef]
- Goyal, J.; Rakhra, G. Sedentarism and chronic health problems. Korean J. Fam. Med. 2024, 45, 239. [Google Scholar] [CrossRef]
- Bathrellou, E.; Lazarou, C.; Panagiotakos, D.B.; Sidossis, L.S. Physical activity patterns and sedentary behaviors of children from urban and rural areas of Cyprus. Cent. Eur. J. Public Health 2007, 15, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.K. Effects of Breakfast on Cognitive Function of Children. Acta Sci. Nutr. Health 2022, 6, 75–79. [Google Scholar] [CrossRef]
- Peña-Jorquera, H.; Campos-Núñez, V.; Sadarangani, K.P.; Ferrari, G.; Jorquera-Aguilera, C.; Cristi-Montero, C. Breakfast: A crucial meal for adolescents’ cognitive performance according to their nutritional status. The cogni-action project. Nutrients 2021, 13, 1320. [Google Scholar] [CrossRef] [PubMed]
- Giovannini, M.; Agostoni, C.; Shamir, R. Symposium overview: Do we all eat breakfast and is it important? Crit. Rev. Food Sci. Nutr. 2010, 50, 97–99. [Google Scholar] [CrossRef]
- Borasio, F.; De Cosmi, V.; D’Oria, V.; Scaglioni, S.; Syren, M.-L.E.; Turolo, S.; Agostoni, C.; Coniglio, M.; Molteni, M.; Antonietti, A. Associations between dietary intake, blood levels of omega-3 and omega-6 fatty acids and reading abilities in children. Biomolecules 2023, 13, 368. [Google Scholar] [CrossRef]
- Ober, P.; Sobek, C.; Stein, N.; Spielau, U.; Abel, S.; Kiess, W.; Meigen, C.; Poulain, T.; Igel, U.; Lipek, T. And yet again: Having breakfast is positively associated with lower BMI and healthier general eating behavior in schoolchildren. Nutrients 2021, 13, 1351. [Google Scholar] [CrossRef]
- Longo-Silva, G.; de Oliveira, P.M.B.; Pedrosa, A.K.P.; da Silva, J.R.; Bernardes, R.S.; de Menezes, R.C.E.; de Menezes Marinho, P. Breakfast skipping and timing of lunch and dinner: Relationship with BMI and obesity. Obes. Res. Clin. Pract. 2022, 16, 507–513. [Google Scholar] [CrossRef]
- Mun, H.; Oh, S.W. Skipping breakfast and nutrient density: Influence on obesity, blood pressure, glucose, and cholesterol in elementary school students. Obes. Res. Clin. Pract. 2025, 19, 94–100. [Google Scholar] [CrossRef]
- Epstein, R.; Mack, J. The Satisfied Guide to Eating Well: A Healthy Plan for Your Spiritual Journey toward Food Freedom; Dexterity: Nashville, TN, USA, 2024. [Google Scholar]
- Aloudah, M.A. Exploring Saudi Adolescents’ Perceptions of Emotional Eating with the Purpose of Informing the Design of an Online Health Awareness Programme; University of Reading: Reading, UK, 2021. [Google Scholar]
- López-Gil, J.F.; Sánchez-Miguel, P.A.; Tapia-Serrano, M.Á.; García-Hermoso, A. Skipping breakfast and excess weight among young people: The moderator role of moderate-to-vigorous physical activity. Eur. J. Pediatr. 2022, 181, 3195–3204. [Google Scholar] [CrossRef]
- Zakrzewski-Fruer, J.K.; Seall, C.; Tolfrey, K. Breakfast consumption suppresses appetite but does not increase daily energy intake or physical activity energy expenditure when compared with breakfast omission in adolescent girls who habitually skip breakfast: A 7-day randomised crossover trial. Nutrients 2021, 13, 4261. [Google Scholar] [CrossRef]
- Zhu, S.; Cui, L.; Zhang, X.; Shu, R.; VanEvery, H.; Tucker, K.L.; Wu, S.; Gao, X. Habitually skipping breakfast is associated with chronic inflammation: A cross-sectional study. Public Health Nutr. 2021, 24, 2936–2943. [Google Scholar] [CrossRef]
- Mekary, R.A.; Giovannucci, E.; Cahill, L.; Willett, W.C.; van Dam, R.M.; Hu, F.B. Eating patterns and type 2 diabetes risk in older women: Breakfast consumption and eating frequency. Am. J. Clin. Nutr. 2013, 98, 436–443. [Google Scholar] [CrossRef]
- Jalloun, R.A.; Alfadhli, E.M. Breakfast Location Effect on Breakfast Quality and Obesity Risk in Saudi Female College Students. Curr. Nutr. Food Sci. 2021, 17, 501–508. [Google Scholar] [CrossRef]
- Qauhiz, N.M.A. Obesity among Saudi female university students: Dietary habits and health behaviours. J. Egypt. Public Health Assoc. 2010, 85, 45–59. [Google Scholar] [PubMed]
- Wang, D.D.; Li, Y.; Bhupathiraju, S.N.; Rosner, B.A.; Sun, Q.; Giovannucci, E.L.; Rimm, E.B.; Manson, J.E.; Willett, W.C.; Stampfer, M.J. Fruit and vegetable intake and mortality: Results from 2 prospective cohort studies of US men and women and a meta-analysis of 26 cohort studies. Circulation 2021, 143, 1642–1654. [Google Scholar] [CrossRef]
- Smith, L.; López Sánchez, G.F.; Veronese, N.; Soysal, P.; Oh, H.; Barnett, Y.; Keyes, H.; Butler, L.; Allen, P.; Kostev, K. Fruit and vegetable intake and non-communicable diseases among adults aged≥ 50 years in low-and middle-income countries. J. Nutr. Health Aging 2022, 26, 1003–1009. [Google Scholar] [CrossRef]
- Bhupathiraju, S.N.; Tucker, K.L. Greater variety in fruit and vegetable intake is associated with lower inflammation in Puerto Rican adults. Am. J. Clin. Nutr. 2011, 93, 37–46. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Afshin, A.; Benowitz, N.L.; Bittner, V.; Daniels, S.R.; Franch, H.A.; Jacobs, D.R., Jr.; Kraus, W.E.; Kris-Etherton, P.M.; Krummel, D.A. Population approaches to improve diet, physical activity, and smoking habits: A scientific statement from the American Heart Association. Circulation 2012, 126, 1514–1563. [Google Scholar] [CrossRef]
- Adineh, P.; Amini, S.; Abolnezhadian, F.; Jafari, F.; Ebrahimian, N. Nuts, vegetables, fruits, and protein dietary pattern during pregnancy is inversely associated with risk of childhood allergies: A case–control study. Sci. Rep. 2024, 14, 842. [Google Scholar] [CrossRef]
- Alkazemi, D.; Salmean, Y. Fruit and Vegetable Intake and Barriers to Their Consumption among University Students in Kuwait: A Cross-Sectional Survey. J. Environ. Public Health 2021, 2021, 9920270. [Google Scholar] [CrossRef]
- Sanchez, A.; Norman, G.J.; Sallis, J.F.; Calfas, K.J.; Rock, C.; Patrick, K. Patterns and correlates of multiple risk behaviors in overweight women. Prev. Med. 2008, 46, 196–202. [Google Scholar] [CrossRef]
- Amin, T.T.; Al-Sultan, A.I.; Ali, A. Overweight and Obesity and their Association with Dietary Habits, and Sociodemographic Characteristics Among Male Primary School Children in Al-Hassa, Kingdom of Saudi Arabia. Indian. J. Community Med. 2008, 33, 172–181. [Google Scholar] [CrossRef]
- Poti, J.M.; Duffey, K.J.; Popkin, B.M. The association of fast food consumption with poor dietary outcomes and obesity among children: Is it the fast food or the remainder of the diet? Am. J. Clin. Nutr. 2014, 99, 162–171. [Google Scholar] [CrossRef]
- Akbar, Z.; Naeem, S.; Javed, S.; Akhtar, Z.; Ashfaq, Z.; Ismail, W.U.; Huda, N.U.; Khan, U.S.; Ali, S.; Sajjad, W. Risk factors of overweight and obesity in childhood and adolescence in Pakistan, a systematic review. Discov. Public Health 2025, 22, 75. [Google Scholar] [CrossRef]
- AlTamimi, J.Z.; Alshwaiyat, N.M.; Alkhalidy, H.; AlFaris, N.A.; AlKehayez, N.M.; Alsemari, M.A.; Alagal, R.I. Prevalence of fast food intake among a multi-ethnic population of young men and its connection with sociodemographic determinants and obesity. Int. J. Environ. Res. Public Health 2022, 19, 14933. [Google Scholar] [CrossRef] [PubMed]
- Geethika, P.; Yamani, L. Fast food and soft drink consumption pattern in medical students and its association with overweight and obesity. Glob. J. Med. Stud. 2021, 1, 9–14. [Google Scholar] [CrossRef]
- Al Moraie, N.M.D. Dietary Patterns in Saudi Arabian Adults Residing in Different Geographical Locations in Saudi Arabia and in the UK in Relation to Heart Disease Risk; Newcastle University: Newcastle upon Tyne, UK, 2014. [Google Scholar]
- Åberg, F.; Byrne, C.D.; Pirola, C.J.; Männistö, V.; Sookoian, S. Alcohol consumption and metabolic syndrome: Clinical and epidemiological impact on liver disease. J. Hepatol. 2023, 78, 191–206. [Google Scholar] [CrossRef]
- Calcaterra, V.; Cena, H.; Magenes, V.C.; Vincenti, A.; Comola, G.; Beretta, A.; Di Napoli, I.; Zuccotti, G. Sugar-sweetened beverages and metabolic risk in children and adolescents with obesity: A narrative review. Nutrients 2023, 15, 702. [Google Scholar] [CrossRef]
Variable | Urban | Rural Farm | Rural Desert | Whole Group | ||||
---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | Male | Female | |
Age | 17.03 ± 1.02 | 16.78 ± 1.21 | 17.13 + 1.25 | 17.50 ± 1.21 | 17.15 ± 1.04 | 17.24 ± 1.35 | 17.08 ± 1.10 | 17.07 ± 1.27 |
Weight | 70.08 ± 21.62 | 60.47 ± 20.03 | 63.31 ± 18.37 | 54.12 ± 15.51 | 69.10 ± 20.05 | 62.23 ± 18.83 | 67.76 ± 20.62 | 58.74 ± 18.80 |
Height | 168.6 ± 7.41 | 154.91 ± 9.00 | 166.86 ± 6.61 | 153.75 ± 8.02 | 167.29 ± 6.07 | 154.16 ± 5.74 | 167.86 ± 7.02 | 154.44 ± 8.32 |
BMI | 24.58 ± 7.18 | 26.35 ± 21.84 | 22.67 ± 6.16 | 23.89 ± 20 | 24.59 ± 6.66 | 26.00 ± 6.84 | 23.97 ± 5.764 | 25.54 ± 19.83 |
WC | 78.73 ± 16.87 | 82.47 ± 15.02 | 73.90 ± 14.15 | 78.58 ± 12.65 | 76.36 ± 13.91 | 81.89 ± 15.24 | 76.85 ± 15.79 | 81.17 ± 14.44 |
Time spent watching TV | 2.60 ± 1.81 | 2.28 ± 1.67 | 2.29 ± 1.62 | 2.71 ± 1.97 | 2.48 ± 2.13 | 3.63 ± 2.20 | 2.49 ± 1.80 | 2.60 ± 1.90 |
Time spent on computer | 2.58 ± 2.02 | 3.57 ± 2.45 | 2.34 ± 2.05 | 2.98 ± 2.29 | 1.96 ± 2.26 | 2.12 ± 2.09 | 2.43 ± 2.07 | 3.19 ± 2.40 |
Variables | Males | Females |
---|---|---|
Breakfast | 23.16 | 16.69 ** |
Sugary drinks | 67.40 | 66.11 |
Vegetables | 25.04 | 19.20 * |
Fruits | 15.43 | 9.21 * |
Milk | 29.61 | 21.74 * |
Fast foods | 35.12 | 25.54 ** |
Crisps/Chips | 30.39 | 63.48 ** |
Cakes/doughnuts | 29.61 | 42.18 ** |
Sweets | 38.11 | 62.10 * |
Energy Drinks | 16.98 | 14.36 |
TV | 42.57 | 42.90 |
Computer | 37.87 | 53.09 ** |
Sedentary time | 79.18 | 90.68 ** |
Urban | Rural Farm | Rural Desert | Whole Groups | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | F | Total | M | F | Total | M | F | Total | M | F | Total | ||
Breakfast | Mean and SD (frequency/week) | 3.29 ±2.61 | 2.63 ±2.54 | 2.98 ±2.60 | 3.38 ±2.65 | 2.51 ±2.51 | 2.96 ±2.62 | 3.68 ±2.37 | 3.25 ±2.79 | 3.47 ±2.60 | 3.37 ±2.60 | 2.68 ±2.58 | 3.03 ±2.61 |
% daily intake | 22.13 | 16.01 | 19.19 | 24.13 | 13.90 | 19.23 a | 25.32 | 25.92 | 25.63 | 23.16 | 16.69 | 20.04 a | |
Sugary drinks | Mean and SD (frequency/week) | 4.91 ±2.28 | 4.92 ±2.28 | 4.92 ±2.28 | 4.76 ±2.30 | 4.43 ±2.42 | 4.60 ±2.36 | 4.63 ±2.39 | 5.28 ±2.31 | 4.96 ±2.37 | 4.83 ±2.30 | 4.82 ±2.34 | 4.82 ±2.32 |
% >3 times/week | 69.38 | 68.88 | 69.14 | 66.50 | 57.75 | 62.31 | 60.76 | 74.07 | 67.5 | 67.40 | 66.11 | 66.77 | |
Vegetables | Mean and SD (frequency/week) | 3.84 ±2.50 | 3.29 ±2.48 | 3.58 ±2.50 | 3.90 ±2.28 | 2.91 ±2.33 | 3.43 ±2.35 | 3.41 ±2.44 | 3.75 ±2.42 | 3.58 ±2.43 | 3.81 ±2.42 | 3.24 ±2.43 | 3.53 ±2.44 |
% daily intake | 27.89 | 20.85 | 24.49 a | 22.89 | 14.97 | 19.07 a | 17.72 | 22.22 | 20 | 25.04 b | 19.20 | 22.21 a | |
Fruits | Mean and SD (frequency/week) | 3.32 ±2.31 | 2.65 ±2.11 | 3.00 ±2.24 | 3.30 ±2.23 | 2.31 ±2.13 | 2.83 ±2.23 | 2.84 ±2.28 | 2.94 ±2.19 | 2.89 ±2.23 | 3.26 ±2.28 | 2.58 ±2.14 | 2.93 ±2.24 |
% daily intake | 15.21 | 8.46 | 11.95 a | 16.42 | 8.11 | 12.44 a | 13.92 | 14.81 | 14.38 | 15.43 | 9.21 | 12.42 a | |
Milk | Mean and SD (frequency/week) | 3.99 ±2.48 | 3.58 ±2.44 | 3.80 ±2.47 | 4.15 ±2.48 | 3.33 ±2.48 | 3.76 ±2.51 | 4.15 ±2.62 | 4.04 ±2.55 | 4.09 ±2.58 | 4.06 ±2.49 | 3.57 ±2.48 | 3.82 ±2.50 |
% daily intake | 27.89 | 21.15 | 24.64 a | 30.85 | 19.35 | 25.32 a | 34.18 | 29.63 | 31.88 | 29.61 | 21.74 | 25.79 a | |
Fast foods | Mean and SD (frequency/week) | 3.42 ±2.02 | 2.87 ±1.86 | 3.15 ±1.96 | 2.84 ±1.96 | 2.42 ±2.01 | 2.64 ±1.99 | 1.79 ±1.94 | 2.36 ±1.91 | 2.08 ±1.94 | 3.03 ±2.06 | 2.66 ±1.93 | 2.85 ±2.00 |
% >3 times/week | 41.69 | 29.00 | 35.57 a | 31.84 | 21.93 | 27.06 a | 13.92 | 19.75 | 16.88 | 35.12 b | 25.54 | 30.47 a b | |
Chips/Crisps | Mean and SD (frequency/week) | 2.90 ±2.17 | 4.57 ±2.26 | 3.70 ±2.36 | 2.67 ±2.09 | 4.43 ±2.40 | 3.51 ±2.41 | 1.79 ±2.05 | 4.83 ±2.56 | 3.33 ±2.77 | 2.69 ±2.15 | 4.56 ±2.34 | 3.59 ±2.43 |
% >3 day/w | 32.96 | 64.35 | 48.10 a | 30.85 | 62.70 | 46.11 a | 17.72 | 61.73 | 40 a | 30.39 b | 63.48 | 46.43 a b | |
Cakes/Doughnuts | Mean and SD (frequency/week) | 2.69 ±2.08 | 3.30 ±2.23 | 2.98 ±2.17 | 2.74 ±2.11 | 3.12 ±2.26 | 2.92 ±2.19 | 2.57 ±2.15 | 4.53 ±2.45 | 3.56 ±2.50 | 2.69 ±2.09 | 3.40 ±2.31 | 3.03 ±2.23 |
% >3 times/week | 29.86 | 40.48 | 34.99 a | 29.35 | 36.61 | 32.81 | 29.11 | 61.73 | 45.63 a | 29.61 | 42.18 b | 35.69 a b | |
Sweets | Mean and SD (frequency/week) | 3.43 ±2.28 | 4.63 ±2.17 | 4.01 ±2.31 | 2.55 ±2.21 | 4.08 ±2.35 | 3.29 ±2.40 | 2.90 ±2.33 | 4.72 ±2.24 | 3.82 ±2.45 | 3.09 ±2.30 | 4.47 ±2.25 | 3.76 ±2.38 |
% >3 times/week | 44.22 | 64.95 | 54.23 a | 26.87 | 55.08 | 40.46 a | 39.24 | 66.67 | 53.13 a | 38.11 b | 62.10 | 49.76 a b | |
Energy drinks | Mean and SD (frequency/week) | 1.70 ±2.29 | 1.50 ±2.42 | 1.60 ±2.35 | 1.00 ±1.90 | 0.60 ±1.56 | 0.81 ±1.75 | 1.77 ±2.50 | 1.14 ±2.19 | 1.45 ±2.36 | 1.49 ±2.22 | 1.17 ±2.19 | 1.33 ±2.21 |
% >3 times/week | 19.38 | 19.64 | 19.51 | 11.44 | 5.88 | 8.76 | 20.25 | 12.35 | 16.25 | 16.98 b | 14.36 b | 15.71 b | |
Sedentary time | Mean and SD (hours/day) | 5.18 ±3.03 | 5.86 ±2.39 | 5.50 ±2.76 | 4.63 ±2.76 | 5.70 ±3.02 | 5.14 ±2.93 | 4.43 ±3.37 | 5.75 ±2.16 | 5.10 ±2.89 | 4.91 ±3.00 | 5.80 ±2.58 | 5.33 ±2.84 |
% >3 times/week | 84.13 | 91.6 | 87.75 a | 75.82 | 89.41 | 82.39 a | 64.29 | 89.61 | 77.55 a | 79.18 b | 90.68 | 84.79 a b | |
Mean and SD (hours/day) | 5.18 ±3.03 | 5.86 ±2.39 | 5.50 ±2.76 | 4.63 ±2.76 | 5.70 ±3.02 | 5.14 ±2.93 | 4.43 ±3.37 | 5.75 ±2.16 | 5.10 ±2.89 | 4.91 ±3.00 | 5.80 ±2.58 | 5.33 ±2.84 |
OR | 95% CI | p Value | |
---|---|---|---|
TV viewing | 1.112 | 1.011–1.223 | 0.029 |
Breakfast | 0.926 | 0.863–0.994 | 0.032 |
Dairy products | 1.124 | 1.041–1.214 | 0.003 |
Chips and crisps | 0.894 | 0.822–0.974 | 0.010 |
Energy drink | 1.106 | 1.021–1.198 | 0.013 |
OR | 95% CI | p Value | |
---|---|---|---|
Breakfast | 0.922 | 0.859–0.989 | 0.023 |
Energy drink | 1.209 | 1.117–1.308 | <0.001 |
Breakfast | Sugary Drinks | Vegetables | Fruits | Milk | Fast Foods | Crisp/ Chips | Cakes/ Doughnuts | Sweets | Energy Drinks | ||
---|---|---|---|---|---|---|---|---|---|---|---|
BMI | R value | −0.103 ** | −0.021 | −0.034 | 0.000 | 0.042 | 0.042 | −0.056 * | 0.018 | −0.031 | 0.156 ** |
p value | 0.000 | 0.473 | 0.237 | 0.993 | 0.140 | 0.142 | 0.050 | 0.542 | 0.288 | 0.000 | |
TV Viewing per day | R value | 0.018 | 0.102 ** | 0.031 | 0.033 | 0.017 | 0.062 * | 0.100 ** | 0.128 ** | 0.105 ** | 0.018 |
p value | 0.531 | 0.000 | 0.269 | 0.245 | 0.541 | 0.029 | 0.000 | 0.000 | 0.000 | 0.538 | |
Computer time per day | R value | −0.083 ** | 0.100 ** | −0.062 * | −0.081 ** | −0.078 ** | 0.205 ** | 0.207 ** | 0.099 ** | 0.180 ** | 0.139 ** |
p value | 0.004 | 0.000 | 0.029 | 0.004 | 0.006 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | |
sedentary time | R value | −0.054 | 0.147 ** | −0.029 | −0.044 | −0.051 | 0.204 ** | 0.231 ** | 0.163 ** | 0.212 ** | 0.123 ** |
p value | 0.056 | 0.000 | 0.307 | 0.127 | 0.076 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Nuaim, A.; Safi, A. Exploring Sedentary and Nutritional Behaviour Patterns in Relation to Overweight and Obesity Among Youth from Different Demographic Backgrounds in Saudi Arabia. Int. J. Environ. Res. Public Health 2025, 22, 813. https://doi.org/10.3390/ijerph22050813
Al-Nuaim A, Safi A. Exploring Sedentary and Nutritional Behaviour Patterns in Relation to Overweight and Obesity Among Youth from Different Demographic Backgrounds in Saudi Arabia. International Journal of Environmental Research and Public Health. 2025; 22(5):813. https://doi.org/10.3390/ijerph22050813
Chicago/Turabian StyleAl-Nuaim, Anwar, and Ayazullah Safi. 2025. "Exploring Sedentary and Nutritional Behaviour Patterns in Relation to Overweight and Obesity Among Youth from Different Demographic Backgrounds in Saudi Arabia" International Journal of Environmental Research and Public Health 22, no. 5: 813. https://doi.org/10.3390/ijerph22050813
APA StyleAl-Nuaim, A., & Safi, A. (2025). Exploring Sedentary and Nutritional Behaviour Patterns in Relation to Overweight and Obesity Among Youth from Different Demographic Backgrounds in Saudi Arabia. International Journal of Environmental Research and Public Health, 22(5), 813. https://doi.org/10.3390/ijerph22050813