Five Years Later—The Impact of the COVID-19 Pandemic on Physical Performance and Cardiometabolic Health Using a Smart Home Gym: An Ecological Case Study
Abstract
1. Introduction
2. Material and Methods
2.1. Participants
2.2. Study Design
2.3. Smart Home Gym
2.4. Five-Year Training Intervention
2.5. Outcome Measures
2.5.1. Cardiometabolic Measures
2.5.2. Fitness Measures
2.5.3. Questionnaires
2.6. Statistical Analysis
3. Results
3.1. Anthropometric Measures
3.2. Fitness Outcomes
3.3. Cardiometabolic Outcomes
3.4. Questionnaire Outcomes
4. Discussion
Limitations, Implications, and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gomez, D.; Neufeld, E.V.; Hicks, J.W.; Dolezal, B.A. COVID-19 Lockdowns: Exacerbating the Silent Pandemic. Int. J. Exerc. Sci. 2021, 14, 1256–1260. [Google Scholar] [PubMed]
- Fuzeki, E.; Groneberg, D.A.; Banzer, W. Physical activity during COVID-19 induced lockdown: Recommendations. J. Occup. Med. Toxicol. 2020, 15, 25. [Google Scholar] [CrossRef] [PubMed]
- Ammar, A.; Brach, M.; Trabelsi, K.; Chtourou, H.; Boukhris, O.; Masmoudi, L.; Bouaziz, B.; Bentlage, E.; How, D.; Ahmed, M.; et al. Effects of COVID-19 Home Confinement on Eating Behaviour and Physical Activity: Results of the ECLB-COVID19 International Online Survey. Nutrients 2020, 12, 1583. [Google Scholar] [CrossRef]
- Smith, L.; Jacob, L.; Trott, M.; Yakkundi, A.; Butler, L.; Barnett, Y.; Armstrong, N.C.; McDermott, D.; Schuch, F.; Meyer, J.; et al. The association between screen time and mental health during COVID-19: A cross sectional study. Psychiatry Res. 2020, 292, 113333. [Google Scholar] [CrossRef]
- Valeriani, F.; Protano, C.; De Giorgi, A.; Mazzeo, E.; Liguori, G.; Romano Spica, V.; Vitali, M.; Gallè, F. Analysing features of home-based workout during COVID-19 pandemic: A systematic review. Public Health 2023, 222, 100–114. [Google Scholar] [CrossRef]
- Mutz, M.; Gerke, M. Sport and exercise in times of self-quarantine: How Germans changed their behaviour at the beginning of the Covid-19 pandemic. Int. Rev. Sociol. Sport 2020, 56, 305–316. [Google Scholar] [CrossRef]
- DeJong, A.F.; Fish, P.N.; Hertel, J. Running behaviors, motivations, and injury risk during the COVID-19 pandemic: A survey of 1147 runners. PLoS ONE 2021, 16, e0246300. [Google Scholar] [CrossRef]
- Gjestvang, C.; Tangen, E.M.; Haakstad, L.A.H. The Coronavirus pandemic and closed fitness clubs negatively affected members exercise habits. Front. Sports Act. Living 2022, 4, 985782. [Google Scholar] [CrossRef]
- Symons, M.; Cunha, C.M.; Poels, K.; Vandebosch, H.; Dens, N.; Cutello, C.A. Physical Activity during the First Lockdown of the COVID-19 Pandemic: Investigating the Reliance on Digital Technologies, Perceived Benefits, Barriers and the Impact of Affect. Int. J. Environ. Res. Public Health 2021, 18, 5555. [Google Scholar] [CrossRef]
- Anderson, E.; Durstine, J.L. Physical activity, exercise, and chronic diseases: A brief review. Sports Med. Health Sci. 2019, 1, 3–10. [Google Scholar] [CrossRef]
- Booth, F.W.; Roberts, C.K.; Laye, M.J. Lack of exercise is a major cause of chronic disease. Compr. Physiol. 2014, 2, 1143–1211. [Google Scholar] [CrossRef]
- Bourke, E.; Rawstorn, J.; Maddison, R.; Blakely, T. The effects of physical inactivity on other risk factors for chronic disease: A systematic review of reviews. Prev. Med. Rep. 2024, 46, 102866. [Google Scholar] [CrossRef] [PubMed]
- Moxley, E.; Webber-Ritchey, K.J.; Hayman, L.L. Global impact of physical inactivity and implications for public health nursing. Public Health Nurs. 2022, 39, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Moon, J.H.; Kim, H.J.; Kong, M.H.; Oh, Y.H. Sedentary Lifestyle: Overview of Updated Evidence of Potential Health Risks. Korean J. Fam. Med. 2020, 41, 365–373. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Physical Activity. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/physical-activity (accessed on 1 March 2025).
- Carvalho, V.O.; Gois, C.G. COVID-19 pandemic and home-based physical activity. J. Allergy Clin. Immunol. 2020, 8, 2833–2834. [Google Scholar] [CrossRef]
- Kaushal, N.; Keith, N.; Aguiñaga, S.; Hagger, M.S. Social Cognition and Socioecological Predictors of Home-Based Physical Activity Intentions, Planning, and Habits during the COVID-19 Pandemic. Behav. Sci. 2020, 10, 133. [Google Scholar] [CrossRef] [PubMed]
- Mutz, M.; Müller, J.; Reimers, A.K. Use of Digital Media for Home-Based Sports Activities during the COVID-19 Pandemic: Results from the German SPOVID Survey. Int. J. Environ. Res. Public Health 2021, 18, 4409. [Google Scholar] [CrossRef]
- Schneider, F.; Runer, A.; Burkert, F.; Aspang, J.; Reider, S.; Schneider, H.; Pocecco, E. Digital Workout Versus Team Training: The Impact of the COVID-19 Pandemic on Athletes. Sports Med. Int. Open 2022, 6, E18–E24. [Google Scholar] [CrossRef]
- Parker, K.; Uddin, R.; Ridgers, N.D.; Brown, H.; Veitch, J.; Salmon, J.; Timperio, A.; Sahlqvist, S.; Cassar, S.; Toffoletti, K.; et al. The Use of Digital Platforms for Adults’ and Adolescents’ Physical Activity During the COVID-19 Pandemic (Our Life at Home): Survey Study. J. Med. Internet Res. 2021, 23, e23389. [Google Scholar] [CrossRef]
- Jung, T.; Moorhouse, N.; Shi, X.; Amin, M.F. A Virtual Reality-Supported Intervention for Pulmonary Rehabilitation of Patients With Chronic Obstructive Pulmonary Disease: Mixed Methods Study. J. Med. Internet Res. 2020, 22, e14178. [Google Scholar] [CrossRef]
- Guadalupe-Grau, A.; López-Torres, O.; Martos-Bermúdez, Á.; González-Gross, M. Home-based training strategy to maintain muscle function in older adults with diabetes during COVID-19 confinement. J. Diabetes 2020, 12, 701–702. [Google Scholar] [CrossRef] [PubMed]
- Ooi, T.C.; Ludin, A.F.M.; Loke, S.C.; Singh, M.A.F.; Wong, T.W.; Vytialingam, N.; Abdullah, M.M.J.A.; Ng, O.C.; Bahar, N.; Zainudin, N.; et al. A 16-Week Home-Based Progressive Resistance Tube Training Among Older Adults With Type-2 Diabetes Mellitus: Effect on Glycemic Control. Gerontol. Geriatr. Med. 2021, 7, 23337214211038789. [Google Scholar] [CrossRef] [PubMed]
- Maio, M.D.; Bratta, C.; Iannaccone, A.; Castellani, L.; Foster, C.; Cortis, C.; Fusco, A. Home-Based Physical Activity as a Healthy Aging Booster before and during COVID-19 Outbreak. Int. J. Environ. Res. Public Health 2022, 19, 4317. [Google Scholar] [CrossRef]
- Sadeghi, H.; Jehu, D.A.; Daneshjoo, A.; Shakoor, E.; Razeghi, M.; Amani, A.; Hakim, M.N.; Yusof, A. Effects of 8 Weeks of Balance Training, Virtual Reality Training, and Combined Exercise on Lower Limb Muscle Strength, Balance, and Functional Mobility Among Older Men: A Randomized Controlled Trial. Sports Health 2021, 13, 606–612. [Google Scholar] [CrossRef]
- Mañas, A.; Gómez-Redondo, P.; Valenzuela, P.L.; Morales, J.S.; Lucía, A.; Ara, I. Unsupervised home-based resistance training for community-dwelling older adults: A systematic review and meta-analysis of randomized controlled trials. Ageing Res. Rev. 2021, 69, 101368. [Google Scholar] [CrossRef]
- Kikuchi, N.; Ohta, T.; Hashimoto, Y.; Mochizuki, Y.; Saito, M.; Kozuma, A.; Deguchi, M.; Inoguchi, T.; Shinogi, M.; Homma, H.; et al. Effect of Online Home-Based Resistance Exercise Training on Physical Fitness, Depression, Stress, and Well-Being in Middle-Aged Persons: A Pilot Study. Int. J. Environ. Res. Public Health 2023, 20, 1769. [Google Scholar] [CrossRef]
- Peterlin, J.; Dimovski, V.; Colnar, S.; Blažica, B.; Kejžar, A. Older adults’ perceptions of online physical exercise management. Front. Public Health 2024, 12, 1303113. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Chen, V.; Chee, W.; Im, E.O. Feasibility and acceptability of a home-based virtual group exercise program in global Asian adult population: Baseline characteristics of a cohort study. Medicine 2024, 103, e38121. [Google Scholar] [CrossRef]
- Cho, G.H.; Hwangbo, G.; Shin, H.S. The Effects of Virtual Reality-based Balance Training on Balance of the Elderly. J. Phys. Ther. Sci. 2014, 26, 615–617. [Google Scholar] [CrossRef]
- Annesi, J.J.; Mazas, J. Effects of virtual reality-enhanced exercise equipment on adherence and exercise-induced feeling states. Percept. Mot. Skills 1997, 85, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; McDonough, D.J.; Gao, Z. The Effectiveness of Virtual Reality Exercise on Individual’s Physiological, Psychological and Rehabilitative Outcomes: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 4133. [Google Scholar] [CrossRef] [PubMed]
- Argent, R.; Daly, A.; Caulfield, B. Patient Involvement With Home-Based Exercise Programs: Can Connected Health Interventions Influence Adherence? JMIR Mhealth Uhealth 2018, 6, e47. [Google Scholar] [CrossRef] [PubMed]
- Dolezal, B.A.; Lau, M.; Abrazado, M.; Storer, T.W.; Cooper, C.B. Validity of two commercial grade bioelectrical impedance analyzers for measurement of body fat percentage. J. Exerc. Physiol. Online 2013, 16, 74–83. [Google Scholar]
- Pickering, T.G.; Hall, J.E.; Appel, L.J.; Falkner, B.E.; Graves, J.W.; Hill, M.N.; Jones, D.H.; Kurtz, T.; Sheps, S.G.; Roccella, E.J.; et al. Recommendations for blood pressure measurement in humans: An AHA scientific statement from the Council on High Blood Pressure Research Professional and Public Education Subcommittee. J. Clin. Hypertens. 2005, 7, 102–109. [Google Scholar] [CrossRef]
- Hu, J.; Browne, J.; Baum, J.; Robinson, A.; Arnold, M.; Reid, S.; Neufeld, E.; Dolezal, B.A. Lower limb graduated compression garments modulate autonomic nervous system and improve post-training recovery measured via heart rate variability. Int. J. Exerc. Sci. 2020, 13, 1794–1806. [Google Scholar]
- Dur, O.; Rhoades, C.; Ng, M.S.; Elsayed, R.; Mourik, R.V.; Majmudar, M.D. Design rationale and performance evaluation of the wavelet health wristband: Benchtop validation of a wrist-worn physiological signal recorder. JMIR Mhealth Uhealth 2018, 6, e11040. [Google Scholar] [CrossRef]
- Baechle, T.; Earle, R. Essentials of Strength Training and Conditioning/National Strength and Conditioning Association, 3rd ed.; Human Kinetcs: Champaign, IL, USA, 2008. [Google Scholar]
- Leard, J.S.; Cirillo, M.A.; Katsnelson, E.; Kimiatek, D.A.; Miller, T.W.; Trebincevic, K.; Garbalosa, J.C. Validity of two alternative systems for measuring vertical jump height. J. Strength Cond. Res. 2007, 21, 1296–1299. [Google Scholar]
- Harman, E.A.; Rosenstein, M.T.; Frykman, P.N.; Rosenstein, R.M.; Kraemer, W.J. Estimation of human power output from vertical jump. J. Strength Cond. Res. 1991, 5, 116–120. [Google Scholar]
- Cooper, C.B.; Storer, T.W. Exercise Testing and Interpretation: A Practical Approach; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Thompson, W.R. (Ed.) ACSM’s Guidelines for Exercise Testing and Prescription; Wolters Kluwer/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2010. [Google Scholar]
- Williams, N. The Borg Rating of Perceived Exertion (RPE) scale. Occup. Med. 2017, 67, 404–405. [Google Scholar] [CrossRef]
- Kendzierski, D.; DeCarlo, K.J. Physical Activity Enjoyment Scale: Two Validation Studies. J. Sport. Exerc. Psychol. 1991, 13, 50–64. [Google Scholar] [CrossRef]
- Brooke, J. Usability Evaluation in Industry. SUS-A Quick and Dirty Usability Scale. 1996. Available online: https://digital.ahrq.gov/sites/default/files/docs/survey/systemusabilityscale%2528sus%2529_comp%255B1%255D.pdfwebcite (accessed on 1 March 2025).
- Nour, T.Y.; Altintaş, K.H. Effect of the COVID-19 pandemic on obesity and it is risk factors: A systematic review. BMC Public Health 2023, 23, 1018. [Google Scholar] [CrossRef] [PubMed]
- Westcott, W.L. Resistance Training is Medicine: Effects of Strength Training on Health. Curr. Sports Med. Rep. 2012, 11, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Drenowatz, C.; Hand, G.A.; Sagner, M.; Shook, R.P.; Burgess, S.; Blair, S.N. The Prospective Association between Different Types of Exercise and Body Composition. Med. Sci. Sports Exerc. 2015, 47, 2535–2541. [Google Scholar] [CrossRef]
- Power, S.; Rowley, N.; Flynn, D.; Duncan, M.; Broom, D. Home-based exercise for adults with overweight or obesity: A rapid review. Obes. Res. Clin. Pract. 2022, 16, 97–105. [Google Scholar] [CrossRef]
- Han, L.; Zhao, S.; Li, S.; Gu, S.; Deng, X.; Yang, L.; Ran, J. Excess cardiovascular mortality across multiple COVID-19 waves in the United States from March 2020 to March 2022. Nat. Cardiovasc. Res. 2023, 2, 322–333. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, W.J.; Khera, A.V.; Kim, J.Y.; Yon, D.K.; Lee, S.W.; Shin, J.I.; Won, H.H. Association between adiposity and cardiovascular outcomes: An umbrella review and meta-analysis of observational and Mendelian randomization studies. Eur. Heart J. 2021, 42, 3388–3403. [Google Scholar] [CrossRef]
- Fuchs, F.D.; Whelton, P.K. High Blood Pressure and Cardiovascular Disease. Hypertension 2020, 75, 285–292. [Google Scholar] [CrossRef]
- Khan, S.S.; Ning, H.; Wilkins, J.T.; Allen, N.; Carnethon, M.; Berry, J.D.; Sweis, R.N.; Lloyd-Jones, D.M. Association of Body Mass Index With Lifetime Risk of Cardiovascular Disease and Compression of Morbidity. JAMA Cardiol. 2018, 3, 280–287. [Google Scholar] [CrossRef]
- Fang, S.C.; Wu, Y.L.; Tsai, P.S. Heart Rate Variability and Risk of All-Cause Death and Cardiovascular Events in Patients With Cardiovascular Disease: A Meta-Analysis of Cohort Studies. Biol. Res. Nurs. 2020, 22, 45–56. [Google Scholar] [CrossRef]
- Green, D.J.; Smith, K.J. Effects of Exercise on Vascular Function, Structure, and Health in Humans. Cold Spring Harb. Perspect. Med. 2018, 8, a029819. [Google Scholar] [CrossRef]
- Artero, E.G.; Lee, D.; Lavie, C.J.; España-Romero, V.; Sui, X.; Church, T.S.; Blair, S.N. Effects of Muscular Strength on Cardiovascular Risk Factors and Prognosis. J. Cardiopulm. Rehabil. Prev. 2013, 32, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Vancini, R.L.; Andrade, M.S.; Viana, R.B.; Nikolaidis, P.T.; Knechtle, B.; Campanharo, C.R.V.; de Almeida, A.A.; Gentil, P.; de Lira, C.A.B. Physical exercise and COVID-19 pandemic in PubMed: Two months of dynamics and one year of original scientific production. Sports Med. Health Sci. 2021, 3, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Michou, V.; Nikodimopoulou, M.; Liakopoulos, V.; Anifanti, M.; Tsamos, G.; Vasdeki, D.; Panayiotou, G.; Mameletzi, D.; Deligiannis, A.; Kouidi, E. Home-based tele-exercise training and physical activity during the COVID-19 pandemic in chronic kidney disease patients. J. Nephrol. 2024, 37, 1893–1901. [Google Scholar] [CrossRef] [PubMed]
- Sagarra-Romero, L.; Butragueño, J.; Gomez-Bruton, A.; Lozano-Berges, G.; Vicente-Rodríguez, G.; Morales, J.S. Effects of an online home-based exercise intervention on breast cancer survivors during COVID-19 lockdown: A feasibility study. Support. Care Cancer 2022, 30, 6287–6297. [Google Scholar] [CrossRef]
- Jeong, C.; Nam, M.; Lee, D.; Hong, J.; Yu, J.; Kim, J.; Kim, S.; Nam, Y. Randomized Controlled Trial on the Effects of Home-Based Breathing Exercises on Respiratory Function and Fatigue in COVID-19-Cured Young Patients. Healthcare 2024, 12, 1488. [Google Scholar] [CrossRef]
- Amaral, V.T.D.; Viana, A.A.; Heubel, A.D.; Linares, S.N.; Martinelli, B.; Witzler, P.H.C.; Oliveira, G.; Zanini, G.D.S.; Silva, A.B.; Mendes, R.G.; et al. Cardiovascular, Respiratory, and Functional Effects of Home-Based Exercise Training after COVID-19 Hospitalization. Med. Sci. Sports Exerc. 2022, 54, 1795–1803. [Google Scholar] [CrossRef]
- Longobardi, I.; Goessler, K.; de Oliveira Júnior, G.N.; do Prado, D.; Santos, J.V.P.; Meletti, M.M.; Oliveira de Andrade, D.C.; Gil, S.; Boza, J.; Lima, F.; et al. Effects of a 16-week home-based exercise training programme on health-related quality of life, functional capacity, and persistent symptoms in survivors of severe/critical COVID-19: A randomised controlled trial. Br. J. Sports Med. 2023, 57, 1295–1303. [Google Scholar] [CrossRef]
- Hughes, D.C.; Ellefsen, S.; Baar, K. Adaptations to Endurance and Strength Training. Cold Spring Harb. Perspect. Med. 2018, 8, a029769. [Google Scholar] [CrossRef]
- Rhodes, R.E.; Sui, W. Physical Activity Maintenance: A Critical Narrative Review and Directions for Future Research. Front. Psychol. 2021, 12, 725671. [Google Scholar] [CrossRef]
- Glynn, L.G.; Hayes, P.S.; Casey, M.; Glynn, F.; Alvarez-Iglesias, A.; Newell, J.; ÓLaighin, G.; Heaney, D.; O’Donnell, M.; Murphy, A.W. Effectiveness of a smartphone application to promote physical activity in primary care: The SMART MOVE randomised controlled trial. Br. J. Gen. Pract. 2014, 64, e384–e391. [Google Scholar] [CrossRef]
- Jakicic, J.M.; Winters, C.; Lang, W.; Wing, R.R. Effects of Intermittent Exercise and Use of Home Exercise Equipment on Adherence, Weight Loss, and Fitness in Overweight Women: A Randomized Trial. JAMA 1999, 282, 1554–1560. [Google Scholar] [CrossRef] [PubMed]
- Collado-Mateo, D.; Lavín-Pérez, A.M.; Peñacoba, C.; Del Coso, J.; Leyton-Román, M.; Luque-Casado, A.; Gasque, P.; Fernández-del-Olmo, M.Á.; Amado-Alonso, D. Key Factors Associated with Adherence to Physical Exercise in Patients with Chronic Diseases and Older Adults: An Umbrella Review. Int. J. Environ. Res. Public Health 2021, 18, 2023. [Google Scholar] [CrossRef] [PubMed]
- Lang, S.; McLelland, C.; MacDonald, D.; Hamilton, D.F. Do digital interventions increase adherence to home exercise rehabilitation? A systematic review of randomised controlled trials. Arch. Physiother. 2022, 12, 24. [Google Scholar] [CrossRef] [PubMed]
- Albers, N.; Hizli, B.; Scheltinga, B.L. l Meijer, E.; Brinkman, W.P. Setting Physical Activity Goals with a Virtual Coach: Vicarious Experiences, Personalization and Acceptance. J. Med. Syst. 2023, 47, 15. [Google Scholar] [CrossRef] [PubMed]
Measures | N = 3 | ||||
---|---|---|---|---|---|
Baseline−Yr 0 | Yrs 1–2 | Yrs 2–3 | Yrs 3–4 | Yrs 4–5 | |
Anthropometric | |||||
Height (cm) | 175 (2.1) | - | - | - | - |
Body mass (kg) | 84.1 (2.2) | 81.9 (7.1) | 81.5 (6.3) | 81.5 (5.4) | 82.9 (7.0) |
Body fat (%) | 28.7 (2.9) | 20.4 (2.2) | 18.6 (2.8) | 16.1 (2.5) | 15.5 (2.2) |
Fat mass (kg) | 24.1 (3.4) | 16.8 (3.4) | 15.2 (2.8) | 13.0 (2.4) | 12.8 (2.2) |
Fat-free mass (kg) | 60.0 (2.4) | 65.2 (2.8) | 66.3 (1.2) | 68.5 (2.8) | 70.1 (2.8) |
Fitness | |||||
CP 1-RM (kg) | 51.4 (7.5) | 65.7 (9.0) | 82.5 (7.8) | 95.8 (8.1) | 104.5 (9.8) |
SP 1-RM (kg) | 54.7 (9.7) | 88.2 (17.2) | 99.8 (13.5) | 126.5 (12.8) | 148.5 (9.8) |
CP 85% 1-RM (reps) | 3.2 (0.8) | 5.8 (1.9) | 6.9 (1.7) | 7.6 (2.3) | 9.5 (1.5) |
SP 85% 1-RM (reps) | 4.1 (2.6) | 7.2 (2.1) | 9.9 (3.4) | 10.8 (4.8) | 12.3 (4.2) |
Leg powerpeak (W) | 1655 (175) | 2466 (331) | 2950 (187) | 3122 (220) | 3345 (430) |
VO2 max (L/min) | 2.83 (0.79) | 3.21 (0.52) | 3.36 (0.49) | 3.60 (1.02) | 3.98 (0.88) |
rVO2 max (mL/min/kg) | 33.65 (3.52) | 39.19 (2.54) | 41.22 (2.10) | 44.17 (2.4) | 48.01 (4.76) |
* Sit-in-reach (cm) | 34.3 (4.1) | 38.5 (5.1) | 39.8 (3.1) | 42.4 (6.7) | 46.5 (6.8) |
Cardiometabolic | |||||
Systolic-BP (mmHg) | 128.9 (2.7) | 125.2 (3.1) | 123.5 (1.4) | 122.0 (3.6) | 120.4 (4.3) |
Diastolic-BP (mmHg) | 83.4 (2.3) | 81.7 (2.5) | 80.4 (1.6) | 80.1 (2.4) | 79.5 (2.3) |
Resting Heart Rate (bpm) | 78.5 (2.3) | 75.1 (2.0) | 74.4 (1.6) | 74.0 (2.9) | 72.2 (1.8) |
RMR (kcal) | 1785 (199) | 2130 (125) | 2250 (185) | 2290 (225) | 2310 (350) |
HRV-rMSSD (ms) | 32.8 (2.7) | 43.3 (5.6) | 49.8 (4.5) | 59.8 (6.8) | 65.8 (6.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.H.; Yamamoto, T.; Cho, D.; Nguyen, T.L.; Goldman, P.; Dolezal, B.A. Five Years Later—The Impact of the COVID-19 Pandemic on Physical Performance and Cardiometabolic Health Using a Smart Home Gym: An Ecological Case Study. Int. J. Environ. Res. Public Health 2025, 22, 762. https://doi.org/10.3390/ijerph22050762
Nguyen TH, Yamamoto T, Cho D, Nguyen TL, Goldman P, Dolezal BA. Five Years Later—The Impact of the COVID-19 Pandemic on Physical Performance and Cardiometabolic Health Using a Smart Home Gym: An Ecological Case Study. International Journal of Environmental Research and Public Health. 2025; 22(5):762. https://doi.org/10.3390/ijerph22050762
Chicago/Turabian StyleNguyen, Thalia H., Trent Yamamoto, Dylan Cho, Trevor L. Nguyen, Phillip Goldman, and Brett A. Dolezal. 2025. "Five Years Later—The Impact of the COVID-19 Pandemic on Physical Performance and Cardiometabolic Health Using a Smart Home Gym: An Ecological Case Study" International Journal of Environmental Research and Public Health 22, no. 5: 762. https://doi.org/10.3390/ijerph22050762
APA StyleNguyen, T. H., Yamamoto, T., Cho, D., Nguyen, T. L., Goldman, P., & Dolezal, B. A. (2025). Five Years Later—The Impact of the COVID-19 Pandemic on Physical Performance and Cardiometabolic Health Using a Smart Home Gym: An Ecological Case Study. International Journal of Environmental Research and Public Health, 22(5), 762. https://doi.org/10.3390/ijerph22050762