HIV Viral Re-Suppression on Second-Line ART in Southern Zimbabwe
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Realisation of the Sample
3.2. Characteristics of Study Participants
3.3. Viral Suppression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dube, V. BCC Clarifies Misleading City HIV Statistics. Sunday News. 2024. Available online: https://www.heraldonline.co.zw/bcc-clarifies-misleading-city-hiv-statistics/ (accessed on 28 April 2025).
- WHO Zimbabwe Scores Gains in HIV Control. WHO|Regional Office for Africa. 2024. Available online: https://www.afro.who.int/countries/zimbabwe/news/zimbabwe-scores-gains-hiv-control (accessed on 10 April 2025).
- UNAIDS. Zimbabwe. 2024. Available online: https://www.unaids.org/en/regionscountries/countries/zimbabwe (accessed on 11 April 2025).
- ZIMPHIA (Zimbabwe Population-Based HIV Impact Assessment). Zimbabwe Summary Sheet. PHIA Project. 2020. Available online: https://phia.icap.columbia.edu/zimbabwe-2020-summary-sheet/#:~:text=The%20Zimbabwe%20Population-based%20HIV%20Impact%20Assessment%20%28ZIMPHIA%202020%29 (accessed on 14 September 2021).
- Chimbetete, C.; Shamu, T.; Keiser, O. Zimbabwe’s national third-line antiretroviral therapy program: Cohort description and treatment outcomes. PLoS ONE 2020, 15, e0228601. [Google Scholar] [CrossRef]
- Wilhelmson, S.; Reepalu, A.; Tolera Balcha, T.; Jarso, G.; Björkman, P. Retention in care among HIV-positive patients initiating second-line antiretroviral therapy: A retrospective study from an Ethiopian public hospital clinic. Glob. Health Action 2016, 9, 29943. [Google Scholar] [CrossRef] [PubMed]
- Garone, D.B.; Conradie, K.; Patten, G.; Cornell, M.; Goemaere, W.; Kunene, J.; Kerschberger, B.; Ford, N.; Boulle, A.; Van Cutsem, G. High Rate of Virological Re-Suppression among Patients Failing Second-Line Antiretroviral Therapy following Enhanced Adherence Support: A Model of Care in Khayelitsha, South Africa. S. Afr. J. HIV Med. 2013, 14, 170–176. Available online: https://sajhivmed.org.za/index.php/hivmed/article/view/52/74 (accessed on 12 October 2021). [CrossRef]
- Nsanzimana, S.; Semakula, M.; Ndahindwa, V.; Remera, E.; Sebuhoro, D.; Uwizihiwe, J.P.; Ford, N.; Tanner, M.; Kanters, S.; Mills, E.J.; et al. Retention in care and virological failure among adult HIV+ patients on second-line ART in Rwanda: A national representative study. BMC Infect. Dis. 2019, 19, 312. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Retention in HIV Programmes: Defining the Challenges and Identifying Solutions; WHO: Geneva, Switzerland, 2011; Available online: https://iris.who.int/bitstream/handle/10665/44878/9789241503686_eng.pdf?sequence=1&isAllowed=y (accessed on 15 September 2021).
- Yehia, B.R.; Stephens-Shields, A.J.; Fleishman, J.A.; Berry, S.A.; Agwu, A.L.; Metlay, J.P.; Moore, R.D.; Christopher Mathews, W.; Nijhawan, A.; Rutstein, R.; et al. The HIV care continuum: Changes over time in retention in care and viral suppression. PLoS ONE 2015, 10, e0129376. [Google Scholar] [CrossRef]
- Makurumidze, R.; Mutasa-Apollo, T.; Decroo, T.; Choto, R.C.; Takarinda, K.C.; Dzangare, J.; Lynen, L.; Van Damme, W.; Hakim, J.; Magure, T.; et al. Retention and predictors of attrition among patients who started antiretroviral therapy in Zimbabwe’s national antiretroviral therapy programme between 2012 and 2015. PLoS ONE 2020, 15, e0222309. [Google Scholar] [CrossRef]
- Gupta-Wright, A.; Fielding, K.; van Oosterhout, J.J.; Alufandika, M.; Grint, D.J.; Chimbayo, E.; Heaney, J.; Byott, M.; Nastouli, E.; Mwandumba, H.C.; et al. Virological failure, HIV-1 drug resistance, and early mortality in adults admitted to hospital in Malawi: An observational cohort study. Lancet HIV 2020, 7, e620–e628. [Google Scholar] [CrossRef] [PubMed]
- Goverwa-Sibanda, T.P.; Mupanguri, C.; Timire, C.; Harries, A.D.; Ngwenya, S.; Chikwati, E.; Mapfuma, C.; Mushambi, F.; Tweya, H.; Ndlovu, M. Hepatitis B infection in people living with HIV who initiate antiretroviral therapy in Zimbabwe. Public Health Action 2020, 10, 97–103. [Google Scholar] [CrossRef]
- MOH (Ministry of Health), Zimbabwe. The Operational and Service Delivery Manual for the Prevention, Care and Treatment of HIV in Zimbabwe (OSDM) & Job Aide. 2017. Available online: https://www.ophid.org/treat-all-toolkit/MOHCC%20Guidelines/MOHCC%20Zimbabwe%20OSDM%202017.pdf (accessed on 8 July 2022).
- MOH (Ministry of Health), Zimbabwe. Guidelines for Antiretroviral Therapy for the Prevention and Treatment of HIV in Zimbabwe. 2016. Available online: https://depts.washington.edu/edgh/zw/vl/project-resources/ZIM_ART_Guidelines_2016_-_review_final.pdf (accessed on 16 September 2021).
- Musuka, G.; Dzinamarira, T. Targeting Those Left Behind in Zimbabwe’s HIV Response: A Call for Decriminalisation of Key Populations to Rapidly Achieve 95-95-95 Targets. 2021. Available online: https://icap.columbia.edu/tools_resources/targeting-those-left-behind-in-zimbabwes-hiv-response-a-call-for-decriminalisation-of-key-populations-to-rapidly-achieve-95-95-95-targets/ (accessed on 17 July 2023).
- Melak, D.; Wedajo, S.; Dewau, R. Time to Viral Re-suppression and Its Predictors among Adults on Second-Line Antiretroviral Therapy in South Wollo Zone Public Hospitals: Stratified Cox Model. HIV/AIDS-Res. Palliat. Care 2023, 15, 411–421. [Google Scholar] [CrossRef]
- Gumede, S.B.; Venter, F.; de Wit, J.; Wensing, A.; Lalla-Edward, S.T. Antiretroviral therapy uptake and predictors of virological failure in patients with HIV receiving first-line and second-line regimens in Johannesburg, South Africa: A retrospective cohort data analysis. BMJ Open 2022, 12, e054019. [Google Scholar] [CrossRef]
- Ramadhani, H.O.; Bartlett, J.A.; Thielman, N.M.; Pence, B.W.; Kimani, S.M.; Maro, V.P.; Mwako, M.S.; Masaki, L.J.; Mmbando, C.E.; Minja, M.G.; et al. Association of first-line and second-line antiretroviral therapy adherence. Open Forum Infect. Dis. 2014, 1, ofu079. [Google Scholar] [CrossRef]
- Kahabuka, M.S.; Woldeamanuel, Y.; Mbelele, P.M.; Mpolya, E.A.; Mpagama, S.G.; Kessy, J.P.; Manyazewal, T. HIV viral suppression and risk of viral rebound in patients on antiretroviral therapy: A two-year retrospective cohort study in Northern Tanzania. BMC Infect. Dis. 2024, 24, 390. [Google Scholar] [CrossRef]
- National Institute of Health. Plasma HIV-1 RNA (Viral Load) and CD4 Count Monitoring|NIH. 2022. Available online: https://clinicalinfo.hiv.gov/en/guidelines/hiv-clinical-guidelines-adult-and-adolescent-arv/plasma-hiv-1-rna-cd4-monitoring (accessed on 17 May 2023).
- WHO. Guideline on When to Start Antiretroviral Therapy and on Pre-Exposure Prophylaxis for HIV. 2015. Available online: https://www.who.int/publications/i/item/9789241509565 (accessed on 12 April 2025).
- Edessa, D.; Sisay, M.; Asefa, F. Second-line HIV treatment failure in sub-Saharan Africa: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0220159. [Google Scholar] [CrossRef] [PubMed]
- Okonji, E.F.; Van Wyk, B.; Mukumbang, F.C.; Hughes, G.D. Determinants of viral suppression among adolescents on antiretroviral treatment in Ehlanzeni district, South Africa: A cross-sectional analysis. AIDS Res. Ther. 2021, 18, 66. [Google Scholar] [CrossRef] [PubMed]
- Hailu, G.G.; Hagos, D.G.; Hagos, A.K.; Wasihun, A.G.; Dejene, T.A. Virological and immunological failure of HAART and associated risk factors among adults and adolescents in the Tigray region of Northern Ethiopia. PLoS ONE 2018, 13, e0196259. [Google Scholar] [CrossRef]
- Blank, A.E.; Fletcher, J.; Verdecias, N.; Garcia, I.; Blackstock, O.; Cunningham, C. Factors associated with retention and viral suppression among a cohort of HIV+ women of color. AIDS Patient Care STDs 2015, 29, S27–S35. [Google Scholar] [CrossRef]
- Mwangi, A.; van Wyk, B. Factors associated with viral suppression among adolescents on antiretroviral therapy in Homa Bay County, Kenya: A retrospective cross-sectional study. HIV/AIDS-Res. Palliat. Care 2021, 13, 1111–1118. [Google Scholar] [CrossRef] [PubMed]
- Ssempijja, V.; Nakigozi, G.; Chang, L.; Gray, R.; Wawer, M.; Ndyanabo, A.; Kasule, J.; Serwadda, D.; Castelnuovo, B.; Hoog, A.V.T.; et al. Rates of switching to second-line antiretroviral therapy and impact of delayed switching on immunologic, virologic, and mortality outcomes among HIV-infected adults with virologic failure in Rakai, Uganda. BMC Infect. Dis. 2017, 17, 582. [Google Scholar] [CrossRef]
- Wendie, T.F.; Workneh, B.D. Prevalence and predictors of virological failure among adults living with HIV in South Wollo Zone, Northeast Ethiopia: A retrospective cohort study. HIV/AIDS-Res. Palliat. Care 2020, 12, 393–402. [Google Scholar] [CrossRef]
- Wedajo, S.; Degu, G.; Deribew, A.; Ambaw, F. Rate of viral re-suppression and retention to care among PLHIV on second-line antiretroviral therapy at Dessie comprehensive specialized hospital, Northeast Ethiopia: A retrospective cohort study. HIV/AIDS-Res. Palliat. Care 2021, 13, 877–887. [Google Scholar] [CrossRef]
- Apollo, T.; Takarinda, K.C.; Phillips, A.; Ndhlovu, C.; Cowan, F.M. Provision of HIV viral load testing services in Zimbabwe: Secondary data analyses using data from health facilities using the electronic Patient Monitoring System. PLoS ONE 2021, 16, e0245720. [Google Scholar] [CrossRef] [PubMed]
- Maskew, M.; Sharpey-Schafer, K.; De Voux, L.; Crompton, T.; Bor, J.; Rennick, M.; Chirowodza, A.; Miot, J.; Molefi, S.; Onaga, C.; et al. Applying machine learning and predictive modeling to retention and viral suppression in South African HIV treatment cohorts. Sci. Rep. 2022, 12, 12715. [Google Scholar] [CrossRef] [PubMed]
Categories | Viral Load (in Copies RNA/mL) | p-Value | ||||
---|---|---|---|---|---|---|
<1000 | ≥1000 | |||||
N | n | % | n | % | ||
Total | 315 | 216 | 68.6 | 99 | 31.4 | |
Gender | 0.687 | |||||
Female | 158 | 110 | 69.6 | 48 | 30.4 | |
Male | 157 | 106 | 67.5 | 51 | 32.5 | |
Age (in years) | 0.841 | |||||
Child (<15) | 22 | 17 | 77.3 | 5 | 22.7 | |
Adolescent (15–19) | 41 | 28 | 68.3 | 13 | 31.7 | |
Young Adult (20–24) | 56 | 38 | 67.9 | 18 | 32.1 | |
Adult (>24) | 196 | 133 | 67.9 | 63 | 32.1 | |
Marital status (>18 years) | 0.110 | |||||
Married | 79 | 57 | 72.2 | 22 | 27.8 | |
Single | 173 | 114 | 65.9 | 59 | 34.1 | |
Separated | 10 | 4 | 40.0 | 6 | 60.0 | |
Divorced | 10 | 9 | 90.0 | 1 | 10.0 | |
Educational status | 0.637 | |||||
No education | 96 | 69 | 71.9 | 27 | 28.1 | |
Primary | 63 | 45 | 71.4 | 18 | 28.6 | |
Secondary | 139 | 90 | 64.7 | 49 | 35.3 | |
Tertiary | 17 | 12 | 70.6 | 5 | 29.4 | |
Employment status (>18 years) | 0.512 | |||||
Employed | 47 | 34 | 72.3 | 13 | 27.7 | |
Unemployed | 225 | 150 | 66.7 | 75 | 33.3 | |
WHO clinical stage | 0.091 | |||||
I & II | 143 | 105 | 73.4 | 38 | 26.6 | |
III & IV | 172 | 111 | 64.5 | 61 | 35.5 | |
EAC sessions | 0.010 * | |||||
3–6 | 204 | 150 | 73.5 | 54 | 26.5 | |
>6 | 111 | 66 | 59.5 | 45 | 40.5 | |
Baseline CD4 count (cells/µL) | 0.039 * | |||||
≤200 | 102 | 62 | 60.8 | 40 | 39.2 | |
>200 | 213 | 154 | 72.3 | 59 | 27.7 | |
Viral load at switch (copies/mL) | 0.046 * | |||||
≤5000 | 87 | 67 | 77.0 | 20 | 23.0 | |
>5000 | 228 | 149 | 65.4 | 79 | 34.6 | |
First-line drug substitution history | 0.143 | |||||
Yes | 140 | 90 | 64.3 | 50 | 35.7 | |
No | 175 | 126 | 72.0 | 49 | 28.0 | |
First-line drugs | 0.527 | |||||
ABC/3TC/EFV | 7 | 4 | 57.1 | 3 | 42.9 | |
ABC/3TC/NVP | 9 | 4 | 44.4 | 5 | 55.6 | |
AZT/3TC/EFV | 9 | 7 | 77.8 | 2 | 22.2 | |
AZT/3TC/NVP | 62 | 48 | 77.4 | 14 | 22.6 | |
D4T/3TC/EFV | 5 | 3 | 60.0 | 2 | 40.0 | |
D4T/3TC/NVP | 152 | 104 | 68.4 | 48 | 31.6 | |
TDF/3TC/EFV | 60 | 39 | 65.0 | 21 | 35.0 | |
TDF/3TC/NVP | 11 | 7 | 63.6 | 4 | 36.4 | |
Second-line drugs | 0.093 | |||||
ABC/3TC/ATZ/rtv | 81 | 52 | 64.2 | 29 | 35.8 | |
ABC/3TC/DTG | 4 | 2 | 50.0 | 2 | 50.0 | |
ABC/3TC/LOP/rtv | 40 | 30 | 75.0 | 10 | 25.0 | |
AZT/3TC/ATZ/rtv | 64 | 42 | 65.6 | 22 | 34.4 | |
AZT/3TC/DTG | 3 | 0 | 0.0 | 3 | 100.0 | |
AZT/3TC/LOP/rtv | 11 | 7 | 63.6 | 4 | 36.4 | |
AZT/3TC/NVP | 3 | 2 | 66.7 | 1 | 33.3 | |
D4T/3TC/LOP/rtv | 1 | 1 | 100.0 | 0 | 0.0 | |
TDF/3TC/ATZ/rtv | 67 | 52 | 77.6 | 15 | 22.4 | |
TDF/3TC/DTG | 22 | 12 | 54.5 | 10 | 45.5 | |
TDF/3TC/LOP/rtv | 19 | 16 | 84.2 | 3 | 15.8 | |
Duration on first-line ART (in years) | 0.005 * | |||||
≤5 | 145 | 111 | 76.6 | 34 | 23.4 | |
>5 | 170 | 105 | 61.8 | 65 | 38.2 | |
History of non-adherence | <0.001 * | |||||
Yes | 180 | 100 | 55.6 | 80 | 44.4 | |
No | 135 | 116 | 85.9 | 19 | 14.1 | |
Body Mass Index (kg/m2) | 0.085 | |||||
≥18.5 | 233 | 166 | 71.2 | 67 | 28.8 | |
<18.5 | 82 | 50 | 61.0 | 32 | 39.0 | |
Time between failure and drug switch (months) | <0.001 * | |||||
3–12 | 125 | 109 | 87.2 | 16 | 12.8 | |
>12 | 190 | 107 | 56.3 | 83 | 43.7 | |
Retention in care | <0.001 * | |||||
Yes | 263 | 195 | 74.1 | 68 | 25.9 | |
No | 52 | 21 | 40.4 | 31 | 59.6 |
Categories | Crude OR | 95% CI | Adjusted OR | 95% CI |
---|---|---|---|---|
EAC sessions | ||||
>6 | 1 | - | 1 | - |
3–6 | 1.89 | 1.16–3.09 | 1.63 | 0.89–2.97 |
Baseline CD4 count (cells/µL) | ||||
≤200 | 1 | - | 1 | - |
>200 | 1.68 | 1.02–2.77 | 1.94 | 1.04–3.60 |
Viral load at switch (copies/mL) | ||||
>5000 | 1 | - | 1 | - |
≤5000 | 1.77 | 1.00–3.13 | 1.13 | 0.56–2.29 |
Duration on first-line ART (in years) | ||||
≥5 | 1 | - | 1 | - |
<5 | 2.02 | 1.23–3.31 | 1.04 | 0.56–1.93 |
History of non-adherence | ||||
Yes | 1 | - | 1 | - |
No | 4.88 | 2.77–8.61 | 3.88 | 1.91–7.85 |
Time between failure and drug switch (in months) | ||||
>12 | 1 | - | 1 | - |
3–12 | 5.28 | 2.90–9.60 | 4.13 | 1.98–8.60 |
Retention in care | ||||
No | 1 | - | 1 | - |
Yes | 6.30 | 2.84–13.99 | 6.35 | 2.56–15.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musomekwa, K.; van Wyk, B. HIV Viral Re-Suppression on Second-Line ART in Southern Zimbabwe. Int. J. Environ. Res. Public Health 2025, 22, 730. https://doi.org/10.3390/ijerph22050730
Musomekwa K, van Wyk B. HIV Viral Re-Suppression on Second-Line ART in Southern Zimbabwe. International Journal of Environmental Research and Public Health. 2025; 22(5):730. https://doi.org/10.3390/ijerph22050730
Chicago/Turabian StyleMusomekwa, Kudakwashe, and Brian van Wyk. 2025. "HIV Viral Re-Suppression on Second-Line ART in Southern Zimbabwe" International Journal of Environmental Research and Public Health 22, no. 5: 730. https://doi.org/10.3390/ijerph22050730
APA StyleMusomekwa, K., & van Wyk, B. (2025). HIV Viral Re-Suppression on Second-Line ART in Southern Zimbabwe. International Journal of Environmental Research and Public Health, 22(5), 730. https://doi.org/10.3390/ijerph22050730