Associations Between Youth Sport Participation and Bone, Muscle, and Fat in Adulthood: Iowa Bone Development Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Exposures
2.3. Outcomes
2.4. Other Variables
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
BMC | Bone mineral content |
BMI | Body mass index |
CT | Computed tomography |
DXA | Dual-energy X-ray absorptiometry |
FEA | Finite element analysis |
FMI | Fat mass index |
IBDS | Iowa Bone Development Study |
LMI | Lean mass index |
MVPA | Moderate- and vigorous-intensity physical activity |
NYSS | National Youth Sports Strategy |
PAQ | Physical Activity Questionnaire |
SD | Standard deviation |
References
- Welk, G.; Janz, K.; Laurson, K.; Mahar, M.; Zhu, W.; Pavlovic, A. Development of criterion-referenced standards for musculoskeletal fitness in youth: Considerations and approaches by the FitnessGram Scientific Advisory Board. Meas. Phys. Educ. Exerc. Sci. 2022, 26, 276–288. [Google Scholar] [CrossRef]
- Xue, S.; Kemal, O.; Lu, M.; Lix, L.M.; Leslie, W.D.; Yang, S. Age at attainment of peak bone mineral density and its associated factors: The National Health and Nutrition Examination Survey 2005–2014. Bone 2020, 131, 115163. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, E.; Rosengren, B.E.; Karlsson, M.K. Does peak bone mass correlate with peak bone strength? Cross-sectional normative dual energy X-ray absorptiometry data in 1052 men aged 18–28 years. BMC Musculoskelet. Disord. 2019, 20, 404. [Google Scholar] [CrossRef] [PubMed]
- Reid, K.F.; Fielding, R.A. Skeletal muscle power: A critical determinant of physical functioning in older adults. Exerc. Sport Sci. Rev. 2012, 40, 4–12. [Google Scholar] [CrossRef]
- Dulloo, A.G.; Bosy-Westphal, A.; Muller, M.J. Diagnosis of obesity based on body composition-associated health risks—Time for a change in paradigm. Obes. Rev. 2021, 22, e13190. [Google Scholar] [CrossRef]
- Stephen, W.C.; Janssen, I. Sarcopenic-obesity and cardiovascular disease risk in the elderly. J. Nutr. Health Aging 2009, 13, 460–466. [Google Scholar] [CrossRef]
- Zamboni, M.; Mazzali, G.; Fantin, F.; Rossi, A.; Di Francesco, V. Sarcopenic obesity: A new category of obesity in the elderly. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 388–395. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, S.-Y.; Kim, D.-I. Association of muscle strength and body mass index with risk factors for metabolic syndrome and its prevalence in Korean adult women. BMC Public Health 2022, 22, 2060. [Google Scholar] [CrossRef]
- Kim, Y.H.; So, W.-Y. A low arm and leg muscle mass to total body weight ratio is associated with an increased prevalence of metabolic syndrome: The Korea National Health and Nutrition Examination Survey 2010–2011. Technol. Health Care 2016, 24, 655–663. [Google Scholar] [CrossRef]
- Kim, S.; Valdez, R. Metabolic risk factors in U.S. youth with low relative muscle mass. Obes. Res. Clin. Pract. 2015, 9, 125–132. [Google Scholar] [CrossRef]
- Peterson, M.D.; Zhang, P.; Saltarelli, W.A.; Visich, P.S.; Gordon, P.M. Low Muscle Strength Thresholds for the Detection of Cardiometabolic Risk in Adolescents. Am. J. Prev. Med. 2016, 50, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Park, Y.S. Low muscle mass is associated with metabolic syndrome in Korean adolescents: The Korea National Health and Nutrition Examination Survey 2009–2011. Nutr. Res. 2016, 36, 1423–1428. [Google Scholar] [CrossRef] [PubMed]
- Zembura, M.; Matusik, P. Sarcopenic Obesity in Children and Adolescents: A Systematic Review. Front. Endocrinol. 2022, 13, 914740. [Google Scholar] [CrossRef] [PubMed]
- Armas, L.A.G.; Lappe, J.M.; Heaney, R.P. Calcium, Bone Strength and Fractures, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 235–241. [Google Scholar]
- Seeman, E.; Delmas, P.D. Bone Quality—The Material and Structural Basis of Bone Strength and Fragility. N. Engl. J. Med. 2006, 354, 2250–2261. [Google Scholar] [CrossRef]
- Friedman, A.W. Important Determinants of Bone Strength: Beyond Bone Mineral Density. J. Clin. Rheumatol. 2006, 12, 70–77. [Google Scholar] [CrossRef]
- Ott, S.M. Bone strength: More than just bone density. Kidney Int. 2016, 89, 16–19. [Google Scholar] [CrossRef]
- Nelson, M.C.; Story, M.; Larson, N.I.; Neumark-Sztainer, D.; Lytle, L.A. Emerging adulthood and college-aged youth: An overlooked age for weight-related behavior change. Obesity 2008, 16, 2205–2211. [Google Scholar] [CrossRef]
- Gordon-Larsen, P.; The, N.S.; Adair, L.S. Longitudinal trends in obesity in the United States from adolescence to the third decade of life. Obesity 2010, 18, 1801–1804. [Google Scholar] [CrossRef]
- Harris, K.M.; Perreira, K.M.; Lee, D. Obesity in the transition to adulthood: Predictions across race/ethnicity, immigrant generation, and sex. Arch. Pediatr. Adolesc. Med. 2009, 163, 1022–1028. [Google Scholar] [CrossRef]
- Gordon-Larsen, P.; Adair, L.S.; Nelson, M.C.; Popkin, B.M. Five-year obesity incidence in the transition period between adolescence and adulthood: The National Longitudinal Study of Adolescent Health. Am. J. Clin. Nutr. 2004, 80, 569–575. Available online: https://www.sciencedirect.com/science/article/pii/S0002916522035638 (accessed on 13 November 2023). [CrossRef]
- Williamson, D.F. The 10-year incidence of overweight and major weight gain in US adults. AMA Arch. Intern. Med. 1990, 150, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Katsoulis, M.; Lai, A.G.; Diaz-Ordaz, K.; Gomes, M.; Pasea, L.; Banerjee, A.; Denaxas, S.; Tsilidis, K.; Lagiou, P.; Misirli, G.; et al. Identifying adults at high-risk for change in weight and BMI in England: A longitudinal, large-scale, population-based cohort study using electronic health records. Lancet Diabet Endocrinol. 2021, 9, 681–694. [Google Scholar] [CrossRef] [PubMed]
- Logan, K.; Lloyd, R.S.; Schafer-Kalkhoff, T.; Khoury, J.C.; Ehrlich, S.; Dolan, L.M.; Schafer-Kalkhoff, T.; Khoury, J.C.; Ehrlich, S.; Dolan, L.M.; et al. Youth sports participation and health status in early adulthood: A 12-year follow-up. Prev. Med. Rep. 2020, 19, 101107. [Google Scholar] [CrossRef]
- Zymbal, V.; Baptista, F.; Letuchy, E.M.; Janz, K.F.; Levy, S.M. Mediating effect of muscle on the relationship of physical activity and bone. Med. Sci. Sports Exerc. 2019, 51, 202–210. [Google Scholar] [CrossRef]
- Pashkova, A.; Hartman, J.M.; Letuchy, E.M.; Janz, K.F. Interscholastic Athletics and Bone Strength: The Iowa Bone Development Study. J. Strength Cond. Res. 2022, 36, 1271–1276. [Google Scholar] [CrossRef]
- Kwon, S.; Janz, K.; Letuchy, E.; Burns, T.; Levy, S. Active lifestyle in childhood and adolescence prevents obesity development in young adulthood: Iowa Bone Development Study. Obesity 2015, 23, 2462–2469. [Google Scholar] [CrossRef]
- Guddal, M.H.; Stensland, S.O.; Smastuen, M.C.; Johnsen, M.B.; Heuch, I.; Zwart, J.-A.; Storheim, K. Obesity in Young Adulthood: The role of physical activity level, musculoskeletal pain, and psychological distress inaAdolescence (The HUNT-Study). Int. J. Environ. Res. Public Health 2020, 17, 4603. [Google Scholar] [CrossRef]
- McVeigh, J.A.; Howie, E.K.; Zhu, K.; Walsh, J.P.; Straker, L. Organized Sport Participation From Childhood to Adolescence Is Associated With Bone Mass in Young Adults From the Raine Study. J. Bone Miner. Res. 2019, 34, 67–74. [Google Scholar] [CrossRef]
- Ramires, V.V.; Dumith, S.C.; Wehrmeister, F.C.; Hallal, P.C.; Menezes, A.M.; Gonçalves, H. Physical activity throughout adolescence and body composition at 18 years: 1993 Pelotas (Brazil) birth cohort study. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 105. [Google Scholar] [CrossRef]
- Hart, N.H.; Nimphius, S.; Rantalainen, T.; Ireland, A.; Siafarikas, A.; Newton, R.U. Mechanical basis of bone strength: Influence of bone material, bone structure and muscle action. J. Musculoskelet. Neuronal Interact. 2017, 17, 114–139. [Google Scholar]
- Levy, S.M.; Kiritsy, M.C.; Slager, S.L.; Warren, J.J. Patterns of dietary fluoride supplement use during infancy. J. Public Health Dent. 1998, 58, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Janz, K.F.; Burns, T.L.; Levy, S.M.; Iowa Bone Development Study. Tracking of activity and sedentary behaviors in childhood: The Iowa Bone Development Study. Am. J. Prev. Med. 2005, 29, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Janz, K.F.; Kwon, S.; Letuchy, E.M.; Eichenberger Gilmore, J.M.; Burns, T.L.; Torner, J.C.; Levy, S.M.; Lytle, L.A. Sustained effect of early physical activity on body fat mass in older children. Am. J. Prev. Med. 2009, 37, 35–40. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services. National Youth Sports Strategy; Department of Health and Human Services; U.S. Department of Health and Human Services: Washington, DC, USA, 2019. Available online: https://health.gov/sites/default/files/2019-10/National_Youth_Sports_Strategy.pdf (accessed on 13 November 2023).
- Kwon, S.; Letuchy, E.M.; Levy, S.M.; Janz, K.F. Youth Sports Participation Is More Important among Females than Males for Predicting Physical Activity in Early Adulthood: Iowa Bone Development Study. Int. J. Environ. Res. Public Health 2021, 18, 1328. [Google Scholar] [CrossRef]
- Kwon, S.; Janz, K.; Letuchy, E.; Trudy, B.; Steven, L. Developmental trajectories of physical activity, sports, and television viewing during childhood to young adulthood. JAMA Pediatr. 2015, 169, 666–672. [Google Scholar] [CrossRef]
- Kowlaski, K.; Crocker, P.; Faulkner, R. Validation of the physical activity questionnaire for older children. Pediatr. Exerc. Sci. 2007, 9, 174–186. [Google Scholar] [CrossRef]
- Kowlaski, K.; Crocker, P.; Kowlaski, N. Convergent validity of the physical activity questionnaire for adolescents. Pediatr. Exerc. Sci. 1997, 9, 342–352. [Google Scholar] [CrossRef]
- Nagin, D.; Odgers, C. Group-based trajectory modeling in clinical research. Annu. Rev. Clin. Psychol. 2010, 6, 109–138. [Google Scholar] [CrossRef]
- Nilsson, M.; Ohlsson, C.; Mellström, D.; Lorentzon, M. Sport-specific association between exercise loading and the density, geometry, and microstructure of weight-bearing bone in young adult men. Osteoporos. Int. 2013, 24, 1613–1622. [Google Scholar] [CrossRef]
- Nikander, R.; Sievänen, H.; Heinonen, A.; Daly, R.M.; Uusi-Rasi, K.; Kannus, P. Targeted exercise against osteoporosis: A systematic review and meta-analysis for optimising bone strength throughout life. BMC Med. 2010, 8, 47. [Google Scholar] [CrossRef]
- Ward, R.C.; Janz, K.F.; Letuchy, E.M.; Peterson, C.; Levy, S.M. Contribution of High School Sport Participation to Young Adult Bone Strength. Med. Sci. Sports Exerc. 2018, 51, 1064. [Google Scholar] [CrossRef] [PubMed]
- Messina, C.; Albano, D.; Gitto, S.; Tofanelli, L.; Bazzocchi, A.; Ulivieri, F.M.; Gitto, S.; Tofanelli, L.; Bazzocchi, A.; Ulivieri, F.M.; et al. Body composition with dual energy X-ray absorptiometry: From basics to new tools. Quant. Imaging Med. Surg. 2020, 10, 1687–1698. [Google Scholar] [CrossRef] [PubMed]
- Baptista, F.; Zymbal, V.; Janz, K.F. Predictive Validity of Handgrip Strength, Vertical Jump Power, and Plank Time in the Identification of Pediatric Sarcopenia. Meas. Phys. Educ. Exerc. Sci. 2022, 26, 361–370. [Google Scholar] [CrossRef]
- Bevill, G.; Keaveny, T.M. Trabecular bone strength predictions using finite element analysis of micro-scale images at limited spatial resolution. Bone 2009, 44, 579–584. [Google Scholar] [CrossRef] [PubMed]
- MacNeil, J.A.; Boyd, S.K. Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med. Eng. Phys. 2007, 29, 1096–1105. [Google Scholar] [CrossRef]
- Engelke, K.; van Rietbergen, B.; Zysset, P. FEA to Measure Bone Strength: A Review. Clin. Rev. Bone Miner. Metab. 2016, 14, 26–37. [Google Scholar] [CrossRef]
- Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Masse, L.C.; Tilert, T.; McDowell, M. Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 2008, 40, 181–188. [Google Scholar] [CrossRef]
- Ubago-Guisado, E.; Mata, E.; Sanchez-Sanchez, J.; Plaza-Carmona, M.; Martin-Garcia, M.; Gallardo, L. Influence of different sports on fat mass and lean mass in growing girls. J. Sport Health Sci. 2017, 6, 213–218. [Google Scholar] [CrossRef]
- Bielemann, R.M.; Martinez-Mesa, J.; Gigante, D.P. Physical activity during life course and bone mass: A systematic review of methods and findings from cohort studies with young adults. BMC Musculoskelet. Disord. 2013, 14, 77. [Google Scholar] [CrossRef]
- Tipton, K.D. Gender differences in protein metabolism. Curr. Opin. Clin. Nutr. Metab. Care 2001, 4, 493–498. [Google Scholar] [CrossRef]
- Jansson, D.; Lindberg, A.-S.; Lundberg, E.; Domellöf, M.; Theos, A. Effects of Resistance and Endurance Training Alone or Combined on Hormonal Adaptations and Cytokines in Healthy Children and Adolescents: A Systematic Review and Meta-analysis. Sports Med. Open 2022, 8, 81. [Google Scholar] [CrossRef] [PubMed]
- Baxter-Jones, A.D.G.; Jackowski, S.A. Sex differences in bone mineral content and bone geometry accrual: A review of the Paediatric Bone Mineral Accural Study (1991–2017). Ann. Hum. Biol. 2021, 48, 503–516. [Google Scholar] [CrossRef] [PubMed]
- Winther, A.; Jørgensen, L.; Ahmed, L.A.; Christoffersen, T.; Furberg, A.-S.; Grimnes, G.; Jørgensen, L.; Ahmed, L.A.; Christoffersen, T.; Furberg, A.-S.; et al. Bone mineral density at the hip and its relation to fat mass and lean mass in adolescents: The Tromsø Study, Fit Futures. BMC Musculoskelet. Disord. 2018, 19, 21. [Google Scholar] [CrossRef]
- Garcia-Vicencio, S.; Martin, V.; Chalchat, E.; Penailillo, L.; Kluka, V.; Fourot, A.V.; Penailillo, L.; Kluka, V.; Fourot, A.V.; Moreira, M.B.; et al. Sex-Related Neuromuscular Adaptations to Youth Obesity: Force, Muscle Mass, and Neural Issues. Adv. Exp. Med. Biol. 2023, 1450, 131–142. [Google Scholar] [CrossRef]
- Metcalf, K.M.; Letuchy, E.M.; Levy, S.M.; Janz, K.F. An 8-Year Longitudinal Analysis of Physical Activity and Bone Strength From Adolescence to Emerging Adulthood: The Iowa Bone Development Study. Pediatr. Exerc. Sci. 2020, 32, 58–64. [Google Scholar] [CrossRef]
- Agbaje, A.O.; Barker, A.R.; Tuomainen, T.-P. Cumulative muscle mass and blood pressure but not fat mass drives arterial stiffness and carotid intima-media thickness progression in the young population and is unrelated to vascular organ damage. Hypertens. Res. 2023, 46, 984–999. [Google Scholar] [CrossRef]
- Lanoye, A.; Brown, K.L.; LaRose, J.G. The Transition into Young Adulthood: A Critical Period for Weight Control. Curr. Diab. Rep. 2017, 17, 114. [Google Scholar] [CrossRef]
- Gropper, H.; John, J.M.; Sudeck, G.; Thiel, A. The impact of life events and transitions on physical activity: A scoping review. PLoS ONE 2020, 15, e0234794. [Google Scholar] [CrossRef]
- Corder, K.; Winpenny, E.; Love, R.; Brown, H.E.; White, M.; Sluijs, E.V. Change in physical activity from adolescence to early adulthood: A systematic review and meta-analysis of longitudinal cohort studies. Br. J. Sports Med. 2019, 53, 496–503. [Google Scholar] [CrossRef]
- Palomäki, S.; Hirvensalo, M.; Smith, K.; Raitakari, O.; Männistö, S.; Hutri-Kähönen, N.; Tammelin, T. Does organized sport participation during youth predict healthy habits in adulthood? A 28-year longitudinal study. Scand. J. Med. Sci. Sports 2018, 28, 1908–1915. [Google Scholar] [CrossRef]
- Howie, E.K.; Daniels, B.T.; Guagliano, J.M. Promoting Physical Activity Through Youth Sports Programs: It’s Social. Am. J. Lifestyle Med. 2018, 14, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Allender, S.; Cowburn, G.; Foster, C. Understanding participation in sport and physical activity among children and adults: A review of qualitative studies. Health Educ. Res. 2006, 21, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Von Seggern, M.J.; Rogers, A.E.; Schenkelberg, M.A.; Kellstedt, D.K.; Welk, G.J.; High, R.; Dzewaltowski, D.A. Sociodemographic influences on youth sport participation and physical activity among children living within concentrated Hispanic/Latino rural communities. Front. Public Health 2024, 12, 1345635. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, M.; Sagas, M. Shifting the Paradigm: A Constructivist Analysis of Agency and Structure in Sustained Youth Sport Participation. Front. Psychol. 2021, 12, 660080. [Google Scholar] [CrossRef]
- Grady, C.L.; Murtagh, E.; Ng, K.; Bengoechea, E.G.; Woods, C.B. Communicating physical activity messages with adolescents: What works? A scoping review with stakeholder consultation. Int. J. Behav. Nutr. Phys. Act. 2025, 22, 20. [Google Scholar] [CrossRef]
Male (n = 144) | Female (n = 184) | |||||
---|---|---|---|---|---|---|
Youth Sport Participation Group | Consistent Participation (n = 56) | Drop-Out (n = 53) | No Participation (n = 35) | Consistent Participation (n = 73) | Drop-Out (n = 66) | No Participation (n = 45) |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
Birthweight, kg | 3.6 ± 0.6 | 3.6 ± 0.6 | 3.5 ± 0.6 | 3.5 ± 0.5 | 3.4 ± 0.6 | 3.5 ± 0.5 |
Baseline BMC, g | 285 ± 106 | 325 ± 136 | 328 ± 140 | 288 ± 108 | 302 ± 123 | 271 ± 105 |
Baseline BMI percentile | 62 ± 27 | 62 ± 29 | 58 ± 30 | 59 ± 26 | 62 ± 28 | 60 ± 29 |
MVPA, min/d | 27 ± 17 | 24 ± 16 | 28 ± 24 | 25 ± 17 * | 23 ± 20 † | 14 ± 12 *,† |
Height, cm | 181 ± 8 | 181 ± 9 | 179 ± 7 | 167 ± 6 * | 167 ± 8 † | 163 ± 7 *,† |
Body mass, kg | 94.2 ± 19.8 | 96.1 ± 22.6 | 87.2 ± 21.5 | 74.8 ± 18.4 | 77.0 ± 20.6 | 78.5 ± 24.6 |
BMI, kg/m2 | 28.6 ± 5.5 | 29.3 ± 6.5 | 27.0 ± 6.0 | 26.6 ± 5.9 * | 27.5 ± 6.8 | 29.3 ± 8.7 * |
BMC, g | 2689 ± 481 *,§ | 2513 ± 425 †,§ | 2280 ± 417 *,† | 1908 ± 311 * | 1812 ± 294 | 1735 ± 306 * |
Lean mass, kg | 66.3 ± 10.4 * | 65.7 ± 11.3 † | 59.4 ± 10.6 *,† | 45.1 ± 7.5 | 45.3 ± 8.3 | 44.2 ± 9.0 |
LMI, kg/m2 | 20.2 ± 2.5 * | 20.1 ± 3.2 † | 18.4 ± 2.7 *,† | 16.0 ± 2.2 | 16.2 ± 2.4 | 16.5 ± 3.1 |
Fat mass, kg | 24.7 ± 11.4 | 27.4 ± 13.6 | 25.0 ± 12.0 | 27.3 ± 11.7 | 29.4 ± 13.0 | 32.1 ± 15.9 |
FMI, kg/m2 | 7.5 ± 3.4 | 8.3 ± 4.0 | 7.7 ± 3.6 | 9.7 ± 4.0 * | 10.5 ± 4.6 | 12.0 ± 5.8 * |
BMC-to-lean ratio, g/kg | 40.6 ± 4.2 *,§ | 38.5 ± 4.1 § | 38.5 ± 3.8 * | 42.5 ± 3.9 *,§ | 40.4 ± 4.6 § | 39.8 ± 5.0 * |
Lean-to-fat ratio, kg/kg | 3.04 ± 0.91 * | 2.80 ± 0.95 | 2.72 ± 0.91 * | 1.84 ± 0.54 * | 1.76 ± 0.59 | 1.59 ± 0.51 * |
Bone stiffness, kN/mm | 715 ± 150 * | 680 ± 139 † | 601 ± 112 *,† | 515 ± 94 | 494 ± 97 | 499 ± 88 |
Male (n = 144) | Female (n = 184) | |||||
---|---|---|---|---|---|---|
High-Power Sports (n = 62) | Other Sports (n = 20) | No Sports (n = 48) | High-Power Sports (n = 78) | Other Sports (n = 37) | No Sports (n = 61) | |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
BMC, g | 2703 ± 454 *,§ | 2488 ± 491 § | 2325 ± 412 * | 1919 ± 319 *,§ | 1768 ± 306 § | 1743 ± 281 * |
LMI, kg/m2 | 20.1 ± 2.5 | 19.4 ± 2.9 | 19.3 ± 3.2 | 16.4 ± 2.3 | 15.8 ± 2.4 | 16.1 ± 2.8 |
BMC-to-lean ratio, g/kg | 40.6 ± 4.0 * | 39.5 ± 3.6 | 37.6 ± 4.0 * | 41.6 ± 4.0 | 40.6 ± 4.5 | 40.4 ± 5.2 |
Lean-to-fat ratio, kg/kg | 3.09 ± 0.91 * | 2.98 ± 0.82 | 2.51 ± 0.96 * | 1.76 ± 0.51 | 1.84 ± 0.66 | 1.71 ± 0.54 |
Bone stiffness, kN/mm | 701 ± 138 * | 692 ± 128 | 624 ± 140 * | 513 ± 96 | 484 ± 80 | 496 ± 97 |
Male | Female | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
BMC (g) | LBM (kg/m2) | Bone Stiffness (kN/mm) | BMC (g) | FMI (kg/m2) * | ||||||
Predictor | β ± SE | p | β ± SE | p | β ± SE | p | β ± SE | p | β ± SE | p |
Intercept | −3849 ± 1183 | <0.01 | 13.4 ± 7.1 | 0.06 | 145 ± 42 | 0.75 | −1863 ± 759 | 0.01 | 9.5 ± 11.6 | 0.41 |
Baseline BMC (g) | 1 ± 0.2 | <0.01 | NA | NA | 0.01 ± 0.01 | 0.32 | 1 ± 0.1 | <0.01 | NA | NA |
Baseline BMI percentile | NA | NA | 0.01 ± 0.001 | <0.01 | NA | NA | NA | NA | 0.1 ± 0.01 | <0.01 |
Age (years) | −23 ± 44 | 0.60 | 0.05 ± 0.3 | 0.87 | 18 ± 20 | 0.37 | −36 ± 28 | 0.20 | −0.1 ± 0.5 | 0.76 |
Education: <4-year college vs. ≥4-year college | −47 ± 52 | 0.36 | 0.2 ± 0.4 | 0.64 | −20 ± 23 | 0.40 | −0.3 ± 33 | 0.99 | 1.4 ± 0.6 | 0.02 |
Height (cm) | 35 ± 3 | <0.01 | NA | NA | NA | NA | 26 ± 2 | <0.01 | NA | NA |
Energy intake: highest vs. lowest tertile | NA | NA | NA | NA | NA | NA | NA | NA | −0.1 ± 0.6 | 0.87 |
Energy intake: middle vs. lowest tertile | NA | NA | NA | NA | NA | NA | NA | NA | 1.1 ± 0.7 | 0.09 |
Additional 10 min/day of MVPA | 21 ± 14 | 0.13 | 0.03 ± 0.1 | 0.72 | 8 ± 6 | 0.17 | −2 ± 9 | 0.81 | −0.5 ± 0.2 | <0.01 |
Youth sports: consistent participation vs. no participation | 377 ± 67 | <0.01 | 1.6 ± 0.5 | <0.01 | 112 ± 30 | <0.01 | 58 ± 41 | 0.16 | −1.4 ± 0.7 | 0.04 |
Youth sports: drop-out vs. no participation | 192 ± 67 | <0.01 | 1.5 ± 0.5 | <0.01 | 76 ± 30 | 0.01 | −46 ± 41 | 0.26 | −1.3 ± 0.7 | 0.08 |
Male | Female | |||||||
---|---|---|---|---|---|---|---|---|
BMC-to-Lean Ratio (g/kg) | Lean-to-Fat Ratio (kg/kg) | BMC-to-Lean Ratio (g/kg) | Lean-to-Fat Ratio (kg/kg) | |||||
Predictor | β ± SE | p | β ± SE | p | β ± SE | p | β ± SE | p |
Intercept | 40.4 ± 13.5 | <0.01 | 3.42 ± 2.97 | 0.25 | 46.9 ± 13.3 | <0.01 | 1.39 ± 1.45 | 0.34 |
Baseline BMI percentile | −0.03 ± 0.01 | <0.01 | −0.01 ± 0.003 | <0.01 | −0.06 ± 0.01 | <0.01 | −0.01 ± 0.001 | <0.01 |
Age (years) | 0.005 ± 0.6 | 0.99 | −0.03 ± 0.13 | 0.84 | −0.2 ± 0.6 | 0.79 | 0.03 ± 0.06 | 0.60 |
Education: <4-year college vs. ≥4-year college | −0.8 ± 0.7 | 0.21 | −0.05 ± 0.15 | 0.75 | −1.2 ± 0.7 | 0.07 | −0.18 ± 0.07 | 0.01 |
Additional 10 min/day of MVPA | 0.2 ± 0.2 | 0.28 | 0.16 ± 0.04 | <0.01 | 0.1 ± 0.2 | 0.41 | 0.06 ± 0.02 | <0.01 |
Youth sports: consistent participation vs. no participation | 2.0 ± 0.9 | 0.02 | 0.36 ± 0.19 | 0.06 | 2.3 ± 0.8 | <0.01 | 0.14 ± 0.09 | 0.11 |
Youth sports: drop-out vs. no participation | 0.06 ± 0.9 | 0.95 | 0.18 ± 0.19 | 0.36 | 0.4 ± 0.8 | 0.60 | 0.12 ± 0.09 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, S.; Baptista, F.; Levy, S.M.; Guha, I.; Saha, P.K.; Janz, K.F. Associations Between Youth Sport Participation and Bone, Muscle, and Fat in Adulthood: Iowa Bone Development Study. Int. J. Environ. Res. Public Health 2025, 22, 416. https://doi.org/10.3390/ijerph22030416
Kwon S, Baptista F, Levy SM, Guha I, Saha PK, Janz KF. Associations Between Youth Sport Participation and Bone, Muscle, and Fat in Adulthood: Iowa Bone Development Study. International Journal of Environmental Research and Public Health. 2025; 22(3):416. https://doi.org/10.3390/ijerph22030416
Chicago/Turabian StyleKwon, Soyang, Fátima Baptista, Steven M. Levy, Indranil Guha, Punam K. Saha, and Kathleen F. Janz. 2025. "Associations Between Youth Sport Participation and Bone, Muscle, and Fat in Adulthood: Iowa Bone Development Study" International Journal of Environmental Research and Public Health 22, no. 3: 416. https://doi.org/10.3390/ijerph22030416
APA StyleKwon, S., Baptista, F., Levy, S. M., Guha, I., Saha, P. K., & Janz, K. F. (2025). Associations Between Youth Sport Participation and Bone, Muscle, and Fat in Adulthood: Iowa Bone Development Study. International Journal of Environmental Research and Public Health, 22(3), 416. https://doi.org/10.3390/ijerph22030416