Effects of Resistance Training Combined with Vitamin D Supplementation on Health-Related Variables in the Elderly: Muscle Strength, Body Composition, and Inflammatory Status
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Location and Ethical Approval
2.3. Sample Size Calculation
2.4. Inclusion and Exclusion Criteria
2.5. Randomization and Blinding
2.6. Assessments
2.7. Training Protocol
2.8. Nutritional Intervention
2.9. Definition of Adherence by Protocol
2.10. Outcomes
2.11. Statistical Analysis
3. Results
3.1. Participant Flow
3.2. Final Analysis
3.3. Baseline Characteristics
3.4. Body Composition and Inflammatory Marker Outcomes
3.5. Muscle Strength and Functional Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 1,25(OH)2D | 1,25-dihydroxyvitamin D |
| 25(OH)D | 25-hydroxyvitamin D |
| 7-DHC | 7-dehydrocholesterol |
| ALM | Appendicular Lean Mass |
| BMI | Body Mass Index |
| Ca2+ | Calcium ion |
| CG | Control Group |
| CNPJ | Brazilian National Registry of Legal Entities |
| DEXA | Dual-Energy X-ray Absorptiometry |
| EG | Experimental Group |
| ELISA | Enzyme-Linked Immunosorbent Assay |
| FITT | Frequency, intensity, time and type of exercise |
| HUPE | Pedro Ernesto University Hospital |
| IL-6 | Interleukin-6 |
| Kg | Kilogram |
| LABSAU | Physical Activity and Health Promotion Laboratory |
| M | Meter |
| mRNA | Messenger Ribonucleic Acid |
| PTH | Parathyroid Hormone |
| Rep | Repetitions |
| RM | Repetition Maximum |
| SPSS | Statistical Package for the Social Sciences |
| TNF-α | Tumor Necrosis Factor-alpha |
| UERJ | State University of Rio de Janeiro |
| % | Percent |
Appendix A
| Section | Item | Description/Comment |
| 1. Title and Abstract | Identification as RCT | ✅ Yes—stated in the title and abstract. |
| 1. Title and Abstract | Structured summary | ✅ Includes design, participants, interventions, outcomes, and results. |
| 2. Introduction | Background and rationale | ✅ Clearly described in the text. |
| 2. Introduction | Objectives/hypotheses | ✅ Defined: to investigate the effects of training + vitamin D. |
| 3. Methods | Study design | ✅ RCT, double-blind, controlled. |
| 3. Methods | Setting and dates | ✅ LABSAU/UERJ and HUPE, January–December 2022. |
| 3. Methods | Ethics and registration | ✅ HUPE Ethics Committee, Opinion No. 3.655.940. |
| 3. Methods | Inclusion/exclusion criteria | ✅ Detailed presentation. |
| 3. Methods | Recruitment | ✅ At LABSAU/UERJ; assessments at HUPE. |
| 3. Methods | Intervention details | ✅ Training and supplementation protocols described. |
| 3. Methods | Control group | ✅ Identical-appearing placebo. |
| 3. Methods | Primary outcomes | ✅ Body composition, muscle strength, inflammatory markers. |
| 3. Methods | Secondary outcomes | ✅ None. |
| 3. Methods | Sample size calculation | ✅ G*Power, α = 0.05; β = 0.15; effect size from literature. |
| 3. Methods | Random sequence generation | ✅ Simple randomization with sex and age stratification. |
| 3. Methods | Allocation concealment | ✅ Performed by an independent researcher. |
| 3. Methods | Blinding | ✅ Participants and assessors blinded to supplement allocation. |
| 3. Methods | Statistical analysis | ✅ Two-factor ANOVA, Bonferroni, Shapiro–Wilk, p ≤ 0.05. |
| 3. Methods | Per-protocol analysis | ✅ Included only participants who met adherence criteria. |
| 4. Results | Participant flow | ✅ Flowchart: 40 randomized, 26 analyzed. |
| 4. Results | Baseline characteristics | ✅ Values and p-values showing group homogeneity. |
| 4. Results | Outcome data | ✅ Pre/post/Δ% values with significance reported. |
| 4. Results | Adverse events | ✅ None reported. Method of collection needs description. |
| 5. Discussion | Interpretation and limitations | ✅ Included in the manuscript. |
| 6. Other | Funding/conflicts of interest | ✅ Include before references, if applicable. |
| ✅ Confirmation that the item has been completed. | ||
References
- Kim, S.W.; Park, H.Y.; Jung, W.S.; Lim, K. Effects of twenty-four weeks of resistance exercise training on body composition, bone mineral density, functional fitness and isokinetic muscle strength in obese older women: A randomized controlled trial. Int. J. Environ. Res. Public Health 2022, 19, 2454–2466. [Google Scholar] [CrossRef]
- Alorfi, N.M.; Alshehri, F.A.; Ahrmed, A.M. Therapeutics for Sarcopenia and Functional Disabilities in Older Adults: A Review of Phase 4 Clinical Trials. Drug Des. Dev. Ther. 2025, 27, 2307–2314. [Google Scholar] [CrossRef]
- Pan, L.; Xie, W.; Fu, X.; Lu, W.; Jin, H.; Lai, J.; Zhang, A.; Yu, Y.; Li, Y.; Xiao, W. Inflammation and sarcopenia: A focus on circulating inflammatory cytokines. Exp. Gerontol. 2021, 15, e111544. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Song, A.; Bae, M.; Wang, Q.A. Adipose tissue plasticity in aging. Compr. Physiol. 2022, 12, 4119–4132. [Google Scholar] [CrossRef]
- Wimalawansa, S.J. Physiology of Vitamin D-Focusing on Disease Prevention. Nutrients 2024, 29, 1666. [Google Scholar] [CrossRef] [PubMed]
- Bollen, E.S.; Bass, J.J.; Fujita, S.; Wilkinson, D.; Hewison, M.; Atherton, P.J. The Vitamin D/Vitamin D receptor (VDR) axis in muscle atrophy and sarcopenia. Cell. Signal. 2022, 96, 110355. [Google Scholar] [CrossRef] [PubMed]
- Čížková, T.; Štěpán, M.; Daďová, K.; Ondrůjová, B.; Sontáková, L.; Krauzová, E.; Matouš, M.; Koc, M.; Gojda, J.; Kračmerová, J.; et al. Exercise Training Reduces Inflammation of Adipose Tissue in the Elderly: Cross-Sectional and Randomized Interventional Trial. J. Clin. Endocrinol. Metab. 2020, 105, 44510–44526. [Google Scholar] [CrossRef]
- Leslie, E.; Luna, V.; Gibson, A.L. Older adult aerobic capacity, muscular strength, fitness and body composition after 20+ years of exercise training: A systematic review and meta-analysis. Int. J. Exerc. Sci. 2023, 16, 620–637. [Google Scholar] [CrossRef]
- Waters, D.L.; Aguirre, L.; Gurney, B.; Sinacore, D.R.; Fowler, K.; Gregori, G.; Armamento-Villareal, R.; Qualls, C.; Villareal, D.T. Effect of Aerobic or Resistance Exercise, or Both, on Intermuscular and Visceral Fat and Physical and Metabolic Function in Older Adults with Obesity While Dieting. J. Gerontol. A Biol. Sci. Med. Sci. 2022, 77, 131–139. [Google Scholar] [CrossRef]
- Grgic, J.; Schoenfeld, B.J.; Orazem, J.; Sabol, F. Effects of resistance training performed to repetition failure or non-failure on muscular strength and hypertrophy: A systematic review and meta-analysis. J. Sport Health Sci. 2022, 11, 202–211. [Google Scholar] [CrossRef]
- Grevendonk, L.; Connell, N.J.; McCrum, C.; Fealy, C.E.; Bilet, L.; Bruls, Y.M.H.; Mevenkamp, J.; Schrauwen-Hinderling, V.B.; Jörgensen, J.A.; Moonen-Kornips, E.; et al. Impact of aging and exercise on skeletal muscle mitochondrial capacity, energy metabolism, and physical function. Nat. Commun. 2021, 12, 4773. [Google Scholar] [CrossRef]
- Angocillo, M.; Yu, J.; Gunton, J.E. The Role of Vitamin D in Skeletal Muscle Repair and Regeneration in Animal Models and Humans: A Systematic Review. Nutrients 2023, 15, 4377. [Google Scholar] [CrossRef]
- Antoniak, A.E.; Greig, C.A. The effect of combined resistance exercise training and vitamin D3 supplementation on musculoskeletal health and function in older adults: A systematic review and meta-analysis. BMJ Open 2017, 7, e014619. [Google Scholar] [CrossRef]
- Uusi-Rasi, K.; Kannus, P.; Karinkanta, S.; Pasanen, M.; Patil, R.; Lamberg-Allardt, C.; Sievänen, H. Study protocol for prevention of falls: A randomized controlled trial of effects of vitamin D and exercise on falls prevention. BMC Geriatr. 2012, 12, 12–26. [Google Scholar] [CrossRef]
- Liu, H.; Li, D.; Zhang, Y.; Li, M. Inflammation, mesenchymal stem cells and bone regeneration. Histochem. Cell Biol. 2018, 149, 393–404. [Google Scholar] [CrossRef]
- Martin, A.D.; Ross, W.D.; Drinkwater, D.T.; Clarys, J.P. Segment lengths. In Anthropometric Standardization Reference Manual; Lohman, T.G., Roche, A.F., Martorell, R., Eds.; Human Kinetics: Champaign, IL, USA, 1988; pp. 9–26. ISBN 978-0-87322-121-4. [Google Scholar]
- Gordon, C.; Chunlea, W.C.; Roche, A.F. Stature, recumbent length, and weight. In Anthropometric Standardization Reference Manual; Lohman, T.G., Roche, A.F., Martorell, R., Eds.; Human Kinetics: Champaign, IL, USA, 1988; ISBN 978-0-87322-121-4. [Google Scholar]
- Krueger, D.; Tanner, S.B.; Szalat, A.; Malabanan, A.; Prout, T.; Lau, A.; Rosen, H.N.; Shuhart, C. DXA Reporting Updates: 2023 Official Positions of the International Society for Clinical Densitometry. J. Clin. Densitom. 2024, 27, 101437. [Google Scholar] [CrossRef]
- Jones, C.J.; Rikli, R.E.; Beam, W.C.C. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res. Q. Exerc. Sport 1999, 70, 113–119. [Google Scholar] [CrossRef] [PubMed]
- MacDermid, J.C.; Solomon, G.S.; Valdes, K.A. Clinical Assessment Recommendations, 3rd ed.; American Society of Hand Therapists: Mount Laurel, NJ, USA, 2015; ISBN 978-0-69252-515-9. [Google Scholar]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 8th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2009; ISBN 978-1-60913-956-8. [Google Scholar]
- Bischoff, H.A.; Borchers, M.; Gudat, F.; Duermueller, U.; Theiler, R.; Stähelin, H.B.; Dick, W. In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue. Histochem. J. 2001, 33, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Ceglia, L.; Niramitmahapanya, S.; da Silva Morais, M.; Rivas, D.A.; Harris, S.S.; Bischoff-Ferrari, H.; Fielding, R.A.; Dawson-Hughes, B. A Randomized Study on the Effect of Vitamin D3 Supplementation on Skeletal Muscle Morphology and Vitamin D Receptor Concentration in Older Women. J. Clin. Endocrinol. Metab. 2013, 98, 1927–1935. [Google Scholar] [CrossRef]
- Draxler, A.; Franzke, B.; Kelecevic, S.; Maier, A.; Pantic, J.; Srienc, S.; Cellnigg, K.; Solomon, S.-M.; Zötsch, C.; Aschauer, R.; et al. The influence of vitamin D supplementation and strength training on health biomarkers and chromosomal damage in community-dwelling older adults. Redox Biol. 2023, 21, 102640. [Google Scholar] [CrossRef] [PubMed]
- Bell, K.E.; Snijders, T.; Zulyniak, M.; Kumbhare, D.; Parise, G.; Chabowski, A.; Phillips, S.M. A whey protein-based multi-ingredient nutritional supplement stimulates gains in lean body mass and strength in healthy older men: A randomized controlled trial. PLoS ONE 2017, 12, e0181387. [Google Scholar] [CrossRef]
- Mᴓlmen, K.S.; Hammarström, D.; Pedersen, K.; Lian Lie, A.C.; Steile, R.B.; Nygaard, H.; Khan, Y.; Hamarsland, H.; Koll, L.; Hanestadhaugen, M.; et al. Vitamin D3 supplementation does not enhance the effects of resistance training in older adults. J. Cachexia Sarcopenia Muscle 2021, 12, 599–628. [Google Scholar] [CrossRef]
- Khan, J.R.; Riestra, P.; Gebreab, S.Y.; Wilson, J.G.; Gaye, A.; Xu, R.; Davis, S.K. Vitamin D Receptor Gene Polymorphisms Are Associated with Abdominal Visceral Adipose Tissue Volume and Serum Adipokine Concentrations but Not with Body Mass Index or Waist Circumference in African Americans: The Jackson Heart Study. J. Nutr. 2016, 146, 1476–1482. [Google Scholar] [CrossRef]
- Park, C.Y.; Han, S.N. Vitamin D and obesity. Adv. Food Nutr. Res. 2024, 109, 221–247. [Google Scholar] [CrossRef]
- Aschauer, R.; Unterberger, S.; Zöhrer, P.A.; Draxler, A.; Franzke, B.; Strasser, E.M.; Wagner, K.-H.; Wessner, B. Effects of Vitamin D3 Supplementation and Resistance Training on 25-Hydroxyvitamin D Status and Functional Performance of Older Adults: A Randomized Placebo-Controlled Trial. Nutrients 2021, 14, 2–14. [Google Scholar] [CrossRef]
- Miller, E.G.; Nowson, C.A.; Dunstan, D.W.; Kerr, D.A.; Menzies, D.; Daly, R.M. Effects of whey protein plus vitamin D supplementation combined with progressive resistance training on glycemic control, body composition, muscle function and cardiometabolic risk factors in middle-aged and older overweight/obese adults with type 2 diabetes: A24-week randomized controlled trial. Diabetes Obes. Metab. 2021, 23, 938–949. [Google Scholar] [CrossRef]
- Agergaard, J.; Trøstrup, J.; Uth, J.; Iversen, J.V.; Boesen, A.; Andersen, J.L.; Schjerling, P.; Langberg, H. Does vitamin-D intake during resistance training improve the skeletal muscle hypertrophic and strength response in young and elderly men?—A randomized controlled trial. Nutr. Metab. 2015, 12, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liang, Y.; Guo, H.; Meng, K.; Qiu, J.; Benardot, D. Muscle-Related Effect of Whey Protein and Vitamin D3 Supplementation Provided before or after Bedtime in Males Undergoing Resistance Training. Nutrients 2022, 14, 2289. [Google Scholar] [CrossRef] [PubMed]
- Lemmer, J.T.; Hurlbut, D.E.; Martel, G.F.; Tracy, B.L.; Ivey, F.M.; Metter, E.J.; Fozard, J.L.; Fleg, J.L.; Hurley, B.F. Age and gender responses to strength training and detraining. Med. Sci. Sports Exerc. 2000, 32, 1505–1512. [Google Scholar] [CrossRef] [PubMed]
- Grosicki, G.J.; Barrett, B.B.; Englund, D.A.; Liu, C.; Travison, T.G.; Cederholm, T.; Koochek, A.; von Berens, Å.; Gustafsson, T.; Benard, T.; et al. Circulating interleukin-6 is associated with skeletal muscle strength, quality, and functional adaptation with exercise training in mobility-limited older adults. J. Frailty Aging 2020, 9, 57–63. [Google Scholar] [CrossRef]
- Rathmacher, J.A.; Pitchford, L.M.; Khoo, P.; Angus, H.; Lang, J.; Lowry, K.; Ruby, C.; Krajek, A.C.; Fuller, J.C.; Sharp, R.L. Long-term Effects of Calcium β-Hydroxy-β-Methylbutyrate and Vitamin D3 Supplementation on Muscular Function in Older Adults with and Without Resistance Training: A Randomized, Double-blind, Controlled Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2020, 75, 2089–2097. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, M.; Begerow, B.; Minne, H.W. Vitamin D and muscle function. Osteoporos. Int. 2002, 13, 187–194. [Google Scholar] [CrossRef]
- Maclntosh, B.L. Role of calcium sensitivity modulation in skeletal muscle performance. News Physiol. Sci. 2003, 18, 222–225. [Google Scholar] [CrossRef]
- Lips, P. Vitamin D physiology. Prog. Biophys. Mol. Biol. 2006, 92, 4–8. [Google Scholar] [CrossRef] [PubMed]

| Variable | EG (n = 22) | CG (n = 18) | p-Value | Mean Difference [IC95%] |
|---|---|---|---|---|
| Sex | ||||
| Female—n (%) | 19 (86.4) | 18 (77.7) | ||
| Male—n (%) | 3 (13.6) | 4 (22.2) | ||
| Age (years) | 70.8 ± 4.8 | 70.1 ± 4.9 | 0.66 | 0.71 [−2.44; 3.86] |
| Body Composition | ||||
| Body mass (kg) | 69.7 ± 12.5 | 69.4 ± 10.9 | 0.90 | 0.24 [−7.53; 8.00] |
| Height (m) | 1.57 ± 0.10 | 1.59 ± 0.07 | 0.57 | −0.15 [−0.68; 0.37] |
| BMI (kg/m2) | 28.2 ± 3.8 | 27.6 ± 3.7 | 0.62 | 0.60 [−1.84; 3.04] |
| Lean mass (kg) | 38.2 ± 7.4 | 39.6 ± 6.5 | 0.52 | −1.33 [−5.46; 2.80] |
| Fat mass (kg) | 29.4 ± 8.3 | 27.2 ± 6.6 | 0.38 | 2.21 [−2.82; 7.24] |
| Appendicular lean mass (kg) | 16.7 ± 3.4 | 17.3 ± 3.7 | 0.60 | −0.62 [−2.95; 1.70] |
| Body fat (%) | 43.0 ± 7.8 | 40.5± 6.7 | 0.31 | 2.60 [−2.58; 7.77] |
| Blood Analysis | ||||
| Vitamin D (ng/mL) | 66.8 ± 23.3 | 55.0 ± 18.6 | 0.14 | 11.80 [−3.93; 27.53] |
| TNF-α (pg/mL) | 2.9 ± 11.7 | 0.0 ±0.0 | 0.27 | 2.92 [−2.47; 8.03] |
| IL-6 (pg/mL) | 6.1 ± 9.5 | 2.4 ±1.4 | 0.13 | 3.71 [−1.18; 8.59] |
| Muscle Strength | ||||
| Sit-to-stand test (reps) | 11.36± 4.1 | 10.8 ± 2.2 | 0.67 | 0.55 [−2.88; 3.98] |
| Handgrip strength (kg) | 21.3 ± 7.9 | 25.3 ± 6.7 | 0.11 | −4.01 [−8.87; 0.86] |
| Bench press—10 RM (kg) | 10.0 ± 6.5 | 8.3 ± 5.1 | 0.38 | 1.72 [−2.12; 5.63] |
| Seated row—10 RM (kg) | 11.9 ± 6.4 | 10.5 ± 4.1 | 0.43 | 1.46 [−2.24; 5.16] |
| Plantar flexion—10 RM (kg) | 43.2 ± 21.7 | 34.4 ± 10.9 | 0.15 | 8.81 [−3.19; 20.81] |
| Leg press—10 RM (kg) | 40.9 ± 18.7 | 33.1 ± 13.0 | 0.18 | 7.78 [−3.77; 19.34] |
| Leg extension—10 RM (kg) | 15.5± 7.4 | 11.4 ± 7.2 | 0.07 | 4.05 [−0.28; 8.37] |
| Leg curl—10 RM (kg) | 15.3 ± 6.9 | 13.4 ± 5.1 | 0.36 | 1.90 [−2.24; 6.05] |
| Pulldown—10 RM (kg) | 16.8± 5.6 | 16.3 ± 6.7 | 0.78 | 0.57 [−3.56; 4.69] |
| Variable | EG (n = 12) | CG (n = 14) | p-Value | Mean Differences [IC95%] |
|---|---|---|---|---|
| Sex | ||||
| Female—n (%) | 11 (91.7) | 11 (78.6) | ||
| Male—n (%) | 1 (8.3) | 3 (21.4) | ||
| Age (years) | 70.6 ± 4.7 | 69.6 ± 4.6 | 0.82 | 0.94 [−2.85; 4.74] |
| Body Composition | ||||
| Body mass (kg) | 68.7 ± 9.3 | 69.1 ± 9.2 | 0.80 | 1.60 [−6.72; 9.92] |
| Height (m) | 1.55 ± 0.10 | 1.59 ± 0.10 | 0.40 | −0.03 [−0.10; 00.04] |
| BMI (kg/m2) | 28.4 ± 2.3 | 27.8 ± 3.8 | 0.19 | 1.05 [1.65; 3.75] |
| Lean mass (kg) | 36.1 ± 3.9 | 39.5 ± 6.8 | 0.69 | −1.92 [−7.35; 3.51] |
| Fat mass (kg) | 30.4 ± 7.2 | 28.2 ± 5.7 | 0.49 | 2.67 [−2.53; 7.87] |
| Appendicular lean mass (kg) | 15.9 ± 1.8 | 17.3 ± 3.9 | 0.41 | −0.71 [−3.60; 2.17] |
| Body fat (%) | 45.3 ± 5.2 | 41.5 ± 5.1 | 0.75 | 2.67 [−2.53; 7.87] |
| Blood Analysis | ||||
| Vitamin D (ng/mL) | 69.5 ± 23.5 | 52.1 ± 15.2 | 0.49 | 17.36 [1.41; 33.32] |
| TNF-α (pg/mL) | 4.2 ± 14.1 | 0.0 ±0.0 | 0.02 | 4.24 [−3.49; 11.98] |
| IL-6 (pg/mL) | 6.4 ± 11.1 | 2.3 ±1.5 | 0.02 | 4.08 [−2.10; 10.26] |
| Muscle Strength | ||||
| Sit-to-stand test (reps) | 13.3 ± 6.1 | 10.7 ± 2.3 | 0.04 | 2.45 [−1.06; 5.96] |
| Handgrip strength (kg) | 19.8 ± 6.5 | 25.1 ± 7.3 | 0.46 | −5.01 [−10.57; 0.54] |
| Bench press—10 RM (kg) | 9.5 ± 3.5 | 8.0 ± 5.3 | 0.34 | 1.55 [−2.16; 5.25] |
| Seated row—10 RM (kg) | 10.7 ± 5.0 | 10.2 ± 4.2 | 0.13 | 0.86 [−2.84; 4.57] |
| Plantar flexion—10 RM (kg) | 43.6 ± 17.4 | 34.3 ± 11.6 | 0.09 | 11.55 [−0.67; 23.77] |
| Leg press—10 RM (kg) | 38.1 ± 11.7 | 32.1 ± 13.7 | 0.94 | 8.69 [−2.700; 20.09] |
| Leg extension—10 RM (kg) | 15.0 ± 4.5 | 11.6 ± 7.4 | 0.22 | 3.81 [−1.28; 8.90] |
| Leg curl—10 RM (kg) | 13.6 ± 3.9 | 12.9 ± 5.0 | 0.20 | 1.31 [−2.550; 5.12] |
| Pulldown—10 RM (kg) | 16.4 ± 4.5 | 16.1 ± 7.1 | 0.17 | 0.60 [−4.331; 5.50] |
| Variable | EG Pre | EG Post | Δ% | p | Mean Change [IC95%] | CG Pre | CG Post | Δ% | p | Mean Change [IC95%] | p | Mean Differences [IC95%] |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Body Composition | ||||||||||||
| Body mass (kg) | 68.7 ± 9.3 | 67.9 ± 9.9 | –1.1 | 0.36 | 0.75 [−0.91; 2.40] | 69.1 ± 9.2 | 69.9 ± 9.8 | 1.1 | 0.26 | −0.81 [−2.28; 0.654] | 0.62 | −2.00 [−10.22; 6.22] |
| BMI (kg/m2) | 28.4 ± 2.3 | 28.1 ± 2.3 | –1.1 | 0.14 | 0.35 [−0.12; 0.81] | 27.8 ± 3.8 | 27.6 ± 3.5 | –0.7 | 0.28 | 0.22 [−19; 0.64] | 0.70 | 0.48 [−2.07; 3.03] |
| Lean mass (kg) | 36.1 ± 3.9 | 35.8 ± 3.7 | –0.8 | 0.52 | 0.23 [−0.50; 0.96] | 39.5 ± 6.8 | 39.4 ± 6.7 | –0.2 | 0.84 | 0.07 [−0.58; 0.71] | 0.13 | −3.07 [−1.06; 8.27] |
| Fat mass (kg) | 30.4 ± 7.2 | 29.8 ± 7.6 | –2.0 | 0.20 | 0.61 [−0.34; 1.57] | 28.2 ± 5.7 | 28.0 ± 5.9 | –0.7 | 0.68 | 0.17 [−0.67; 1.02] | 0.51 | 1.81 [−3.78; 7.40] |
| Appendicular lean mass (kg) | 15.9 ± 1.8 | 15.6 ± 1.9 | –1.9 | 0.30 | 0.31 [−0.29; 0.90] | 17.3 ± 3.9 | 17.2 ± 3.5 | –0.6 | 0.64 | 0.12 [−0.41; 0.64] | 0.19 | −1.60 [−4.04; 0.84] |
| Body fat (%) | 45.3 ± 5.2 | 44.9 ± 5.3 | –0.9 | 0.84 | 0.45 [−4.08; 4.97] | 41.5 ± 5.1 | 38.7 ± 11.6 | –6.7 | 0.16 | 2.80 [−1.21; 6.81] | 0.12 | 6.16 [−1.72; 14.04] |
| Blood Analysis | ||||||||||||
| Vitamin D (ng/mL) | 69.5 ± 23.5 | 68.0 ± 24 | –2.2 | 0.78 | 1.49 [−9.57; 12.54] | 52.1 ± 15.2 | 58.3± 24.6 | 11.9 | 0.21 | −6.17 [−15.97; 3.63] | 0.33 | 9.71 [−10.65; 30.06] |
| TNF-α (pg/mL) | 4.2 ± 14.1 | 3.5 ± 9.0 | –16.7 | 0.56 | 0.72 [−1.76; 3.19] | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 | 0.0 | 0.0 [0.0; 0.0] | 0.16 | 3.53 [−1.44; 8.50] |
| IL-6 (pg/mL) | 6.4 ± 11.1 | 3.6 ± 6.1 | –43.8 | 0.91 | 2.75 [−0.48; 5.99] | 2.3 ± 1.5 | 4.2 ± 5.5 | 82.6 | 0.18 | −1.92 [−4.78; 0.95] | 0.80 | −0.59 [−5.43; 4.24] |
| Muscle Strength | ||||||||||||
| Sit-to-stand (reps) | 13.3 ± 6.1 | 14.2 ± 4.1 | 6.7 | 0.15 | −0.91 [−2.17; 0.35] | 10.7 ± 2.3 | 13.2 ± 2.6 | 23.4 | 0.00 | −2.57 [−3.68; 1.45] | 0.52 | 0.90 [1.94; 3.74] |
| Handgrip strength (kg) | 19.8 ± 6.5 | 19.8 ± 6.3 | 0.0 | 0.96 | 0.05 [−1.91; 2.01] | 25.1 ± 7.3 | 26.9 ± 8.0 | 7.2 | 0.05 | −1.75 [−3.49; −0.01] | 0.02 | −7.11 [−13.22; −1.00] |
| Bench press—10 RM (kg) | 9.5 ± 3.5 | 12.5 ± 6.9 | 31.6 | 0.26 | −2.96 [−8.21; 2.30] | 8.0 ± 5.3 | 20.1 ± 9.6 | 151.3 | 0.00 | −12.14 [−16.80; −7.48] | 0.04 | −7.68 [−14.83; −0.53] |
| Seated row—10 RM (kg) | 10.7 ± 5.0 | 17.3 ± 5.4 | 61.7 | 0.02 | −6.59 [−11.91; −1.27] | 10.2 ± 4.2 | 22.5 ± 9.8 | 120.6 | 0.00 | −12.32 [−17.04; −7.61] | 0.16 | −5.23 [−12.05; 1.60] |
| Plantar flexion—10 RM (kg) | 43.6 ± 17.4 | 70.9 ± 19.2 | 62.6 | 0.00 | −27.27 [−42.25; −12.30] | 34.3 ± 11.6 | 96.4 ± 25.6 | 296.7 | 0.00 | −62.14 [−75.42; −48.87] | 0.01 | −25.52 [−44.72; -.31] |
| Leg press—10 RM (kg) | 38.1 ± 11.7 | 61.8 ± 19.4 | 62.2 | 0.00 | −23.64 [−38.35; −8.92] | 32.1 ± 13.7 | 87.1 ± 25.8 | 171.3 | 0.00 | −55.00 68.05; −41.96] | 0.01 | −25.33 [−44.72; −5.93] |
| Leg extension—10 RM (kg) | 15.0 ± 4.5 | 23.2 ± 5.5 | 54.7 | 0.12 | −8.18 [−14.34; −2.02] | 11.6 ± 7.4 | 27.5 ± 12.1 | 137.1 | 0.00 | −15.89 [−21.38; −10.43] | 0.29 | −4.32 [−12.50; 3.86] |
| Leg curl—10 RM (kg) | 13.6 ± 3.9 | 27.5 ± 18.4 | 102.2 | 0.00 | −13.86 [−22.33; −5.40] | 12.9± 5.0 | 25.5± 8.0 | 97.7 | 0.00 | −12.68 [−20.18; −5.18] | 0.72 | 1.96 [−9.34; 13.26] |
| Pulldown—10 RM (kg) | 16.4 ± 4.5 | 21.4 ± 4.5 | 30.5 | 0.06 | −5.00 [−10.22; 0.22] | 16.1± 7.1 | 25.0± 9.8 | 55.2 | 0.00 | −8.93 [−13.55; −4.30] | 0.29 | −3.64 [−10.27; 2.99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosa, L.C.R.d.; Farinatti, P.d.T.V.; Batista, M.I.F.; Machado, H.R.S.N.; Jesus, V.H.S.d.; Dantas, W.d.N.; Dutra, P.M.L.; Silva, N.S.L.d. Effects of Resistance Training Combined with Vitamin D Supplementation on Health-Related Variables in the Elderly: Muscle Strength, Body Composition, and Inflammatory Status. Int. J. Environ. Res. Public Health 2025, 22, 1695. https://doi.org/10.3390/ijerph22111695
Rosa LCRd, Farinatti PdTV, Batista MIF, Machado HRSN, Jesus VHSd, Dantas WdN, Dutra PML, Silva NSLd. Effects of Resistance Training Combined with Vitamin D Supplementation on Health-Related Variables in the Elderly: Muscle Strength, Body Composition, and Inflammatory Status. International Journal of Environmental Research and Public Health. 2025; 22(11):1695. https://doi.org/10.3390/ijerph22111695
Chicago/Turabian StyleRosa, Lorena Cristina Ribeiro da, Paulo de Tarso Veras Farinatti, Maria Izabel Ferreira Batista, Hilene Ribeiro Santiago Navarro Machado, Vitor Hugo Silva de Jesus, Weslen do Nascimento Dantas, Patrícia Maria Lourenço Dutra, and Nádia Souza Lima da Silva. 2025. "Effects of Resistance Training Combined with Vitamin D Supplementation on Health-Related Variables in the Elderly: Muscle Strength, Body Composition, and Inflammatory Status" International Journal of Environmental Research and Public Health 22, no. 11: 1695. https://doi.org/10.3390/ijerph22111695
APA StyleRosa, L. C. R. d., Farinatti, P. d. T. V., Batista, M. I. F., Machado, H. R. S. N., Jesus, V. H. S. d., Dantas, W. d. N., Dutra, P. M. L., & Silva, N. S. L. d. (2025). Effects of Resistance Training Combined with Vitamin D Supplementation on Health-Related Variables in the Elderly: Muscle Strength, Body Composition, and Inflammatory Status. International Journal of Environmental Research and Public Health, 22(11), 1695. https://doi.org/10.3390/ijerph22111695

