Air Pollutants in Puerto Rico: Key Pollutants and Carcinogenic Properties
Abstract
1. Introduction
2. Methodology
3. Overview of Air Pollutants: Definitions and Classifications
Pollutant | NAAQS | Current Status in Puerto Rico | Major Sources | Key Health Effects |
---|---|---|---|---|
PM2.5 | Primary Annual: 12 µg/m3 Primary 24 h: 35 µg/m3 | In attainment. However, significant exceedances occur during Saharan dust events. | Combustion:
|
|
PM10 | Primary 24 h: 150 µg/m3 | In attainment |
| |
O3 | Primary 8 h: 0.070 ppm | In attainment | Not directly emitted
|
|
NO2 | Primary 1 h: 100 ppb Primary Annual: 53 ppb | In attainment | Combustion:
|
|
SO2 | Primary 1 h: 75 ppb | In attainment | Combustion:
|
|
CO | Primary 1 h: 35 ppm Primary 8 h: 9 ppm | In attainment | Incomplete combustion:
|
|
Pb | Primary 3-month average: 0.15 µg/m3 | In attainment |
|
|
4. Sources of HAPs in PR
Source Category | Potential Sources in PR | Key Carcinogenic Pollutants Emitted | Carcinogenic Classification Summary (IARC/EPA) [61,62] |
---|---|---|---|
Coal-Fired Power Plant | AES-PR Guayama coal plant | Arsenic, Chromium VI, Nickel, PAHs, Lead | Known/Group 1 (Arsenic, Chromium VI) |
Oil-Fired Power Plants | PREPA plants (multiple locations) | Benzene, Formaldehyde, Nickel, Vanadium | Known/Group 1 (Benzene, Formaldehyde) |
Medical Device Sterilizers | Steri-Tech (Salinas), Edwards, Lifesciences Technology (Añasco), Customed (Fajardo), and Medtronic (Villalba) | Ethylene Oxide (EtO) | Known/Group 1 |
Pharmaceutical and Chemical Mfg. | Pharma plants in Barceloneta | Methylene chloride, Chloroform | Probable/Group 2A (Methylene chloride) |
Petrochemical Storage | Peñuelas and Yabucoa oil terminals | Benzene, Vinyl chloride, Styrene | Known/Group 1 (Benzene, Vinyl chloride) |
Waste Disposal | Landfills (multiple), Open Burning | Dioxins, PCBs, Benzene, Mercury | Known/Group 1 (Dioxins, PCBs) |
Transportation–Road | ~3 million vehicles | Benzene, 1,3-butadiene, Diesel PM | Known/Group 1 |
Transportation–Marine/Air | Port of San Juan, SJU Airport | Benzene, PAHs, Formaldehyde, Nickel | Known/Group 1 (Benzene, PAHs) |
Natural Dust Events | Saharan dust episodes | Crystalline Silica (in PM) | Known/Group 1 |
Military/Ordnance | Vieques bombing range (historic) | RDX, 2,4,6-trinitrotoluene (TNT), Lead, Uranium | Probable/Group 2A (TNT) |
Agricultural Emissions | Sugar cane burning, Fumigation | Benzo[a]pyrene (BaP), Atrazine, Paraquat | Known/Group 1 (BaP), Group 2B (Atrazine) |
5. Carcinogenic Pollutants and Toxicological Evidence in PR
Air Pollutants | Concentration (µg/m3) [7,9,10,27,44,63,90,91,92,93] | Years | Location | Midpoint (µg/m3) | IUR per (µg/m3) a [7,63,94,95,96,97,98] | RfC (mg/m3) b [7,63,94,95,96,97,98,99,100] | LCR c | CRL d [101] | HQ e |
---|---|---|---|---|---|---|---|---|---|
1,3-Butadiene | 0.1–0.3 | 2015–2016 | Salinas | 0.2 | 3.00 × 10−5 | 2.00 × 10−3 | 6.00 × 10−6 | Moderate | 0.10 |
Acetaldehyde | 1.0–2.0 | 2015–2016 | Salinas | 1.5 | 2.20 × 10−6 | 3.00 × 10−5 | 3.30 × 10−6 | Moderate | 50 |
Acrolein | 0.02–0.05 | 2015–2016 | Salinas | 0.04 | 2.00 × 10−5 | 1.75 | |||
NH3 | 1.0–3.0 | 2015–2016 | Salinas | 2.0 | 0.1 | 2.00 × 10−2 | |||
Arsenic (Inorganic) | 0.0005–0.0023 | 2015–2016 | Salinas | 0.0014 | 4.30 × 10−3 | 1.50 × 10−5 | 6.02 × 10−6 | Moderate | 9.33 × 10−2 |
Benzene | 0.2–0.5 | 2015–2016 | Salinas | 0.35 | 7.80 × 10−6 | 3.00 × 10−2 | 2.73 × 10−6 | Moderate | 1.17 × 10−2 |
BaP (PAH) | 0.0001–0.0005 | 2015–2016 | Salinas | 0.0003 | 6.00 × 10−4 | 2.00 × 10−6 | 1.80 × 10−7 | Low | 0.15 |
Cadmium | 0.003–0.007 | 2015–2016 | Salinas | 0.005 | 1.80 × 10−3 | 1.00 × 10−5 | 9.00 × 10−6 | Moderate | 0.50 |
CO | 600–10,000 | 2017 | San Juan | 5,300 | 23.0 | 0.23 | |||
Chloroform | 0.1–0.3 | 2015–2016 | Salinas | 0.2 | 2.30 × 10−5 | 1.95 × 10−3 | 4.60 × 10−6 | Moderate | 0.10 |
Chromium VI | 0.0001–0.0005 | 2015–2016 | Salinas | 0.0003 | 1.80 × 10−2 | 3.00 × 10−5 | 5.40 × 10−6 | Moderate | 1.00 × 10−2 |
Diesel PM | 7.0–12.0 | 2017–2018 | San Juan, Bayamón | 9.5 | 3.00 × 10−4 | 2. 85 × 10−3 | High | ||
Ethylbenzene | 0.6–1.5 | 2015–2016 | Salinas | 1.05 | 2.50 × 10−6 | 1.0 | 2.63 × 10−6 | Moderate | 1.05 × 10−3 |
EtO | 0.3–121 | 2023 | Salinas | 60.7 | 3.00 × 10−3 | 3.00 × 10−5 | 0.18 | High | 2,022 |
Formaldehyde | 1.0–3.0 | 2015–2016 | Salinas | 2.0 | 1.30 × 10−5 | 8.00 × 10−3 | 2.20 × 10−5 | Elevated | 0.29 |
Lead (Inorganic) | 0.05–0.2 | 2015–2016 | Salinas | 0.125 | 1.20 × 10−5 | 1.50 × 10−6 | Moderate | ||
Mercury (Elemental) | 0.0005–0.0015 | 2015–2016 | Salinas | 0.001 | 3.00 × 10−4 | 3.00 × 10−4 | 3.00 × 10−7 | Low | 3.33 × 10−3 |
Methylene Chloride | 0.1–0.5 | 2015–2016 | Salinas | 0.3 | 1.00 × 10−8 | 0.60 | 3.00 × 10−9 | Low | 5.00 × 10−4 |
MTBE | 0.5–1.0 | 2015–2016 | Salinas | 0.75 | 2.60 × 10−7 | 30.0 | 1.95× 10−7 | Low | 2.50 × 10−5 |
Nickel (dust) | 0.0012–0.0034 | 2015–2016 | Salinas | 0.0023 | 2.60 × 10−4 | 1.00 × 10−5 | 5.52 × 10−7 | Low | 0.23 |
NO2 | 2.4–97 | 2016–2017 | Peñuelas | 49.7 | 0.47 | 0.11 | |||
O3 | 50–100 | 2015–2017 | San Juan, Ponce | 75.0 | 0.18 | 0.42 | |||
Phosgene | 0.1–0.3 | 2015–2016 | Salinas | 0.2 | 1.00 × 10−4 | 2.0 | |||
PM2.5 | 1.4–45.9 | 2015–2016 | Adjuntas, Ponce, Bayamón, Guayama, Fajardo, Guaynabo, Guayanilla, Humacao, San Juan | 23.7 | |||||
Silica (crystalline, PM10) | 0.3–0.6 | 2015–2016 | San Juan | 0.45 | 3.00 × 10−3 | 0.15 | |||
SO2 | 10–80 | 2017 | San Juan, Guayama | 45.0 | 2.62 × 10−2 | 1.72 | |||
Styrene | 0.5–1.5 | 2015–2016 | Salinas | 1.0 | 7.00 × 10−7 | 1.00 | 7.00 × 10−7 | 1.00 × 10−3 | |
TCDD | 0.000005–0.00002 | Peñuelas, Vieques | 0.000013 | 38.00 | 4.00 × 10−8 | 4.75 × 10−4 | High | 0.31 | |
TNT f | 0.2–0.4 | Historical (2000s) | Vieques | 0.3 | 0.0003 | 1.00 | |||
Toluene | 0.5–1.5 | 2015–2016 | Salinas | 1.0 | 5.00 | 2.00 × 10−4 | |||
Uranium | 0.1–0.3 | 2003–2005 | Vieques | 0.2 | 4.00 × 10−5 | 5.00 | |||
Vanadium (Pentoxide) | 0.0005–0.0015 | 2015–2016 | San Juan, Salinas | 0.001 | 8.30 × 10−3 | 7.00 × 10−6 | 8.30 × 10−6 | Moderate | 0.14 |
Vinyl Chloride | 0.1–0.5 | 2015–2016 | Salinas | 0.30 | 4.40 × 10−6 | 0.10 | 1.32 × 10−6 | Moderate | 3.00 × 10−3 |
Xylenes | 1.0–1.5 | 2015–2016 | Salinas | 1.25 | 0.10 | 1.25 × 10−2 |
6. Mechanisms of Respiratory-Related Carcinogenesis by Air Pollutants
Mechanism | Description | Example HAPs [4,6,63] |
---|---|---|
Direct DNA Damage (Genotoxicity) | Chemical binds to or chemically alters DNA, causing mutations if not repaired. |
|
Oxidative Stress and ROS | Overproduction of reactive oxygen species leading to DNA strand breaks, base damage; also, lipid peroxidation. |
|
Chronic Inflammation | Persistent activation of immune/inflammatory cells, releasing cytokines and ROS, promoting cell proliferation and DNA damage. |
|
Epigenetic Modification | Changes in gene expression without DNA mutation: DNA methylation, histone modification, microRNAs. |
|
Cytotoxicity and Proliferation | Cell injury or death followed by regenerative proliferation increases risk of cancerous growth. |
|
Receptor-Mediated Pathways | Activation of cellular receptors that drive proliferation or inhibit apoptosis. |
|
Immunosuppression | Impaired immune surveillance of tumors. |
|
Interaction of Mixed Exposures | Synergistic or additive effects of multiple pollutants. |
|
7. Other Respiratory Conditions Induced by Air Pollutants
8. Limitations and Recommendations
- a.
- Prioritize the expansion of the island’s air monitoring network by installing new, real-time sensors in high-risk industrial and residential areas to fill critical data gaps.
- b.
- Increase funding for large-scale, longitudinal cohort studies in PR to overcome the limitations of small-n studies.
- c.
- Review and strengthen regulations on industrial emissions of known carcinogens and HAPs, and ensure robust enforcement to protect nearby communities.
- d.
- Develop and maintain a publicly accessible platform or database that provides real-time air quality data and clear health advisories for all municipalities, empowering residents to take protective measures.
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- HEI. State of Global Air 2024: A Special Report on Global Exposure to Air Pollution and Its Health Impacts, with a Focus on Children’s Health. Available online: https://www.stateofglobalair.org/resources/report/state-global-air-report-2024 (accessed on 28 May 2025).
- WHO. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 10 April 2025).
- International Agency for Research on Cancer. Outdoor Air Pollution a Leading Environmental Cause of Cancer Deaths. Press Release No 221. Available online: https://www.iarc.who.int/wp-content/uploads/2018/07/pr221_E.pdf (accessed on 10 April 2025).
- Turner, M.C.; Andersen, Z.J.; Baccarelli, A.; Diver, W.R.; Gapstur, S.M.; Pope, C.A., 3rd; Prada, D.; Samet, J.; Thurston, G.; Cohen, A. Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA Cancer J. Clin. 2020, 70, 460–479. [Google Scholar] [CrossRef] [PubMed]
- Leitch, C. Air Pollution Found to Drive Lung Cancer in Non Smokers. Available online: https://www.labroots.com/trending/genetics-and-genomics/29299/air-pollution-found-drive-lung-cancer-smokers (accessed on 20 July 2025).
- Díaz-Gay, M.; Zhang, T.; Hoang, P.H.; Leduc, C.; Baine, M.K.; Travis, W.D.; Sholl, L.M.; Joubert, P.; Khandekar, A.; Zhao, W.; et al. The mutagenic forces shaping the genomes of lung cancer in never smokers. Nature 2025, 644, 133–144. [Google Scholar] [CrossRef]
- Subramanian, R.; Ellis, A.; Torres-Delgado, E.; Tanzer, R.; Malings, C.; Rivera, F.; Morales, M.; Baumgardner, D.; Presto, A.A.; Mayol-Bracero, O.L. Air Quality in Puerto Rico in the Aftermath of Hurricane Maria: A Case Study on the Use of Lower Cost Air Quality Monitors. ACS Earth Space Chem. 2018, 2, 1179–1186. [Google Scholar] [CrossRef]
- Jirau-Colón, H.; Cosme, A.; Marcial-Vega, V.; Jiménez-Vélez, B. Toxic Metals Depuration Profiles from a Population Adjacent to a Military Target Range (Vieques) and Main Island Puerto Rico. Int. J. Environ. Res. Public Health 2020, 17, 264. [Google Scholar] [CrossRef]
- Toro-Heredia, J.; Jirau-Colón, H.; Jiménez-Vélez, B.D. Linking PM2.5 organic constituents, relative toxicity and health effects in Puerto Rico. Environ. Chall. 2021, 5, 100350. [Google Scholar] [CrossRef]
- Jirau-Colón, H.; Toro-Heredia, J.; Layuno, J.; Calderon, E.D.; Gioda, A.; Jiménez-Vélez, B.D. Distribution of toxic metals and relative toxicity of airborne PM2.5 in Puerto Rico. Environ. Sci. Pollut. Res. 2021, 28, 16504–16516. [Google Scholar] [CrossRef]
- Massol-Deyá, A.; Pérez, D.; Pérez, E.; Berrios, M.; Diaz, E. Trace elements analysis in forage samples from a US Navy bombing range (Vieques, Puerto Rico). Int. J. Environ. Res. Public Health 2005, 2, 263–266. [Google Scholar] [CrossRef]
- Sanderson, H.; Patrik, F.; Steven, S.R.; Jesper, C.; Per, L.; Becker, T. Civilian exposure to munitions-specific carcinogens and resulting cancer risks for civilians on the Puerto Rican island of Vieques following military exercises from 1947 to 1998. Glob. Secur. Health Sci. Policy 2017, 2, 40–61. [Google Scholar] [CrossRef]
- Ortiz-Roque, C.; López-Rivera, Y. Mercury contamination in reproductive age women in a Caribbean island: Vieques. J. Epidemiol. Community Health 2004, 58, 756–757. [Google Scholar] [CrossRef]
- Yang, Z.; Fan, B.; Lu, Y.; Cao, Z.; Yu, S.; Fan, F.; Zhu, M. Malignant transformation of human bronchial epithelial cell (BEAS-2B) induced by depleted uranium. Ai Zheng 2002, 21, 944–948. [Google Scholar] [PubMed]
- Briner, W. The toxicity of depleted uranium. Int. J. Environ. Res. Public Health 2010, 7, 303–313. [Google Scholar] [CrossRef]
- Singh, P.; Tiwari, D.; Mishra, M.; Kumar, D. Molecular Mechanisms of Heavy Metal Toxicity in Cancer Progression. In Networking of Mutagens in Environmental Toxicology; Kesari, K.K., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 49–79. [Google Scholar]
- Rodríguez-Cotto, R.I.; Ortiz-Martínez, M.G.; Rivera-Ramírez, E.; Méndez, L.B.; Dávila, J.C.; Jiménez-Vélez, B.D. African Dust Storms Reaching Puerto Rican Coast Stimulate the Secretion of IL-6 and IL-8 and Cause Cytotoxicity to Human Bronchial Epithelial Cells (BEAS-2B). Health 2013, 5, 14–28. [Google Scholar] [CrossRef]
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today. Available online: https://gco.iarc.who.int/media/globocan/factsheets/populations/630-puerto-rico-fact-sheet.pdf (accessed on 10 August 2025).
- Tirado-Delgado, J.M. The Spatial and Temporal Distribution of Particulate Matter Pollution on the Island of Puerto Rico. Master’s Thesis, Howard University, Washington, DC, USA, 2009. [Google Scholar]
- U.S. Environmental Protection Agency. Hazardous Air Pollutants (HAPs). Available online: https://www.epa.gov/haps (accessed on 4 June 2025).
- Thurston, G.D. Outdoor Air Pollution: Sources, Atmospheric Transport and Human Health Effects; Academic Press: Cambridge, MA, USA, 2025; pp. 184–197. [Google Scholar]
- NHDoES. Criteria Pollutants. Available online: https://www.des.nh.gov/air/state-implementation-plans/criteria-pollutants (accessed on 25 April 2025).
- Kim, B.-J.; Kwon, J.-W.; Seo, J.-H.; Kim, H.-B.; Lee, S.-Y.; Park, K.-S.; Yu, J.; Kim, H.-C.; Leem, J.-H.; Sakong, J.; et al. Association of ozone exposure with asthma, allergic rhinitis, and allergic sensitization. Ann. Allergy Asthma Immunol. 2011, 107, 214–219.e211. [Google Scholar] [CrossRef]
- Chen, T.-M.; Kuschner, W.G.; Gokhale, J.; Shofer, S. Outdoor Air Pollution: Nitrogen Dioxide, Sulfur Dioxide, and Carbon Monoxide Health Effects. Am. J. Med. Sci. 2007, 333, 249–256. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 505570. [Google Scholar] [CrossRef] [PubMed]
- Ramírez Ortega, D.; González Esquivel, D.F.; Blanco Ayala, T.; Pineda, B.; Gómez Manzo, S.; Marcial Quino, J.; Carrillo Mora, P.; Pérez de la Cruz, V. Cognitive Impairment Induced by Lead Exposure during Lifespan: Mechanisms of Lead Neurotoxicity. Toxics 2021, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. News Release: EPA Proposes to Find That Two Areas in Puerto Rico do not Meet AQS for Sulfur Dioxide and Proposes to Approve Elements of Puerto Rico’s Plan to Improve Air Quality. Available online: https://www.epa.gov/newsreleases/epa-proposes-find-two-areas-puerto-rico-do-not-meet-air-quality-standards-sulfur-0 (accessed on 4 June 2025).
- U.S. Environmental Protection Agency. Initial List of Hazardous Air Pollutants with Modifications. Available online: https://www.epa.gov/haps/initial-list-hazardous-air-pollutants-modifications#mods (accessed on 4 June 2025).
- U.S. Environmental Protection Agency. Health and Environmental Effects of Hazardous Air Pollutants. Available online: https://www.epa.gov/haps/health-and-environmental-effects-hazardous-air-pollutants (accessed on 4 June 2025).
- U.S. Environmental Protection Agency. Air Data: Air Quality Data Collected at Outdoor Monitors Across the US. Available online: https://www.epa.gov/outdoor-air-quality-data (accessed on 4 June 2025).
- UoCS. Ethylene Oxide in Puerto Rico. Available online: https://www.ucs.org/resources/puerto-rico (accessed on 25 April 2025).
- Earthjustice. Toxic Coal Ash in Puerto Rico: The Hazardous Legacy of the AES-PR Coal Plant. Available online: https://earthjustice.org/feature/coal-ash-states/puerto-rico (accessed on 25 April 2025).
- Lafarga Previdi, I.; Vélez Vega, C.M. Health Disparities Research Framework Adaptation to Reflect Puerto Rico’s Socio-Cultural Context. Int. J. Environ. Res. Public Health 2020, 17, 8544. [Google Scholar] [CrossRef]
- Loyo-Berríos, N.I.; Irizarry, R.; Hennessey, J.G.; Tao, X.G.; Matanoski, G. Air Pollution Sources and Childhood Asthma Attacks in Cataño, Puerto Rico. Am. J. Epidemiol. 2007, 165, 927–935. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency. The Battery Recycling Company, Superfund Site Profile, Superfund Site Information. Available online: https://cumulis.epa.gov/supercpad/SiteProfiles/index.cfm?fuseaction=second.cleanup&id=0206263 (accessed on 11 June 2025).
- PBS. PBS NewsHour: Coal Ash Raising Concerns Over Health Risks in Puerto Rico. Available online: https://www.pbs.org/newshour/show/coal-ash-raising-concerns-over-health-risks-in-puerto-rico (accessed on 25 April 2025).
- Rosado Lebrón, J.A. EPA Took Six Years to Regulate Toxic Emission in Puerto Rico That Could Cause Cancer; Centro de Periodismo Investigativo (CPI): San Juan, Puerto Rico, 2022. [Google Scholar]
- U.S. Environmental Protection Agency. EPA Gives Public Picture of Puerto Rico’s Environmental Releases: Many New Industry Groups, Including Utilities, Report Toxic Releases for First Time; U.S. Environmental Protection Agency: Washington, DC, USA, 2000.
- Madrigal, J.M.; Flory, A.; Fisher, J.A.; Sharp, E.; Graubard, B.I.; Ward, M.H.; Jones, R.R. Sociodemographic inequities in the burden of carcinogenic industrial air emissions in the United States. J. Natl. Cancer Inst. 2024, 116, 737–744. [Google Scholar] [CrossRef]
- Padilla Dalmau, C.A.; Ocasio Torres, M.E. Disaster Debris Is Pushing Puerto Rico’s Landfills to the Brink. Available online: https://economichardship.org/2022/10/disaster-debris-is-pushing-puerto-ricos-landfills-to-the-brink/ (accessed on 27 July 2025).
- International Agency for Research on Cancer. Diesel and Gasoline Engine Exhausts and Some Nitroarenes. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2014; Volume 105, pp. 9–699. [Google Scholar]
- Silverman, D.T. Diesel Exhaust and Lung Cancer-Aftermath of Becoming an IARC Group 1 Carcinogen. Am. J. Epidemiol. 2018, 187, 1149–1152. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Toxics Release Inventory (TRI) Program: 2019 TRI National Analysis. Available online: https://www.epa.gov/trinationalanalysis (accessed on 20 May 2025).
- Reid, J.S. Analysis of measurements of Saharan dust by airborne and ground-based remote sensing methods during the Puerto Rico Dust Experiment (PRIDE). J. Geophys. Res. 2003, 108, 8586. [Google Scholar] [CrossRef]
- Ortiz-Martínez, M.G.; Rodríguez-Cotto, R.I.; Ortiz-Rivera, M.A.; Pluguez-Turull, C.W.; Jiménez-Vélez, B.D. Linking Endotoxins, African Dust PM10 and Asthma in an Urban and Rural Environment of Puerto Rico. Mediat. Inflamm. 2015, 2015, 784212. [Google Scholar] [CrossRef]
- Morales-Medina, M.; Ortíz-Martínez, A.P.; Pérez-Cardona, C.M.; Rueda-Roa, D.; Otis, D.; Pérez-Matías, E.; Muller-Karger, F.; Mayol-Bracero, O.; Méndez-Lázaro, P. Who Is Affected by Saharan Dust in the Caribbean? A Spatial Analysis and Citizen’s Perspective from Puerto Rico during the Godzilla Dust Event in June 2020. Weather Clim. Soc. 2024, 16, 205–219. [Google Scholar] [CrossRef]
- Sabia, S.; Morris, K.R. NASA Helps Puerto Rico Prepare for Saharan Dust Impacts, 2020. Available online: https://www.nasa.gov/missions/aqua/nasa-helps-puerto-rico-prepare-for-saharan-dust-impacts (accessed on 25 April 2025).
- Horwell, C.J.; Baxter, P.J. The respiratory health hazards of volcanic ash: A review for volcanic risk mitigation. Bull. Volcanol. 2006, 69, 1–24. [Google Scholar] [CrossRef]
- Kim, B.M.; Seo, J.; Kim, J.Y.; Lee, J.Y.; Kim, Y. Transported vs. local contributions from secondary and biomass burning sources to PM2.5. Atmos. Environ. 2016, 144, 24–36. [Google Scholar] [CrossRef]
- Pathak, G.; Nichter, M.; Hardon, A.; Moyer, E. The Open Burning of Plastic Wastes is an Urgent Global Health Issue. Ann. Glob. Health 2024, 90, 3. [Google Scholar] [CrossRef]
- Sierra, C. Army Corps Engineers Begin Burning Hurricane Debris in Puerto Rico. Available online: https://www.sierraclub.org/press-releases/2018/02/army-corps-engineers-begin-burning-hurricane-debris-puerto-rico (accessed on 27 July 2025).
- Zúñiga-Venegas Liliana, A.; Hyland, C.; Muñoz-Quezada María, T.; Quirós-Alcalá, L.; Butinof, M.; Buralli, R.; Cardenas, A.; Fernandez Ricardo, A.; Foerster, C.; Gouveia, N.; et al. Health Effects of Pesticide Exposure in Latin American and the Caribbean Populations: A Scoping Review. Environ. Health Perspect. 2022, 130, 96002. [Google Scholar] [CrossRef] [PubMed]
- Santiago, X.B.; Rivera, D.; Pabon, A.; Garcia, A. An Examination of the Use of Pesticides in Puerto Rican Agriculture. RURALS Rev. Undergrad. Res. Agric. Life Sci. 2016, 10, 1. [Google Scholar]
- U.S. Environmental Protection Agency. Paraquat Dichloride: Tier II Epidemiology Report. Available online: https://19january2021snapshot.epa.gov/sites/static/files/2019-08/documents/paraquat_epi_review.pdf (accessed on 4 June 2025).
- Bryant, D.J.; Nelson, B.S.; Swift, S.J.; Budisulistiorini, S.H.; Drysdale, W.S.; Vaughan, A.R.; Newland, M.J.; Hopkins, J.R.; Cash, J.M.; Langford, B.; et al. Biogenic and anthropogenic sources of isoprene and monoterpenes and their secondary organic aerosol in Delhi, India. Atmos. Chem. Phys. 2023, 23, 61–83. [Google Scholar] [CrossRef]
- Hantson, S.; Knorr, W.; Schurgers, G.; Pugh, T.A.M.; Arneth, A. Global isoprene and monoterpene emissions under changing climate, vegetation, CO2 and land use. Atmos. Environ. 2017, 155, 35–45. [Google Scholar] [CrossRef]
- McFiggans, G.; Mentel, T.F.; Wildt, J.; Pullinen, I.; Kang, S.; Kleist, E.; Schmitt, S.; Springer, M.; Tillmann, R.; Wu, C.; et al. Secondary organic aerosol reduced by mixture of atmospheric vapours. Nature 2019, 565, 587–593. [Google Scholar] [CrossRef]
- Xu, L.; Guo, H.; Boyd, C.M.; Klein, M.; Bougiatioti, A.; Cerully, K.M.; Hite, J.R.; Isaacman-VanWertz, G.; Kreisberg, N.M.; Knote, C.; et al. Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States. Proc. Natl. Acad. Sci. USA 2015, 112, 37–42. [Google Scholar] [CrossRef]
- Weng, H.; Lin, J.; Martin, R.; Millet, D.B.; Jaeglé, L.; Ridley, D.; Keller, C.; Li, C.; Du, M.; Meng, J. Global high-resolution emissions of soil NOx, sea salt aerosols, and biogenic volatile organic compounds. Sci. Data 2020, 7, 148. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.M.; Doherty, R.M.; O’Connor, F.M.; Mann, G.W. The impact of biogenic, anthropogenic, and biomass burning volatile organic compound emissions on regional and seasonal variations in secondary organic aerosol. Atmos. Chem. Phys. 2018, 18, 7393–7422. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Agents Classified by the IARC Monographs, Volumes 1–138. Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 22 May 2025).
- International Agency for Research on Cancer. Monographs on the Identification of Carcinogenic Hazards to Humans. Available online: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans (accessed on 22 May 2025).
- U.S. Environmental Protection Agency. IRIS Advanced Search. Available online: https://cfpub.epa.gov/ncea/iris/search/index.cfm (accessed on 4 June 2025).
- U.S. Environmental Protection Agency. 2014 National Air Toxics Assessment (NATA) Summary of Results. Available online: https://www.epa.gov/sites/default/files/2020-07/documents/nata_2014_summary_of_results.pdf (accessed on 4 June 2025).
- U.S. Environmental Protection Agency. Integrated Risk Information System (IRIS). Available online: https://iris.epa.gov (accessed on 4 June 2025).
- International Agency for Research on Cancer. Chemical Agents and Related Occupations; International Agency for Research on Cancer: Lyon, France, 2012; Volume 100F.
- U.S. Environmental Protection Agency. Fajardo, Puerto Rico (Customed, Inc.). Available online: https://www.epa.gov/hazardous-air-pollutants-ethylene-oxide/forms/fajardo-puerto-rico-customed-inc (accessed on 25 September 2025).
- U.S. Environmental Protection Agency. Villalba, Puerto Rico (Medtronic PR Operation Co.). Available online: https://www.epa.gov/hazardous-air-pollutants-ethylene-oxide/forms/villalba-puerto-rico-medtronic-pr-operation-co (accessed on 25 September 2025).
- U.S. Environmental Protection Agency. Salinas, Puerto Rico (Steri-Tech, Inc.). Available online: https://www.epa.gov/hazardous-air-pollutants-ethylene-oxide/forms/salinas-puerto-rico-steri-tech-inc (accessed on 25 September 2025).
- U.S. Environmental Protection Agency. Añasco, Puerto Rico (Edwards Lifescciences). Available online: https://www.epa.gov/hazardous-air-pollutants-ethylene-oxide/forms/anasco-puerto-rico-edwards-lifesciences (accessed on 25 September 2025).
- Shaked, Y.; Yang, J.; Monaghan, M.; van Gerwen, M. The Association between Metals and Thyroid Cancer in Puerto Rico—A National Health and Nutrition Examination Survey Analysis and Ecological Study. Toxics 2024, 12, 632. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021.
- Lydersen, K. In Puerto Rico, Residents Wait for Accountability, Cleanup of Toxic Coal Ash “Caminos Blancos”—Sierra Nevada Ally. Available online: https://sierranevadaally.org/2023/10/15/in-puerto-rico-residents-wait-for-accountability-cleanup-of-toxic-coal-ash-caminos-blancos/ (accessed on 20 June 2025).
- CDPI. Damage by Coal Ash to the Southern Aquifer Cannot Be Undone. Available online: https://periodismoinvestigativo.com/2019/03/damage-by-coal-ash-to-the-southern-aquifer-cannot-be-undone/ (accessed on 20 June 2025).
- Evans, L. Ash in Lungs: How Breathing Coal Ash is Hazardous to Your Health. Available online: https://earthjustice.org/article/ash-in-lungs-how-breathing-coal-ash-is-hazardous-to-your-health (accessed on 20 June 2025).
- CDPI. Centro de Periodismo Investigativo (CDPI): Gobierno Aprueba Ley Contra Las Cenizas, Pero se Enreda en su Aplicación. Available online: https://periodismoinvestigativo.com/2017/07/gobierno-aprueba-ley-contra-las-cenizas-pero-se-enreda-en-su-aplicacion/ (accessed on 20 June 2025).
- U.S. Environmental Protection Agency. EPA Settlement with AES Requires More Monitoring and Payment of Penalty for Clean Air Act Violations in Guayama, Puerto Rico. Available online: https://www.epa.gov/newsreleases/epa-settlement-aes-requires-more-monitoring-and-payment-penalty-clean-air-act (accessed on 4 June 2025).
- Kantrow, M. EPA Slaps $3.1M Fine on AES Puerto Rico, Requires More Monitoring. Available online: https://newsismybusiness.com/epa-slaps-3-1m-fine-on-aes-puerto-rico-requires-more-monitoring/ (accessed on 20 June 2025).
- Aponte, J. Corporations Are Poisoning People in Puerto Rico with Coal Ash. Available online: https://truthout.org/articles/corporations-are-poisoning-people-in-puerto-rico-with-coal-ash/ (accessed on 20 June 2025).
- Dávila-Ruhaak, S. Making the Case for a Right to a Healthy Environment for the Protection of Vulnerable Communities: A Case of Coal-Ash Disaster in Puerto Rico. Mich. J. Environ. Adm. Law 2020, 9, 379. [Google Scholar]
- Joshi, D.R.; Adhikari, N. An Overview on Common Organic Solvents and Their Toxicity. J. Pharm. Res. Int. 2019, 28, 1–18. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Formaldehyde: ToxGuide; U.S. Department of Health and Human Services: Washington, DC, USA, 1999.
- Patton, A.N.; Levy-Zamora, M.; Fox, M.; Koehler, K. Benzene Exposure and Cancer Risk from Commercial Gasoline Station Fueling Events Using a Novel Self-Sampling Protocol. Int. J. Environ. Res. Public Health 2021, 18, 1872. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Ethylbenzene: ToxGuide; U.S. Department of Health and Human Services: Washington, DC, USA, 2012.
- Energy Policy Institute at the University of Chicago. United States Fact Sheet; Air Quality Life Index (AQLI); Energy Policy Institute at the University of Chicago: Chicago, IL, USA, 2025. [Google Scholar]
- Matos-Espinosa, C.; Delanoy, R.; Caballero-González, C.; Hernández-Garces, A.; Jauregui-Haza, U.; Bonilla-Duarte, S.; Martínez-Batlle, J.-R. Assessment of PM10 and PM2.5 Concentrations in Santo Domingo: A Comparative Study Between 2019 and 2022. Atmosphere 2025, 16, 734. [Google Scholar] [CrossRef]
- Ho, G.Y.; Figueroa-Vallés, N.R.; De La Torre-Feliciano, T.; Tucker, K.L.; Tortolero-Luna, G.; Rivera, W.T.; Jiménez-Velázquez, I.Z.; Ortiz-Martínez, A.P.; Rohan, T.E. Cancer disparities between mainland and island Puerto Ricans. Rev. Panam. Salud Publica 2009, 25, 394–400. [Google Scholar] [CrossRef]
- Figueroa-Vallés, N.R.; Ortiz-Ortiz, K.J.; Pérez-Ríos, N.; Villanueva-Rosa, E.; Traverso-Ortiz, M.; Torres-Cintrón, C.R.; Suárez-Ramos, T. Cancer in Puerto Rico, 2004–2009; Puerto Rico Central Cancer Registry: San Juan, Puerto Rico, 2012. [Google Scholar]
- Fernández Porto, J. Vieques: Environmental and Ecological Damage. Diálogo 2000, 4, 7. [Google Scholar]
- American Lung Association. State of the Air: San Juan–Bayamón, PR MSA.; American Lung Association: Chicago, IL, USA, 2025. [Google Scholar]
- U.S. Environmental Protection Agency. Sampling the Air for Ethylene Oxide Near the Steri-Tech, Inc. Facility in Salinas, PR.; U.S. Environmental Protection Agency: New York, NY, USA, 2023.
- Reece, S.; Williams, R.; Colón, M.; Southgate, D.; Huertas, E.; O’Shea, M.; Iglesias, A.; Sheridan, P. Spatial-Temporal Analysis of PM(2.5) and NO2 Concentrations Collected Using Low-Cost Sensors in Peñuelas, Puerto Rico. Sensors 2018, 18, 4314. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry. Public Health Assessment: Isla de Vieques, Puerto Rico; U.S. Department of Health and Human Services: Atlanta, GA, USA, 2003.
- Remigio, R.V.; Andreotti, G.; Sandler, D.P.; Erickson, P.A.; Koutros, S.; Albert, P.S.; Hurwitz, L.M.; Parks, C.G.; Lubin, J.H.; Hofmann, J.N.; et al. An Updated Evaluation of Atrazine-Cancer Incidence Associations among Pesticide Applicators in the Agricultural Health Study Cohort. Environ. Health Perspect. 2024, 132, 27010. [Google Scholar] [CrossRef]
- NCBI. NIH. PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 22 May 2025).
- U.S. Environmental Protection Agency. Technical Fact Sheet—2,4,6-Trinitrotoluene (TNT). U.S. Environmental Protection Agency: New York, NY, USA, 2014. [Google Scholar]
- U.S. Environmental Protection Agency. NAAQS Table. Available online: https://www.epa.gov/criteria-air-pollutants/naaqs-table#4 (accessed on 22 May 2025).
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency. Chronic Toxicity Summary: Silica (Crystalline, Respirable); Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency: Oakland, CA, USA, 2005. [Google Scholar]
- U.S. Environmental Protection Agency. Methods for Derivation of Inhalation Reference Concentrations and Application of Inhalation Dosimetry; EPA/600/8-90/066F; U.S. Environmental Protection Agency: Washington, DC, USA, 1994.
- U.S. Environmental Protection Agency. A Review of the Reference Dose and Reference Concentration Processes; EPA/630/P-02/002F; U.S. Environmental Protection Agency: Washington, DC, USA, 2002.
- U.S. Environmental Protection Agency. Risk Assessment Guidance for Superfund (RAGS); EPA/540/1-89/002; U.S. Environmental Protection Agency: Washington, DC, USA, 1989.
- Yu, X.J.; Yang, M.J.; Zhou, B.; Wang, G.Z.; Huang, Y.C.; Wu, L.C.; Cheng, X.; Wen, Z.S.; Huang, J.Y.; Zhang, Y.D.; et al. Characterization of Somatic Mutations in Air Pollution-Related Lung Cancer. EBioMedicine 2015, 2, 583–590. [Google Scholar] [CrossRef]
- Mudipalli, A. Airborne Carcinogens: Mechanisms of Cancer. In Air Pollution and Health Effects; Nadadur, S.S., Hollingsworth, J.W., Eds.; Springer: London, UK, 2015; pp. 151–184. [Google Scholar]
- Wang, L.H.; Wu, C.F.; Rajasekaran, N.; Shin, Y.K. Loss of Tumor Suppressor Gene Function in Human Cancer: An Overview. Cell. Physiol. Biochem. 2018, 51, 2647–2693. [Google Scholar] [CrossRef]
- Cho, A.K.; Sioutas, C.; Miguel, A.H.; Kumagai, Y.; Schmitz, D.A.; Singh, M.; Eiguren-Fernandez, A.; Froines, J.R. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. Environ. Res. 2005, 99, 40–47. [Google Scholar] [CrossRef]
- Lee, C.W.; Vo, T.T.T.; Wu, C.Z.; Chi, M.C.; Lin, C.M.; Fang, M.L.; Lee, I.T. The Inducible Role of Ambient Particulate Matter in Cancer Progression via Oxidative Stress-Mediated Reactive Oxygen Species Pathways: A Recent Perception. Cancers 2020, 12, 2505. [Google Scholar] [CrossRef]
- Li, T.; Hu, R.; Chen, Z.; Li, Q.; Huang, S.; Zhu, Z.; Zhou, L.F. Fine particulate matter (PM(2.5)): The culprit for chronic lung diseases in China. Chronic Dis. Transl. Med. 2018, 4, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Hoek, G.; Chang, L.Y.; Bo, Y.; Lin, C.; Huang, B.; Chan, T.C.; Tam, T.; Lau, A.K.H.; Lao, X.Q. Long-Term Exposure to Ambient Fine Particulate Matter (PM2.5) and Lung Function in Children, Adolescents, and Young Adults: A Longitudinal Cohort Study. Environ. Health Perspect. 2019, 127, 127008. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Yoon, S.J.; Choi, S.; Jung, J.; Park, J.Y.; Park, Y.H.; Seo, J.; Lee, J.; Lee, M.S.; Lee, S.J.; et al. Particulate matter promotes cancer metastasis through increased HBEGF expression in macrophages. Exp. Mol. Med. 2022, 54, 1901–1912. [Google Scholar] [CrossRef] [PubMed]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef]
- Baccarelli, A.; Wright, R.O.; Bollati, V.; Tarantini, L.; Litonjua, A.A.; Suh, H.H.; Zanobetti, A.; Sparrow, D.; Vokonas, P.S.; Schwartz, J. Rapid DNA Methylation Changes after Exposure to Traffic Particles. Am. J. Respir. Crit. Care Med. 2009, 179, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Mostafavi, N.; Vermeulen, R.; Ghantous, A.; Hoek, G.; Probst-Hensch, N.; Herceg, Z.; Tarallo, S.; Naccarati, A.; Kleinjans, J.C.S.; Imboden, M.; et al. Acute changes in DNA methylation in relation to 24 h personal air pollution exposure measurements: A panel study in four European countries. Environ. Int. 2018, 120, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Liu, X.-Y.; Sheng, Y.-H.; Li, S.-Q.; Zhang, D.; Chen, B.; Yu, P.; Li, Z.-Y.; Li, S.; Xu, R.-B. Ambient air pollution and the risk of cancer: Evidence from global cohort studies and epigenetic-related causal inference. J. Hazard. Mater. 2025, 489, 137619. [Google Scholar] [CrossRef]
- Wu, H.; Eckhardt, C.M.; Baccarelli, A.A. Molecular mechanisms of environmental exposures and human disease. Nat. Rev. Genet. 2023, 24, 332–344. [Google Scholar] [CrossRef]
- Szende, B.; Tyihák, E. Effect of formaldehyde on cell proliferation and death. Cell Biol. Int. 2010, 34, 1273–1282. [Google Scholar] [CrossRef]
- Vogeley, C.; Sondermann, N.C.; Woeste, S.; Momin, A.A.; Gilardino, V.; Hartung, F.; Heinen, M.; Maaß, S.K.; Mescher, M.; Pollet, M.; et al. Unraveling the differential impact of PAHs and dioxin-like compounds on AKR1C3 reveals the EGFR extracellular domain as a critical determinant of the AHR response. Environ. Int. 2022, 158, 106989. [Google Scholar] [CrossRef]
- Kelly-Reif, K.; Bertke, S.J.; Stayner, L.; Steenland, K. Exposure to Ethylene Oxide and Relative Rates of Female Breast Cancer Mortality: 62 Years of Follow-Up in a Large US Occupational Cohort. Environ. Health Perspect. 2025, 133, 057013. [Google Scholar] [CrossRef]
- Sampson, J.N.; Falk, R.T.; Schairer, C.; Moore, S.C.; Fuhrman, B.J.; Dallal, C.M.; Bauer, D.C.; Dorgan, J.F.; Shu, X.-O.; Zheng, W.; et al. Association of Estrogen Metabolism with Breast Cancer Risk in Different Cohorts of Postmenopausal Women. Cancer Res. 2017, 77, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.-J.; Siao, S.-H.; Hsu, C.-H.; Chang, C.-Y.; Chang, L.W.; Wu, C.-H.; Lin, P.; Wang, Y.-J. TCDD Promotes Lung Tumors via Attenuation of Apoptosis through Activation of the Akt and ERK1/2 Signaling Pathways. PLoS ONE 2014, 9, e99586. [Google Scholar] [CrossRef] [PubMed]
- Buñay, J.; Kossai, M.; Damon-Soubeyrant, C.; De Haze, A.; Saru, J.P.; Trousson, A.; de Joussineau, C.; Bouchareb, E.; Kocer, A.; Vialat, M.; et al. Persistent organic pollutants promote aggressiveness in prostate cancer. Oncogene 2023, 42, 2854–2867. [Google Scholar] [CrossRef]
- Beyersmann, D.; Hartwig, A. Carcinogenic metal compounds: Recent insight into molecular and cellular mechanisms. Arch. Toxicol. 2008, 82, 493–512. [Google Scholar] [CrossRef]
- Wu, X.; Ciminieri, C.; Bos, I.S.T.; Woest, M.E.; D’Ambrosi, A.; Wardenaar, R.; Spierings, D.C.J.; Königshoff, M.; Schmidt, M.W.I.; Kistemaker, L.E.M.; et al. Diesel exhaust particles distort lung epithelial progenitors and their fibroblast niche. Environ. Pollut. 2022, 305, 119292. [Google Scholar] [CrossRef] [PubMed]
- Risom, L.; Møller, P.; Loft, S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2005, 592, 119–137. [Google Scholar] [CrossRef] [PubMed]
- Potera, C. Making Sense of Carcinogens: A New Method for Navigating Mechanistic Data. Environ. Health Perspect. 2016, 124, A113. [Google Scholar] [CrossRef] [PubMed]
- DeMarini, D.M.; Gwinn, W.; Watkins, E.; Reisfeld, B.; Chiu, W.A.; Zeise, L.; Barupal, D.; Bhatti, P.; Cross, K.; Dogliotti, E.; et al. IARC Workshop on the Key Characteristics of Carcinogens: Assessment of End Points for Evaluating Mechanistic Evidence of Carcinogenic Hazards. Environ. Health Perspect. 2025, 133, 25001. [Google Scholar] [CrossRef]
- Brender, J.D.; Maantay, J.A.; Chakraborty, J. Residential Proximity to Environmental Hazards and Adverse Health Outcomes. Am. J. Public Health 2011, 101, S37–S52. [Google Scholar] [CrossRef]
- NASEM. Using 21st Century Science to Improve Risk-Related Evaluations; The National Academies Press: Washington, DC, USA, 2017; p. 200. [Google Scholar]
- Prüss-Üstün, A.; Wolf, J.; Corvalán, C.; Bos, R.; Neira, D.M. Preventing Disease Through Healthy Environments; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Guarnieri, M.; Balmes, J.R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592. [Google Scholar] [CrossRef]
- WHO. Executive Summary: Guidelines for Indoor Air Quality: Selected Pollutants; WHO: Geneva, Switzerland, 2010.
- Rai, R.; El-Zaemey, S.; Dorji, N.; Fritschi, L. Occupational exposures to hazardous chemicals and agents among healthcare workers in Bhutan. Am. J. Ind. Med. 2020, 63, 1109–1115. [Google Scholar] [CrossRef]
- Bello, A.; Xue, Y.; Gore, R.; Woskie, S.; Bello, D. Assessment and control of exposures to polymeric methylene diphenyl diisocyanate (pMDI) in spray polyurethane foam applicators. Int. J. Hyg. Environ. Health 2019, 222, 804–815. [Google Scholar] [CrossRef]
- Aslam, R.; Sharif, F.; Baqar, M.; Nizami, A.S.; Ashraf, U. Role of ambient air pollution in asthma spread among various population groups of Lahore City: A case study. Environ. Sci. Pollut. Res. Int. 2023, 30, 8682–8697. [Google Scholar] [CrossRef] [PubMed]
- Kamis, A.; Cao, R.; He, Y.; Tian, Y.; Wu, C. Predicting Lung Cancer in the United States: A Multiple Model Examination of Public Health Factors. Int. J. Environ. Res. Public Health 2021, 18, 6127. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Wang, J.; Sun, J.; Xin, L. PM2.5 induces inflammatory responses via oxidative stress-mediated mitophagy in human bronchial epithelial cells. Toxicol. Res. 2022, 11, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Loomis, D.; Grosse, Y.; Lauby-Secretan, B.; Ghissassi, F.E.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Baan, R.; Mattock, H.; Straif, K. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013, 14, 1262–1263. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Puerto Rico Grid Resilience and Transitions to 100% Renewable Energy Study (PR100). Available online: https://www.energy.gov/gdo/puerto-rico-grid-resilience-and-transitions-100-renewable-energy-study-pr100 (accessed on 4 June 2025).
- U.S. Environmental Protection Agency. Guidelines for Carcinogen Risk Assessment; EPA/630/P-03/001F; U.S. Environmental Protection Agency: Washington, DC, USA, 2005.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaya, D.; Santiago, C.; Pernas, E.; Truong, S.; Martinez, G.; Méndez, L.B.; Delgado, Y. Air Pollutants in Puerto Rico: Key Pollutants and Carcinogenic Properties. Int. J. Environ. Res. Public Health 2025, 22, 1549. https://doi.org/10.3390/ijerph22101549
Kaya D, Santiago C, Pernas E, Truong S, Martinez G, Méndez LB, Delgado Y. Air Pollutants in Puerto Rico: Key Pollutants and Carcinogenic Properties. International Journal of Environmental Research and Public Health. 2025; 22(10):1549. https://doi.org/10.3390/ijerph22101549
Chicago/Turabian StyleKaya, Devrim, Clara Santiago, Enrique Pernas, Sammy Truong, Greicha Martinez, Loyda B. Méndez, and Yamixa Delgado. 2025. "Air Pollutants in Puerto Rico: Key Pollutants and Carcinogenic Properties" International Journal of Environmental Research and Public Health 22, no. 10: 1549. https://doi.org/10.3390/ijerph22101549
APA StyleKaya, D., Santiago, C., Pernas, E., Truong, S., Martinez, G., Méndez, L. B., & Delgado, Y. (2025). Air Pollutants in Puerto Rico: Key Pollutants and Carcinogenic Properties. International Journal of Environmental Research and Public Health, 22(10), 1549. https://doi.org/10.3390/ijerph22101549