Restrictive Lung Function Patterns and Sex Differences in Primary School Children Exposed to PM2.5 in Chiang Mai, Northern Thailand
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Calculating Cumulative PM2.5 Exposure (AUC)
2.3. Research Participants
Sample Size
- n = required sample size
- N = total population in upper northern, Thailand (8–12 year) (65,771)
- e2 = margin of error (set at 0.10 or ± 10%)
- Substituting the values into the formula:
2.4. Respiratory Symptom Assessment Using the WURSS-K
2.5. Lung Function Testing or Spirometer Testing
2.5.1. Instructions for Pulmonary Function Testing
- Take a deep inhalation to fill the lungs completely.
- Use a nose clip to prevent nasal airflow.
- Place a disposable mouthpiece securely between the lips to avoid air leakage.
- Exhale forcefully and rapidly until the lungs felt entirely empty.
2.5.2. Test Administration
- Forced Vital Capacity (FVC): The total volume of air that can be forcibly exhaled after full inhalation.
- Forced Expiratory Volume in one second (FEV1): The volume of air expelled during the first second of the FVC maneuver.
2.5.3. The Siriraj Equations
- Height is measured in centimeters (cm)
- Age is measured in years
2.5.4. The Adjusted Odds Ratio (AOR)
- p = probability of abnormal pulmonary function
- β0 = intercept
- β1 = coefficient for sex (male vs. female)
- β2, β3, β4 = coefficients for BMI categories (with normal BMI as the reference group)
2.6. Statistical Analysis
3. Results
3.1. Cumulative PM2.5 Exposure Prior to Lung Function Testing
3.2. Screening Results: Respiratory Symptoms by Gender
3.3. The Characteristics of the Participants Who Underwent Spirometry Testing
3.4. PM2.5 on Lung Volume and Lung Capacity
3.5. The Number of Respiratory Abnormalities in Individuals with Reduced Lung Volumes
3.6. Factors Associated with Abnormal Pulmonary Function Following PM2.5 Exposure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATS | American Thoracic Society |
COPD | Chronic Obstructive Pulmonary Disease |
ERS | European Respiratory Society |
FEV1 | Forced Expiratory Volume in one second |
FVC | Forced Vital Capacity |
AOR | Adjusted Odds Ratio |
PEF | Peak Expiratory Flow |
PFTs | Pulmonary Function Tests |
PM2.5 | Fine Particulate Matter |
RIHES | Research Institute for Health Sciences |
WHO | World Health Organization |
References
- World Health Organization (WHO). Ambient (Outdoor) Air Pollution. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-%28outdoor%29-air-quality-and-health (accessed on 1 April 2025).
- Garcia, A.; Santa-Helena, E.; De Falco, A.; de Paula Ribeiro, J.; Gioda, A.; Gioda, C.R. Toxicological Effects of Fine Particulate Matter (PM2.5): Health Risks and Associated Systemic Injuries—Systematic Review. Water Air Soil Pollut. 2023, 234, 346. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T.; Parasin, N. Pathogenesis of PM2.5-Related Disorders in Different Age Groups: Children, Adults, and the Elderly. Epigenomes 2024, 8, 13. [Google Scholar] [CrossRef]
- Jarernwong, K.; Gheewala, S.H.; Sampattagul, S. Health Impact Related to Ambient Particulate Matter Exposure as a Spatial Health Risk Map Case Study in Chiang Mai, Thailand. Atmosphere 2023, 14, 261. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T.; Parasin, N. Future Health Risk Assessment of Exposure to PM2.5 in Different Age Groups of Children in Northern Thailand. Toxics 2023, 11, 291. [Google Scholar] [CrossRef]
- Li, S.; Cao, S.; Duan, X.; Zhang, Y.; Gong, J.; Xu, X.; Guo, Q.; Meng, X.; Bertrand, M.; Zhang, J.J. Long-Term Exposure to PM2.5 and Children’s Lung Function: A Dose-Based Association Analysis. J. Thorac. Dis. 2020, 12, 6379–6395. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (EPA). Particle Pollution and Respiratory Effects. 2024. Available online: https://www.epa.gov/pmcourse/particle-pollution-and-respiratory-effects (accessed on 1 April 2025).
- Jung, T.; Vij, N. Early Diagnosis and Real-Time Monitoring of Regional Lung Function Changes to Prevent Chronic Obstructive Pulmonary Disease Progression to Severe Emphysema. J. Clin. Med. 2021, 10, 5811. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Hoek, G.; Chang, L.Y.; Bo, Y.; Lin, C.; Huang, B.; Chan, T.C.; Tam, T.; Lau, A.K.H.; Lao, X.Q. Long-Term Exposure to Ambient Fine Particulate Matter (PM2.5) and Lung Function in Children, Adolescents, and Young Adults: A Longitudinal Cohort Study. Environ. Health Perspect. 2019, 127, 127008. [Google Scholar] [CrossRef] [PubMed]
- Gehring, U.; Gruzieva, O.; Agius, R.M.; Beelen, R.; Custovic, A.; Cyrys, J.; Eeftens, M.; Flexeder, C.; Fuertes, C.; Heinrich, J.; et al. Air Pollution Exposure and Lung Function in Children: The ESCAPE Project. Environ. Health Perspect. 2013, 121, 1357–1364. [Google Scholar] [CrossRef]
- European Environment Agency. Air Pollution and Children’s Health. 2023. Available online: https://www.eea.europa.eu/publications/air-pollution-and-childrens-health (accessed on 1 April 2025).
- Teng, J.; Li, J.; Yang, T.; Cui, J.; Xia, X.; Chen, G.; Zheng, S.; Bao, J.; Wang, T.; Shen, M.; et al. Long-Term Exposure to Air Pollution and Lung Function among Children in China: Association and Effect Modification. Front. Public Health 2022, 10, 988242. [Google Scholar] [CrossRef]
- Omínguez, A.; Koch, S.; Marquez, S.; de Castro, M.; Urquiza, J.; Evandt, J.; Oftedal, B.; Aasvang, G.M.; Kampouri, M.; Vafeiadi, M.; et al. Childhood Exposure to Outdoor Air Pollution in Different Microenvironments and Cognitive and Fine Motor Function in Children from Six European Cohorts. Environ. Res. 2024, 247, 118174. [Google Scholar] [CrossRef]
- Inlaung, K.; Chotamonsak, C.; Macatangay, R.; Surapipith, V. Assessment of Transboundary PM2.5 from Biomass Burning in Northern Thailand Using the WRF-Chem Model. Toxics 2024, 12, 462. [Google Scholar] [CrossRef] [PubMed]
- Loman, D.G.; Borgmeyer, A.E.; Henry, L.D.; Mahl, C.S.; Ellis, A.G. Childhood Asthma Control Test and Spirometry Values in School-Age Children. J. Asthma 2023, 61, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Kawichai, S.; Prapamontol, T.; Cao, F.; Song, W.; Zhang, Y. Source Identification of 2.5 during a Smoke Haze Period in Chiang Mai, Thailand, Using Stable Carbon and Nitrogen Isotopes. Atmosphere 2022, 13, 1149. [Google Scholar] [CrossRef]
- Moriyama, M.; Hugentobler, W.J.; Iwasaki, A. Seasonality of Respiratory Viral Infections. Annu. Rev. Virol. 2020, 7, 83–101. [Google Scholar] [CrossRef] [PubMed]
- Lowen, A.C.; Steel, J. Roles of Humidity and Temperature in Shaping Influenza Seasonality. J. Virol. 2014, 88, 7692–7695. [Google Scholar] [CrossRef]
- Boros, P.W.; Martusewicz-Boros, M.M. New Spirometry? The 2019 Update of the Test Standardization. Adv. Respir. Med. 2020, 88, 95–98. [Google Scholar] [CrossRef]
- Kuiper, I.N.; Svanes, C.; Markevych, I.; Accordini, S.; Bertelsen, R.J.; Bråbäck, L.; Christensen, J.H.; Forsberg, B.; Halvorsen, T.; Heinrich, J.; et al. Lifelong Exposure to Air Pollution and Greenness in Relation to Asthma, Rhinitis and Lung Function in Adulthood. Environ. Int. 2021, 146, 106219. [Google Scholar] [CrossRef]
- Pollution Control Department (PCD). Air Pollution Report in Northern Thailand. Available online: http://air4thai.pcd.go.th/webV3/#/History (accessed on 15 March 2024).
- Zhang, Y.; Xu, X.; Zhang, G.; Li, Q.; Luo, Z. The Association between PM2.5 Concentration and the Severity of Acute Asthmatic Exacerbation in Hospitalized Children: A Retrospective Study in Chongqing, China. Pediatr. Pulmonol. 2023, 58, 2733–2745. [Google Scholar] [CrossRef]
- Okeyo, V.A.; Orowe, I.; Oguge, N.O. Predicting Respiratory Diseases Attributed to PM2.5 Air Pollution in Nairobi County Using Random Forest Model. Int. J. Innov. Sci. Res. Technol. 2024, 9, 3489–3492. [Google Scholar] [CrossRef]
- Yamane, T. Statistics: An Introductory Analysis, 2nd ed.; Harper and Row: New York, NY, USA, 1967; Available online: https://archive.org/details/statisticsanintr0000taro (accessed on 2 October 2025).
- Schmit, K.M.; Brown, R.; Hayer, S.; Arnold, D.H.; Bont, L.; Cohen, D.M.; Domachowske, J.B.; Feldstein, L.R.; Keim, E.; Mistry, R.D.; et al. Wisconsin Upper Respiratory Symptom Survey for Kids: Validation of an Illness-Specific Quality of Life Instrument. Pediatr. Res. 2021, 90, 1207–1214. [Google Scholar] [CrossRef]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update: An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef]
- Haynes, J.M.; Ruppel, G.L.; O’Brien, M.J. Calibration Myths in the 2019 American Thoracic Society/European Respiratory Society Spirometry Technical Standards. Am. J. Respir. Crit. Care Med. 2020, 202, 303–304. [Google Scholar] [CrossRef] [PubMed]
- Chaiwong, W.; Uthaikhup, S.; Liwsrisakun, C.; Pothirat, C. Effect of Changing Reference Equations for Spirometry Interpretation in Thai People. J. Thorac. Dis. 2019, 11, 113. [Google Scholar] [CrossRef] [PubMed]
- Dejsomritrutai, W.; Nana, A.; Maranetra, K.N.; Chuaychoo, B.; Maneechotesuwan, K.; Wongsurakiat, P.; Chierakul, N.; Charoenratanakul, S.; Tscheikuna, J.; Juengprasert, W.; et al. Reference Spirometric Values for Healthy Lifetime Nonsmokers in Thailand. J. Med. Assoc. Thail. 2000, 83, 457–466. [Google Scholar]
- Norton, E.C.; Dowd, B.E.; Maciejewski, M.L. Odds Ratios—Current Best Practice and Use. JAMA 2018, 320, 84–85. [Google Scholar] [CrossRef]
- Rafael, F.; Rodrigues, M.D.; Bellver, J.; Canelas-Pais, M.; Garrido, N.; Garcia-Velasco, J.A.; Soares, S.R.; Santos-Ribeiro, S. The Combined Effect of BMI and Age on ART Outcomes. Hum. Reprod. 2023, 38, 886–894. [Google Scholar] [CrossRef]
- Ontosight.ai. Adjusted Odds Ratio (AOR). Ontosight.ai Glossary. Available online: https://ontosight.ai/glossary/term/Adjusted-Odds-Ratio---aOR (accessed on 15 July 2025).
- Chowdhury, N.U.; Guntur, V.P.; Newcomb, D.C.; Wechsler, M.E. Sex and Gender in Asthma. Eur. Respir. Rev. 2021, 30, 162. [Google Scholar] [CrossRef]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.; Zheng, J.; et al. Multi-Ethnic Reference Values for Spirometry for the 3–95-Year Age Range: The Global Lung Function 2012 Equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Pitre, P.J.; Sabbula, B.R.; Cascella, M. Restrictive Lung Disease. In StatPearls, Internet; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560880/ (accessed on 19 July 2025).
- Boulet, L.-P.; Lavoie, K.L.; Raherison-Semjen, C.; Kaplan, A.; Singh, D.; Jenkins, C.R. Addressing Sex and Gender to Improve Asthma Management. NPJ Prim. Care Respir. Med. 2022, 32, 56. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, R.; Wang, Y.; Jiang, N.; Zhang, Y.; Li, T. The Relationship between Particulate Matter and Lung Function of Children: A Systematic Review and Meta-Analysis. Environ. Pollut. 2022, 309, 119735. [Google Scholar] [CrossRef]
- Chankaew, K.; Sinitkul, R.; Manuyakorn, W.; Roekworachai, K.; Kamalaporn, H. Spatial Estimation of PM2.5 Exposure and Its Association with Asthma Exacerbation: A Prospective Study in Thai Children. Ann. Glob. Health 2022, 88, 15. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Yu, H.; Feng, Y.; Cheng, W.; Li, Y.; Wang, Y. The Role of Estrogen Receptor β in Fine Particulate Matter (PM2.5) Organic Extract-Induced Pulmonary Inflammation in Female and Male Mice. Environ. Sci. Pollut. Res. 2022, 29, 60922–60932. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Garcia, J.; Montano, L.M.; Carbajal-Garcia, A.; Wang, Y.X. Sex Hormones and Lung Inflammation. In Lung Inflammation in Health and Disease; Springer: Cham, Switzerland, 2021; Volume II, pp. 259–321. [Google Scholar]
- Wardhani, K.; Yazzie, S.; McVeigh, C.; Edeh, O.; Grimes, M.; Jacquez, Q.; Dixson, C.; Barr, E.; Liu, R.; Bolt, A.M.; et al. Systemic Immunological Responses Are Dependent on Sex and Ovarian Hormone Presence Following Acute Inhaled Woodsmoke Exposure. Part. Fibre Toxicol. 2024, 21, 27. [Google Scholar] [CrossRef] [PubMed]
Month | Concentration of PM2.5 (36T) | |||
---|---|---|---|---|
Average PM2.5 24 h. (µg/m3) | Average Monthly | |||
Max | Min | Day > std. | ||
January | 38.4 | 15.0 | 1/31 | 24 |
February | 54.2 | 14.7 | 8/29 | 34 |
March | 152.7 | 29.8 | 30/31 | 74 |
April | 163.9 | 28.1 | 28/30 | 82 |
May | 89.8 | 4.6 | 7/31 | 29 |
June | 23.0 | 6.2 | 0/30 | 9 |
July | 15.0 | 6.1 | 0/31 | 9 |
August | 13.7 | 6.1 | 0/31 | 9 |
September | 12.8 | 6.6 | 0/30 | 9 |
October | 23.3 | 6.7 | 0/31 | 14 |
November | 22.3 | 5.8 | 0/30 | 17 |
December | 29.8 | 6.9 | 0/31 | 22 |
Assessment Item | Screening Criteria | Result | Notes |
---|---|---|---|
Symptom Score | <6 points | Pass | Indicates mild symptoms only |
≥6 points | Fail | Indicates moderate to severe respiratory symptoms | |
Individual Symptom | <2 points | Pass | No single symptom is moderate or severe |
≥2 points in any item | Fail | Presence of a prominent symptom | |
Overall, Health | <2 points | Pass | The child reports feeling generally well |
≥2 points | Fail | The child reports feeling moderately to severely unwell |
Gender | Total (n) | Symptom Type | Number with Symptom ≥ 2 | Percentage of Total (%) | Number Without Symptom ≥ 2 |
---|---|---|---|---|---|
Male | 58 | Runny nose | 2 | 1.8 | 55 |
Cough | 1 | 0.9 | |||
Female | 52 | Runny nose | 0 | 0.0 | 52 |
Cough | 0 | 0.0 | |||
Total | 110 | 3 | 2.7 | 107 |
Baseline Characteristics | Total (n = 107) | Success Group (n = 93) | Failure Group (n = 14) |
---|---|---|---|
Age (years) | 107 (100.00) | 93 (86.90) | 14 (13.10) |
8 years | 2 (1.86) | 0 (0.00) | 2 (100.00) |
9 years | 20 (18.69) | 18 (90.00) | 2 (10.00) |
10 years | 27 (25.23) | 23 (85.18) | 4 (14.81) |
11 years | 40 (37.38) | 35 (87.50) | 5 (12.50) |
12 years | 18 (16.82) | 17 (94.44) | 1 (5.55) |
Gender, Male | 55 (51.40) | 47 (50.54) | 8 (14.54) |
Gender, Female | 52 (48.59) | 46 (49.56) | 6 (11.54) |
Weight (kg) | 40.23 ± 9.48 | 39.83 ± 12.05 | 42.84 ± 17.64 |
Height (cm) | 143.07 ±1 2.95 | 143.25 ± 9.27 | 141.82 ± 10.65 |
BMI (kg/m2) | 19.31 ± 4.67 | 19.14 ± 4.44 | 20.47 ± 5.82 |
SBP (mmHg) | 108.23 ± 10.78 | 107.97 ± 10.56 | 110 ± 11.98 |
DBP (mmHg) | 70.32 ± 7.39 | 70.29 ± 7.38 | 70.57 ± 7.45 |
Heart rate (bpm) | 91.45 ± 12.37 | 91.01 ± 12.62 | 94.43 ± 10.08 |
Chest (cm) | 70.41 ± 11.14 | 70.06 ± 10.43 | 72.79 ± 14.83 |
PFTPM2.5 | PFTPredicted | PFTPM2.5% of Prediction (%) | p-Value | |
---|---|---|---|---|
FVC | 2.16 ± 0.49 | 3.09 ± 0.47 | 70.33 ± 12.89 | <0.001 |
FEV1 | 1.82 ± 0.42 | 3.18 ± 0.38 | 57.05 ± 8.40 | <0.001 |
FEV1/FVC | 84.65 ± 7.42 | 99.69 ± 12.80 | 86.30 ± 13.07 | <0.001 |
PEF | 3.85 ± 1.00 | 9.20 ± 1.15 | 42.27 ± 11.27 | <0.001 |
Severity Level | Obstruction | Restriction | Mixed Defect | Normal Spirometry | |
---|---|---|---|---|---|
Total, n (%) | 17 (18.28) | 48 (51.61) | 0 | 28 (30.11) | |
Mild, n (%) | Male | 0 | 0 | ||
Female | 0 | 2 (2.15) | |||
Moderate, n (%) | Male | 0 | 10 (10.75) | ||
Female | 3 (3.23) | 13 (13.98) | |||
Moderately severe, n (%) | Male | 1 (1.08) | 5 (5.38) | ||
Female | 8 (8.6) | 7 (7.53) | |||
Severe, n (%) | Male | 1 (1.08) | 2 (2.15) | ||
Female | 4 (4.30) | 9 (9.68) | |||
Very severe, n (%) | Male | 0 | 0 | ||
Female | 0 | 0 |
Variable | Adjusted Odds Ratio (AOR) | 95% Cl | p-Value |
---|---|---|---|
Sex (Male vs. Female) | 0.084 | 0.017–0.417 | 0.002 * |
Underweight (vs. Normal) | 0.99 | 0.27–3.60 | 0.99 |
Overweight (vs. Normal) | 1.3 | 0.18–9.67 | 0.8 |
Obese (vs. Normal) | 4.84 | 0.22–104.82 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngamsang, P.; Wongta, A.; Kawichai, S.; Kosashunhanan, N.; Chuljerm, H.; Khiaolaongam, W.; Kijkuokool, P.; Jiraya, P.; Fakfum, P.; Parklak, W.; et al. Restrictive Lung Function Patterns and Sex Differences in Primary School Children Exposed to PM2.5 in Chiang Mai, Northern Thailand. Int. J. Environ. Res. Public Health 2025, 22, 1530. https://doi.org/10.3390/ijerph22101530
Ngamsang P, Wongta A, Kawichai S, Kosashunhanan N, Chuljerm H, Khiaolaongam W, Kijkuokool P, Jiraya P, Fakfum P, Parklak W, et al. Restrictive Lung Function Patterns and Sex Differences in Primary School Children Exposed to PM2.5 in Chiang Mai, Northern Thailand. International Journal of Environmental Research and Public Health. 2025; 22(10):1530. https://doi.org/10.3390/ijerph22101530
Chicago/Turabian StyleNgamsang, Pakaphorn, Anurak Wongta, Sawaeng Kawichai, Natthapol Kosashunhanan, Hataichanok Chuljerm, Wiritphon Khiaolaongam, Praporn Kijkuokool, Putita Jiraya, Puriwat Fakfum, Wason Parklak, and et al. 2025. "Restrictive Lung Function Patterns and Sex Differences in Primary School Children Exposed to PM2.5 in Chiang Mai, Northern Thailand" International Journal of Environmental Research and Public Health 22, no. 10: 1530. https://doi.org/10.3390/ijerph22101530
APA StyleNgamsang, P., Wongta, A., Kawichai, S., Kosashunhanan, N., Chuljerm, H., Khiaolaongam, W., Kijkuokool, P., Jiraya, P., Fakfum, P., Parklak, W., & Kulprachakarn, K. (2025). Restrictive Lung Function Patterns and Sex Differences in Primary School Children Exposed to PM2.5 in Chiang Mai, Northern Thailand. International Journal of Environmental Research and Public Health, 22(10), 1530. https://doi.org/10.3390/ijerph22101530