The Impact of Temperature on 24-Hour Movement Behaviors among Chinese Freshmen Students
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Sleep Measurement
2.3. Physical Activity Measurement
2.4. Sedentary Behavior Measurement
2.5. Environmental Measures
2.6. Statistical Analyses
2.7. Individual-Level Covariates
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PA | physical activity |
SB | sedentary behavior |
IPAQ | International Physical Activity Questionnaire |
CPSQI | The Pittsburgh Sleep Quality Index |
VPA | vigorous physical activity |
MVPA | moderate to vigorous physical activity |
BMI | body mass index |
References
- World Health Organization. Climate Change. 2021. Available online: https://www.who.int/health-topics/climate-change#tab=tab_1 (accessed on 8 February 2022).
- Banwell, N.; Rutherford, S.; Mackey, B.; Street, R.; Chu, C. Commonalities between Disaster and Climate Change Risks for Health: A Theoretical Framework. Int. J. Environ. Res. Public Health 2018, 15, 538. [Google Scholar] [CrossRef]
- Orru, H.; Andersson, C.; Ebi, K.L.; Langner, J.; Astrom, C.; Forsberg, B. Impact of climate change on ozone-related mortality and morbidity in Europe. Eur. Respir. J. 2013, 41, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Hassan, N.A.; Hashim, Z.; Hashim, J.H. Impact of Climate Change on Air Quality and Public Health in Urban Areas. Asia Pac. J. Public Health 2016, 28, 38S–48S. [Google Scholar] [CrossRef] [PubMed]
- Hayes, K.; Poland, B. Addressing Mental Health in a Changing Climate: Incorporating Mental Health Indicators into Climate Change and Health Vulnerability and Adaptation Assessments. Int. J. Environ. Res. Public Health 2018, 15, 1806. [Google Scholar] [CrossRef]
- Hathaway, J.; Maibach, E.W. Health Implications of Climate Change: A Review of the Literature About the Perception of the Public and Health Professionals. Curr. Environ. Health Rep. 2018, 5, 197–204. [Google Scholar] [CrossRef]
- Kohl, H.W., 3rd; Craig, C.L.; Lambert, E.V.; Inoue, S.; Alkandari, J.R.; Leetongin, G.; Kahlmeier, S.; Lancet Physical Activity Series Working, G. The pandemic of physical inactivity: Global action for public health. Lancet 2012, 380, 294–305. [Google Scholar] [CrossRef]
- Thivel, D.; Tremblay, A.; Genin, P.M.; Panahi, S.; Rivière, D.; Duclos, M. Physical Activity, Inactivity, and Sedentary Behaviors: Definitions and Implications in Occupational Health. Front. Public Health 2018, 6, 288. [Google Scholar] [CrossRef] [PubMed]
- Piercy, K.L.; Troiano, R.P. Physical Activity Guidelines for Americans From the US Department of Health and Human Services. Circ. Cardiovasc. Qual. Outcomes 2018, 11, e005263. [Google Scholar] [CrossRef] [PubMed]
- Shiroma, E.J.; Lee, I.M. Physical activity and cardiovascular health: Lessons learned from epidemiological studies across age, gender, and race/ethnicity. Circulation 2010, 122, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T.; Lancet Physical Activity Series Working, G. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef]
- Sáez, I.; Solabarrieta, J.; Rubio, I. Reasons for Sports-Based Physical Activity Dropouts in University Students. Int. J. Environ. Res. Public Health 2021, 18, 5721. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.-M.; Nieman, D.C.; Swain, D.P. Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory, Musculoskeletal, and Neuromotor Fitness in Apparently Healthy Adults: Guidance for Prescribing Exercise. Med. Sci. Sport. Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- World Health Organization. The Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Tremblay, M.S.; Aubert, S.; Barnes, J.D.; Saunders, T.J.; Carson, V.; Latimer-Cheung, A.E.; Chastin, S.F.M.; Altenburg, T.M.; Chinapaw, M.J.M.; Participants, S.T.C.P. Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project process and outcome. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 75. [Google Scholar] [CrossRef]
- Owen, N.; Sparling, P.B.; Healy, G.N.; Dunstan, D.W.; Matthews, C.E. Sedentary behavior: Emerging evidence for a new health risk. Mayo Clin. Proc. 2010, 85, 1138–1141. [Google Scholar] [CrossRef] [PubMed]
- Hillman, C.H.; Erickson, K.I.; Kramer, A.F. Be Smart, Exercise Your Heart: Exercise Effects on Brain and Cognition. Nat. Rev. Neurosci. 2008, 9, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Meo, S.A.; Alkhalifah, J.M.; Alshammari, N.F.; Alnufaie, W.S.; Algoblan, A.F. Impact of COVID-19 pandemic on sleep quality among medical and general science students: King Saud University Experience. Pak. J. Med. Sci. 2022, 38, 639–644. [Google Scholar] [CrossRef]
- Tremblay, M.S.; Esliger, D.W.; Tremblay, A.; Colley, R. Incidental movement, lifestyle-embedded activity and sleep: New frontiers in physical activity assessment. Can. J. Public Health 2007, 980 (Suppl. S2), S208–S217. [Google Scholar]
- Field, C.B.; Barros, V.R.; Mastrandrea, M.D.; Mach, K.J.; Abdrabo, M.A.-K.; Adger, W.N.; Anokhin, Y.A.; Anisimov, O.A.; Douglas, J.B.; Jonathon, B.; et al. IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Zisis, E.; Hakimi, S.; Lee, E.Y. Climate change, 24-hour movement behaviors, and health: A mini umbrella review. Glob. Health Res. Policy 2021, 6, 15. [Google Scholar] [CrossRef]
- Sallis, J.F.; Floyd, M.F.; Rodriguez, D.A.; Saelens, B.E. Role of built environments in physical activity, obesity, and cardiovascular disease. Circulation 2012, 125, 729–737. [Google Scholar] [CrossRef]
- Tucker, P.; Gilliland, J. The effect of season and weather on physical activity: A systematic review. Public Health 2007, 121, 909–922. [Google Scholar] [CrossRef]
- Bernard, P.; Chevance, G.; Kingsbury, C.; Baillot, A.; Romain, A.J.; Molinier, V.; Gadais, T.; Dancause, K.N. Climate Change, Physical Activity and Sport: A Systematic Review. Sport. Med. 2021, 51, 1041–1059. [Google Scholar] [CrossRef]
- Saneinejad, S.; Roorda, M.J.; Kennedy, C. Modelling the impact of weather conditions on active transportation travel behaviour. Transp. Res. Part D Transp. Environ. 2012, 17, 129–137. [Google Scholar] [CrossRef]
- Garriga, A.; Sempere-Rubio, N.; Molina-Prados, M.J.; Faubel, R. Impact of Seasonality on Physical Activity: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 19, 2. [Google Scholar] [CrossRef] [PubMed]
- Kolle, E.; Steene-Johannessen, J.; Andersen, L.B.; Anderssen, S.A. Seasonal variation in objectively assessed physical activity among children and adolescents in Norway: A cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 9. [Google Scholar] [CrossRef]
- Mccormack, G.R.; Friedenreich, C.; Shiell, A.; Giles-Corti, B.; Doyle-Baker, P.K. Sex- and age-specific seasonal variations in physical activity among adults. J. Epidemiol. Community Health 2009, 64, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Turrisi, T.B.; Bittel, K.M.; West, A.B.; Hojjatinia, S.; Hojjatinia, S.; Mama, S.K.; Lagoa, C.M.; Conroy, D.E. Seasons, weather, and device-measured movement behaviors: A scoping review from 2006 to 2020. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 24. [Google Scholar] [CrossRef] [PubMed]
- Merchant, A.T.; Akhtar-Danesh, D.N. Seasonal Variation in Leisuretime Physical Activity Among Canadians. Can. J. Public Health 2007, 98, 203–208. [Google Scholar] [CrossRef]
- Ho, J.Y.; Goggins, W.B.; Mo, P.K.H.; Chan, E.Y.Y. The effect of temperature on physical activity: An aggregated timeseries analysis of smartphone users in five major Chinese cities. Int. J. Behav. Nutr. Phys. Act. 2022, 19, 68. [Google Scholar] [CrossRef]
- Zheng, C.; Feng, J.; Huang, W.; Wong, S.H.-S. Associations between weather conditions and physical activity and sedentary time in children and adolescents: A systematic review and meta-analysis. Health Place 2021, 69, 102546. [Google Scholar] [CrossRef]
- Rifkin, D.I.; Long, M.W.; Perry, M.J. Climate change and sleep: A systematic review of the literature and conceptual framework. Sleep Med. Rev 2018, 42, 3–9. [Google Scholar] [CrossRef]
- Quante, M.; Wang, R.; Weng, J.; Kaplan, E.R.; Rueschman, M.; Taveras, E.M.; Rifas-Shiman, S.L.; Gillman, M.W.; Redline, S. Seasonal and weather variation of sleep and physical activity in 12-14-year-old children. Behav. Sleep Med. 2019, 17, 398–410. [Google Scholar] [CrossRef]
- Lanza, K.; Gohlke, J.; Wang, S.; Sheffield, P.E.; Wilhelmi, O. Climate change and physical activity: Ambient temperature and urban trail use in Texas. Int. J. Biometeorol. 2022, 66, 1575–1588. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Yu, M.; Gordon, S.P.; Zhang, R. The association between ambient fine particulate air pollution and physical activity: A cohort study of university students living in Beijing. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 136. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Cheng, J.; Gordon, S.P.; An, R.; Yu, M.; Chen, X.; Yue, Q.; Qiu, J. Impact of Air Pollution on Sedentary Behavior: A Cohort Study of Freshmen at a University in Beijing, China. Int. J. Environ. Res. Public Health 2018, 15, 2811. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.S.; Wang, S.Y.; Wang, M.Y.; Su, C.T.; Yang, T.T.; Huang, C.J.; Fang, S.C. Psychometric evaluation of the Chinese version of the Pittsburgh Sleep Quality Index (CPSQI) in primary insomnia and control subjects. Qual. Life Res. 2005, 14, 1943–1952. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index—A New Instrument for Psychiatric Practice and Research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Sadeh, A. Sleep Assessment Methods. Monogr. Soc. Res. Child Dev. 2015, 80, 33–48. [Google Scholar] [CrossRef]
- Bassett, D.R., Jr. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sport. Exerc. 2003, 35, 1396. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, D.J.; Lee, C.C.; Ho, E.Y.; Chan, K.L.; Chan, D.T. Reliability and validity of the Chinese version of IPAQ (short, last 7 days). J. Sci. Med. Sport 2007, 10, 45–51. [Google Scholar] [CrossRef]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjostrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sport. Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Duncan, J.S.; Hopkins, W.G.; Schofield, G.; Duncan, E.K. Effects of weather on pedometer-determined physical activity in children. Med. Sci. Sport. Exerc. 2008, 40, 1432–1438. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.B.; Ryan, D.A.J.; Tudor-Locke, C. Relationship between objective measures of physical activity and weather: A longitudinal study. Int. J. Behav. Nutr. Phys. Act. 2006, 3, 9. [Google Scholar] [CrossRef] [PubMed]
- Belanger, M.; Gray-Donald, K.; O’Loughlin, J.; Paradis, G.; Hanley, J. Influence of weather conditions and season on physical activity in adolescents. Ann. Epidemiol. 2009, 19, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Obradovich, N.; Fowler, J.H. Climate change may alter human physical activity patterns. Nat. Hum. Behav. 2017, 1, 0097. [Google Scholar] [CrossRef]
- Cramer, M.N.; Jay, O. Biophysical aspects of human thermoregulation during heat stress. Auton. Neurosci. 2016, 196, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Heaney, A.K.; Carrion, D.; Burkart, K.; Lesk, C.; Jack, D. Climate Change and Physical Activity: Estimated Impacts of Ambient Temperatures on Bikeshare Usage in New York City. Environ. Health Perspect. 2019, 127, 37002. [Google Scholar] [CrossRef]
- Al-Mohannadi, A.S.; Farooq, A.; Burnett, A.; Mercia, V.D.W.; Al-Kuwari, M.G. Impact of Climatic Conditions on Physical Activity: A Two-Year Cohort Study in the Arabian Gulf Region. J. Phys. Act. Health 2016, 13, 929–937. [Google Scholar] [CrossRef]
- Wang, G.; Li, B.; Zhang, X.; Niu, C.; Li, J.; Li, L.; Speakman, J.R. No seasonal variation in physical activity of Han Chinese living in Beijing. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 48. [Google Scholar] [CrossRef]
- Cepeda, M.; Koolhaas, C.M.; van Rooij, F.J.A.; Tiemeier, H.; Guxens, M.; Franco, O.H.; Schoufour, J.D. Seasonality of physical activity, sedentary behavior, and sleep in a middle-aged and elderly population: The Rotterdam study. Maturitas 2018, 110, 41–50. [Google Scholar] [CrossRef]
- Lewis, L.K.; Maher, C.; Belanger, K.; Tremblay, M.; Chaput, J.P.; Olds, T. At the Mercy of the Gods: Associations Between Weather, Physical Activity, and Sedentary Time in Children. Pediatr. Exerc. Sci. 2016, 28, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.; Rosu, A.; Hesketh, K.D.; Rhodes, R.E.; Rinaldi, C.M.; Rodgers, W.; Spence, J.C.; Carson, V. Objectively Measured Environmental Correlates of Toddlers’ Physical Activity and Sedentary Behavior. Pediatr. Exerc. Sci. 2019, 31, 480–487. [Google Scholar] [CrossRef]
- Kharlova, I.; Deng, W.H.; Mamen, J.; Mamen, A.; Fredriksen, M.V.; Fredriksen, P.M. The Weather Impact on Physical Activity of 6-12 Year Old Children: A Clustered Study of the Health Oriented Pedagogical Project (HOPP). Sports 2020, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Huang, W.Y.; Wong, S.H.S. Associations of weather conditions with adolescents’ daily physical activity, sedentary time, and sleep duration. Appl. Physiol. Nutr. Metab. 2019, 44, 1339–1344. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, M.; Schoeni, A.; Singh, A.S.; Altenburg, T.M.; Brug, J.; De Bourdeaudhuij, I.; Kovacs, E.; Bringolf-Isler, B.; Manios, Y.; Chinapaw, M.J.M. Daily Variations in Weather and the Relationship With Physical Activity and Sedentary Time in European 10-to 12-Year-Olds: The ENERGY-Project. J. Phys. Act. Health 2014, 11, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-T.; Luben, R.; Wareham, N.; Griffin, S.; Jones, A.P. Weather, day length and physical activity in older adults: Cross-sectional results from the European Prospective Investigation into Cancer and Nutrition (EPIC) Norfolk Cohort. PLoS ONE 2017, 12, e0177767. [Google Scholar] [CrossRef]
- Arnardottir, N.Y.; Oskarsdottir, N.D.; Brychta, R.J.; Koster, A.; Van Domelen, D.R.; Caserotti, P.; Eiriksdottir, G.; Sverrisdottir, J.E.; Johannsson, E.; Launer, L.J.; et al. Comparison of Summer and Winter Objectively Measured Physical Activity and Sedentary Behavior in Older Adults: Age, Gene/Environment Susceptibility Reykjavik Study. Int. J. Environ. Res. Public Health 2017, 14, 1268. [Google Scholar] [CrossRef]
- Katapally, T.R.; Rainham, D.; Muhajarine, N. The Influence of Weather Variation, Urban Design and Built Environment on Objectively Measured Sedentary Behaviour in Children. AIMS Public Health 2016, 3, 663–681. [Google Scholar] [CrossRef]
- Harrison, F.; van Sluijs, E.M.F.; Corder, K.; Ekelund, U.; Jones, A. The changing relationship between rainfall and children’s physical activity in spring and summer: A longitudinal study. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Harrison, F.; Goodman, A.; van Sluijs, E.M.F.; Andersen, L.B.; Cardon, G.; Davey, R.; Janz, K.F.; Kriemler, S.; Molloy, L.; Page, A.S.; et al. Weather and children’s physical activity; how and why do relationships vary between countries? Int. J. Behav. Nutr. Phys. Act. 2017, 14, 13. [Google Scholar] [CrossRef]
- Suzuki, M.; Taniguchi, T.; Furihata, R.; Yoshita, K.; Arai, Y.; Yoshiike, N.; Uchiyama, M. Seasonal changes in sleep duration and sleep problems: A prospective study in Japanese community residents. PLoS ONE 2019, 14, e0215345. [Google Scholar] [CrossRef]
- Hjorth, M.F.; Chaput, J.P.; Michaelsen, K.; Astrup, A.; Tetens, I.; Sjödin, A. Seasonal variation in objectively measured physical activity, sedentary time, cardio-respiratory fitness and sleep duration among 8–11year-old Danish children: A repeated-measures study. BMC Public Health 2013, 13, 808. [Google Scholar] [CrossRef] [PubMed]
- Nixon, G.M.; Thompson, J.M.; Han, D.Y.; Becroft, D.M.; Clark, P.M.; Robinson, E.; Waldie, K.E.; Wild, C.J.; Black, P.N.; Mitchell, E.A. Short sleep duration in middle childhood: Risk factors and consequences. Sleep 2008, 31, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Kwan, M.-P. The Uncertain Geographic Context Problem. Ann. Assoc. Am. Geogr. 2012, 102, 958–968. [Google Scholar] [CrossRef]
Characteristics | Male | Female | Total | p |
---|---|---|---|---|
Male Sex, n (%) | 30,181 (67.53) | 14,512 (32.47) | 44693 | |
Age (yr), mean (SD) | ||||
2012–2013 | ||||
Wave 1 | 18.12 (0.89) | 18.10 (0.76) | 18.18 (0.85) | <0.001 |
Wave 2 | 18.30 (0.90) | 18.17 (0.74) | 18.26 (0.86) | <0.001 |
Wave 3 | 18.82 (0.99) | 18.66 (0.84) | 18.77 (0.95) | <0.001 |
Wave 4 | 18.93 (0.96) | 18.80 (0.81) | 18.89 (0.91) | <0.001 |
2013–2014 | ||||
Wave 1 | 18.28 (0.82) | 18.23 (0.75) | 18.26 (0.80) | 0.1 |
Wave 2 | 18.84 (0.81) | 18.75 (0.81) | 18.81 (0.81) | 0.007 |
2014–2015 | ||||
Wave 1 | 18.10 (0.79) | 18.05 (0.65) | 18.08 (0.75) | 0.08 |
Wave 2 | 18.69 (0.84) | 18.62 (0.83) | 18.66 (0.83) | 0.03 |
Wave 3 | 18.75 (0.80) | 18.71 (0.68) | 18.74 (0.76) | 0.3 |
2015–2016 | ||||
Wave 1 | 17.98 (0.72) | 17.95 (0.66) | 17.97 (0.70) | 0.3 |
Wave 2 | 18.72 (0.84) | 18.63 (0.69) | 18.69 (0.79) | 0.002 |
2016–2017 | ||||
Wave 1 | 18.12 (0.77) | 18.08 (0.63) | 18.11 (0.73) | 0.08 |
Wave 2 | 18.84 (1.01) | 18.76 (0.82) | 18.82 (0.96) | 0.06 |
2017–2018 | ||||
Wave 1 | 18.12 (0.78) | 18.14 (0.80) | 18.13 (0.79) | 0.5 |
Wave 2 | 18.78 (0.98) | 18.75 (0.92) | 18.77 (0.97) | 0.4 |
Body mass index, mean (SD) | ||||
BMI (kg/m2) | 21.90 (3.45) | 20.33 (3.50) | 21.39 (3.55) | <0.001 |
Smoking, n (%) | 187 (0.62) | 30 (0.21) | 217 (0.49) | <0.001 |
Drinking n (%) | 958 (3.17) | 197 (1.36) | 1155 (2.58) | <0.001 |
Self-rated physical health, mean (SD) | ||||
Physical health score (1–10) | 5.38 (2.22) | 5.27 (2.14) | 5.34 (2.19) | <0.001 |
Self-rated mental health, mean (SD) | ||||
Mental health score (1–10) | 6.27 (2.46) | 6.16 (2.45) | 6.23 (2.46) | <0.001 |
Disease number, mean (SD) | 0.51 (0.50) | 0.55 (0.54) | 0.52 (0.50) | <0.001 |
Freshmen Cohort | Survey Order | VPA | MPA | MVPA | Walk PA | Total PA | Sedentary Behavior | Sleeping/Day | Temperature (°C) | PM2.5 (μg/m3) | Wind (m/s) | Rain (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2012–2013 cohort a | Sep 17–27 | 90.05 (106.63) | 205.33 (153.79) | 295.37 (206.57) | 70.41 (113.78) | 365.79 (257.68) | 8.96 (2.78) | 7.09 (0.81) | 25.36 (2.87) | 72.90 (50.26) | 3.23 (0.75) | 0.36 (0.51) |
Oct 29–Nov 8 | 100.72 (89.19) | 188.15 (148.56) | 288.87 (196.25) | 67.89 (111.3) | 356.76 (256.06) | 9.42 (2.89) | 7.06 (0.94) | 11.64 (4.20) | 68.78 (58.48) | 3.55 (0.65) | 0.18 (0.41) | |
Feb 25–Mar 8 | 76.18 (97.83) | 154.82 (132.17) | 231 (184.92) | 72.25 (102.73) | 303.25 (224.36) | 9.23 (2.82) | 7.32 (0.84) | 12.17 (5.13) | 165.13 (131.98) | 3.38 (1.00) | 0.08 (0.29) | |
May 6–16 | 124.45 (103.86) | 176.24 (129.08) | 300.69 (190.65) | 79.66 (106.95) | 380.35 (237.76) | 9.24 (2.88) | 7.27 (1.01) | 28.73 (3.00) | 92.88 (70.43) | 3.41 (0.44) | 0.18 (0.41) | |
2013–2014 cohort b | Dec 9–15 | 91.08 (105.08) | 163.48 (147.22) | 254.56 (200.12) | 73.76 (105.34) | 328.32 (245.65) | 9.33 (2.89) | 7.08 (0.90) | 5.43 (1.40) | 28.75 (15.41) | 3.57 (0.67) | 0.00 (0.00) |
May 5–11 | 102.98 (114.05) | 164.88 (133.2) | 267.86 (197.93) | 76.64 (100.11) | 344.50 (236.25) | 9.28 (2.83) | 7.27 (0.96) | 20.71 (3.09) | 52.8 (21.63) | 3.14 (0.24) | 0.43 (0.54) | |
2014–2015 cohort c | Oct 6–12 | 100.68 (110.54) | 194.44 (158.79) | 295.11 (211.40) | 90.17 (125.11) | 385.29 (272.09) | 9.26 (2.69) | 7.04 (0.78) | 20.86 (1.86) | 178.71 (128.66) | 3.43 (0.73) | 0.14 (0.38) |
Feb 24–Mar 2 | 68.56 (99.98) | 126.25 (139.01) | 194.81 (194.19) | 153.73 (202.33) | 348.53 (305.60) | 8.02 (2.83) | 7.97 (1.20) | 6.29 (3.45) | 69.59 (51.96) | 3.79 (0.91) | 0.14 (0.38) | |
May 4–10 | 123.18 (116.69) | 188.54 (154.76) | 311.72 (215.99) | 107.57 (134.16) | 419.29 (282.63) | 8.98 (2.74) | 7.42 (1.14) | 21.43 (5.16) | 36.06 (11.76) | 3.01 (0.19) | 0.57 (0.54) | |
2015–2016 cohort d | Sep 14–20 | 124.21 (130.44) | 205.28 (158.53) | 329.49 (227.73) | 101.97 (135.78) | 431.46 (295.40) | 8.89 (2.73) | 7.03 (0.73) | 27.00 (0.82) | 89.24 (43.36) | 3.00 (0.00) | 0.14 (0.38) |
May 2–8 | 116.60 (126.69) | 175.83 (140.89) | 292.43 (211.47) | 113.40 (160.89) | 405.84 (284.91) | 8.66 (2.80) | 7.34 (1.01) | 25.57 (2.44) | 43.43 (17.75) | 3.14 (0.24) | 0.29 (0.49) | |
2016–2017 cohort e | Nov 21–27 | 112.62 (101.77) | 177.41 (144.48) | 290.03 (194.63) | 84.29 (125.30) | 374.32 (255.54) | 9.45 (2.86) | 7.12 (0.93) | 5.57 (1.72) | 84.43 (96.55) | 3.29 (0.06) | 0.00 (1.00) |
May 15–21 | 99.05 (122.52) | 166.58 (141.79) | 265.63 (208.96) | 100.93 (139.56) | 366.56 (276.47) | 9.22 (2.90) | 7.19 (0.98) | 20.86 (5.18) | 57.71 (21.04) | 3.15 (0.24) | 0.14 (0.38) | |
2017–2018 cohort f | Nov 13–19 | 129.40 (105.09) | 199.29 (145.71) | 328.69 (205.34) | 139.52 (146.50) | 468.21 (278.78) | 9.15 (2.81) | 7.00 (0.95) | 2.29 (2.21) | 37.43 (27.73) | 3.71 (0.95 | 0.00 (0.00) |
Apr 30-May 6 | 130.41 (126.73) | 190.57 (154.66) | 320.99 (227.55) | 196.37 (281.07) | 517.36 (394.65) | 8.49 (2.89) | 7.12 (1.13) | 19.43 (1.99) | 34.29 (23.78) | 3.35 (0.56) | 0.00 (0.00) |
Dependent Variable | Male Only | Female Only | Total | |||
---|---|---|---|---|---|---|
Coefficient (95% CI) | # Observations (Participants) | Coefficient (95% CI) | Observations (Participants) | Coefficient (95% CI) | Observations (Participants) | |
VPA | ||||||
0.70 *** (0.49, 0.90) | 23,011 (9490) | 0.59 *** (0.30, 0.88) | 10,896 (4446) | 0.66 *** (0.49, 0.82) | 33,923 (13,802) | |
MPA | ||||||
0.49 ** (0.20, 0.77) | 23,011 (9490) | 0.68 ** (0.25, 1.11) | 10,896 (4446) | 0.56 *** (0.32, 0.79) | 33,923 (13,802) | |
MVPA | ||||||
1.18 *** (0.80, 1.57) | 23,011 (9490) | 1.27 *** (0.71, 1.83) | 10,896 (4446) | 1.21 *** (0.90, 1.53) | 33,923 (13,802) | |
Walk | ||||||
Walking in last week (min/week) | 0.55 *** (0.27, 0.82) | 23,011 (9490) | 0.53 * (0.10, 0.96) | 10,896 (4446) | 0.55 *** (0.31, 0.78) | 33,923 (13,802) |
Total PA | ||||||
PA in last week (min/week) | 1.73 *** (1.23, 2.23) | 23,011 (9490) | 1.80 *** (1.07, 2.53) | 10,896 (4446) | 1.76 *** (1.1.35, 2.17) | 33,923 (13,802) |
SB | ||||||
Siting in last week (min/week) | −0.63 (−2.62, 1.35) | 23,011 (9490) | 1.48 (−1.68, 4.65) | 10,896 (4446) | −0.25 (−1.93, 1.43) | 33,923 (13,802) |
Sleep | ||||||
(min/week) | −1.36 *** (−1.95, −0.77) | 22,876 (9486) | −2.38 *** (−3.27, −1.48) | 10,834 (4445) | −1.60 *** (−2.09, −1.11) | 33,726 (13,799) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Song, Y.; Wang, Y.; Wang, X.; Li, H.; Feng, X.; Yu, M. The Impact of Temperature on 24-Hour Movement Behaviors among Chinese Freshmen Students. Int. J. Environ. Res. Public Health 2023, 20, 4970. https://doi.org/10.3390/ijerph20064970
Yu H, Song Y, Wang Y, Wang X, Li H, Feng X, Yu M. The Impact of Temperature on 24-Hour Movement Behaviors among Chinese Freshmen Students. International Journal of Environmental Research and Public Health. 2023; 20(6):4970. https://doi.org/10.3390/ijerph20064970
Chicago/Turabian StyleYu, Hongjun, Yiling Song, Yangyang Wang, Xiaoxin Wang, Haoxuan Li, Xiaolu Feng, and Miao Yu. 2023. "The Impact of Temperature on 24-Hour Movement Behaviors among Chinese Freshmen Students" International Journal of Environmental Research and Public Health 20, no. 6: 4970. https://doi.org/10.3390/ijerph20064970
APA StyleYu, H., Song, Y., Wang, Y., Wang, X., Li, H., Feng, X., & Yu, M. (2023). The Impact of Temperature on 24-Hour Movement Behaviors among Chinese Freshmen Students. International Journal of Environmental Research and Public Health, 20(6), 4970. https://doi.org/10.3390/ijerph20064970