The Impact of COVID-19 Lockdown Measures and COVID-19 Infection on Cognitive Functions: A Review in Healthy and Neurological Populations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Selection Criteria
2.2. Data Extraction and Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, V.C.C.; Ip, J.D.; Chu, A.W.H.; Tam, A.R.; Chan, W.M.; Abdullah, S.M.U.; Chan, B.P.C.; Wong, S.C.; Kwan, M.Y.W.; Chua, G.T.; et al. Rapid Spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Omicron Subvariant BA.2 in a Single-Source Community Outbreak. Clin. Infect. Dis. 2022, 75, e44–e49. [Google Scholar] [CrossRef]
- Malik, J.A.; Ahmed, S.; Mir, A.; Shinde, M.; Bender, O.; Alshammari, F.; Ansari, M.; Anwar, S. The SARS-CoV-2 mutations versus vaccine effectiveness: New opportunities to new challenges. J. Infect. Public Health 2022, 15, 228–240. [Google Scholar] [CrossRef]
- Penninx, B.W.J.H.; Benros, M.E.; Klein, R.S.; Vinkers, C.H. How COVID-19 shaped mental health: From infection to pandemic effects. Nat. Med. 2022, 28, 2027–2037. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.K.; Akl, E.A.; Duda, S.; Solo, K.; Yaacoub, S.; Schünemann, H.J.; Chu, D.K.; Akl, E.A.; El-harakeh, A.; Bognanni, A.; et al. Physical Distancing, Face Masks, and Eye Protection to Prevent Person-to-Person Transmission of SARS-CoV-2 and COVID-19: A Systematic Review and Meta-Analysis. Lancet 2020, 395, 1973–1987. [Google Scholar] [CrossRef] [PubMed]
- Escandón, K.; Rasmussen, A.L.; Bogoch, I.I.; Murray, E.J.; Escandón, K.; Popescu, S.V.; Kindrachuk, J. COVID-19 false dichotomies and a comprehensive review of the evidence regarding public health, COVID-19 symptomatology, SARS-CoV-2 transmission, mask wearing, and reinfection. BMC Infect. Dis. 2021, 21, 710. [Google Scholar] [CrossRef] [PubMed]
- Dhama, K.; Nainu, F.; Frediansyah, A.; Yatoo, M.I.; Mohapatra, R.K.; Chakraborty, S.; Zhou, H.; Islam, R.; Mamada, S.S.; Kusuma, H.I.; et al. Global emerging Omicron variant of SARS-CoV-2: Impacts, challenges and strategies. J. Infect. Public Health 2023, 16, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Haug, N.; Geyrhofer, L.; Londei, A.; Dervic, E.; Desvars-Larrive, A.; Loreto, V.; Pinior, B.; Thurner, S.; Klimek, P. Ranking the effectiveness of worldwide COVID-19 government interventions. Nat. Hum. Behav. 2020, 4, 1303–1312. [Google Scholar] [CrossRef]
- Qiu, J.; Shen, B.; Zhao, M.; Wang, Z.; Xie, B.; Xu, Y. A nationwide survey of psychological distress among Chinese people in the COVID-19 epidemic: Implications and policy recommendations. Gen. Psychiatry 2020, 33, e100213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wang, Z.; Wang, J.; Li, M.; Wang, S.; He, X.; Zhou, C. Evolution and control of the COVID-19 pandemic: A global perspective. Cities 2022, 130, 103907. [Google Scholar] [CrossRef]
- Dzúrová, D.; Květoň, V. How health capabilities and government restrictions affect the COVID-19 pandemic: Cross-country differences in Europe. Appl. Geogr. 2021, 135, 102551. [Google Scholar] [CrossRef]
- Vagnini, D.; Hou, W.K.; Hougen, C.; Cano, A.; Bonanomi, A.; Facchin, F.; Molgora, S.; Pagnini, F.; Saita, E. The impact of COVID-19 perceived threat and restrictive measures on mental health in Italy, Spain, New York, and Hong Kong: An international multisite study. Front. Psychol. 2022, 13, 1002936. [Google Scholar] [CrossRef]
- Ammar, A.; Mueller, P.; Trabelsi, K.; Chtourou, H.; Boukhris, O.; Masmoudi, L.; Bouaziz, B.; Brach, M.; Schmicker, M.; Bentlage, E.; et al. Psychological consequences of COVID-19 home confinement: The ECLB-COVID19 multicenter study. PLoS ONE 2020, 15, e0240204. [Google Scholar] [CrossRef] [PubMed]
- Guedj, E.; Campion, J.; Horowitz, T.; Barthelemy, F.; Cammilleri, S.; Ceccaldi, M. The impact of COVID-19 lockdown on brain metabolism. Hum. Brain Mapp. 2021, 43, 593–597. [Google Scholar] [CrossRef]
- Niedzwiedz, C.L.; Benzeval, M.; Hainey, K.; Leyland, A.H.; Katikireddi, S.V. Psychological distress among people with probable COVID-19 infection: Analysis of the UK Household Longitudinal Study. BJPsych Open 2021, 7, e104. [Google Scholar] [CrossRef] [PubMed]
- Collantes, M.E.V.; Espiritu, A.I.; Sy, M.C.C.; Anlacan, V.M.M.; Jamora, R.D.G. Neurological Manifestations in COVID-19 Infection: A Systematic Review and Meta-Analysis. Can. J. Neurol. Sci. J. Can. Sci. Neurol. 2021, 48, 66–76. [Google Scholar] [CrossRef]
- Vahia, I.V.; Jeste, D.V.; Reynolds, C.F. Older Adults and the Mental Health Effects of COVID-19. JAMA 2020, 324, 2253. [Google Scholar] [CrossRef]
- Grolli, R.E.; Mingoti, M.E.D.; Bertollo, A.G.; Luzardo, A.R.; Quevedo, J.; Réus, G.Z.; Ignácio, Z.M. Impact of COVID-19 in the Mental Health in Elderly: Psychological and Biological Updates. Mol. Neurobiol. 2021, 58, 1905–1916. [Google Scholar] [CrossRef]
- Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; McIntyre, R.S.; Choo, F.N.; Tran, B.; Ho, R.; Sharma, V.K.; et al. A longitudinal study on the mental health of general population during the COVID-19 epidemic in China. Brain Behav. Immun. 2020, 87, 40–48. [Google Scholar] [CrossRef]
- Wathelet, M.; Duhem, S.; Vaiva, G.; Baubet, T.; Habran, E.; Veerapa, E.; Debien, C.; Molenda, S.; Horn, M.; Grandgenèvre, P.; et al. Factors associated with mental health disorders among College students in France confined during the COVID-19 pandemic. JAMA Netw. Open 2020, 3, e2025591. [Google Scholar] [CrossRef]
- Pisano, F.; Torromino, G.; Brachi, D.; Quadrini, A.; Incoccia, C.; Marangolo, P. A Standardized Prospective Memory Evaluation of the Effects of COVID-19 Confinement on Young Students. J. Clin. Med. 2021, 10, 3919. [Google Scholar] [CrossRef]
- Pisano, F.; Giachero, A.; Rugiero, C.; Calati, M.; Marangolo, P. Does COVID-19 Impact Less on Post-stroke Aphasia? This Is Not the Case. Front. Psychol. 2020, 11, 564717. [Google Scholar] [CrossRef] [PubMed]
- El Haj, M.; Altintas, E.; Chapelet, G.; Kapogiannis, D.; Gallouj, K. High depression and anxiety in people with Alzheimer’s disease living in retirement homes during the covid-19 crisis. Psychiatry Res. 2020, 291, 113294. [Google Scholar] [CrossRef] [PubMed]
- Montanaro, E.; Artusi, C.A.; Rosano, C.; Boschetto, C.; Imbalzano, G.; Romagnolo, A.; Bozzali, M.; Rizzone, M.G.; Zibetti, M.; Lopiano, L. Anxiety, depression, and worries in advanced Parkinson disease during COVID-19 pandemic. Neurol. Sci. 2022, 43, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Altieri, M.; Capuano, R.; Bisecco, A.; D’Ambrosio, A.; Buonanno, D.; Tedeschi, G.; Santangelo, G.; Gallo, A. The psychological impact of Covid-19 pandemic on people with Multiple Sclerosis: A meta-analysis. Mult. Scler. Relat. Disord. 2022, 61, 103774. [Google Scholar] [CrossRef] [PubMed]
- Baschi, R.; Luca, A.; Nicoletti, A.; Caccamo, M.; Cicero, C.E.; D’Agate, C.; Di Giorgi, L.; La Bianca, G.; Castro, T.L.; Zappia, M.; et al. Changes in Motor, Cognitive, and Behavioral Symptoms in Parkinson’s Disease and Mild Cognitive Impairment During the COVID-19 Lockdown. Front. Psychiatry 2020, 11, 590134. [Google Scholar] [CrossRef] [PubMed]
- Pisano, F.; Manfredini, A.; Brachi, D.; Landi, L.; Sorrentino, L.; Bottone, M.; Incoccia, C.; Marangolo, P. How Has COVID-19 Impacted Our Language Use? Int. J. Environ. Res. Public Health 2022, 19, 13836. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-C.; Liu, S.; Gan, J.; Ma, L.; Du, X.; Zhu, H.; Han, J.; Xu, J.; Wu, H.; Fei, M.; et al. The Impact of the COVID-19 Pandemic and Lockdown on Mild Cognitive Impairment, Alzheimer’s Disease and Dementia with Lewy Bodies in China: A 1-Year Follow-Up Study. Front. Psychiatry 2021, 12, 711658. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, J.; Gerardo, B.; Silva, A.R.; Pinto, P.; Barbosa, R.; Soares, S.; Baptista, B.; Paquete, C.; Cabral-Pinto, M.; Vilar, M.M.; et al. Effects of restraining measures due to COVID-19: Pre- and post-lockdown cognitive status and mental health. Curr. Psychol. 2021, 41, 7383–7392. [Google Scholar] [CrossRef] [PubMed]
- Ceban, F.; Ling, S.; Lui, L.M.; Lee, Y.; Gill, H.; Teopiz, K.M.; Rodrigues, N.B.; Subramaniapillai, M.; Di Vincenzo, J.D.; Cao, B.; et al. Fatigue and cognitive impairment in Post-COVID-19 Syndrome: A systematic review and meta-analysis. Brain Behav. Immun. 2021, 101, 93–135. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Haupert, S.R.; Zimmermann, L.; Shi, X.; Fritsche, L.G.; Mukherjee, B. Global Prevalence of Post-Coronavirus Disease 2019 (COVID-19) Condition or Long COVID: A Meta-Analysis and Systematic Review. J. Infect. Dis. 2022, 226, 1593–1607. [Google Scholar] [CrossRef] [PubMed]
- Renaud-Charest, O.; Lui, L.M.; Eskander, S.; Ceban, F.; Ho, R.; Di Vincenzo, J.D.; Rosenblat, J.D.; Lee, Y.; Subramaniapillai, M.; McIntyre, R.S. Onset and frequency of depression in post-COVID-19 syndrome: A systematic review. J. Psychiatr. Res. 2021, 144, 129–137. [Google Scholar] [CrossRef]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef]
- Alwan, N.A.; Johnson, L. Defining long COVID: Going back to the start. Med 2021, 2, 501–504. [Google Scholar] [CrossRef]
- Parums, D.V. Editorial: Long COVID, or Post-COVID Syndrome, and the Global Impact on Health Care. Med. Sci. Monit. 2021, 27, e933446-1–e933446-2. [Google Scholar] [CrossRef]
- Becker, J.H.; Lin, J.J.; Doernberg, M.; Stone, K.; Navis, A.; Festa, J.R.; Wisnivesky, J.P. Assessment of Cognitive Function in Patients After COVID-19 Infection. JAMA Netw. Open 2021, 4, e2130645. [Google Scholar] [CrossRef]
- Boesl, F.; Audebert, H.; Endres, M.; Prüss, H.; Franke, C. A Neurological Outpatient Clinic for Patients with Post-COVID-19 Syndrome—A Report on the Clinical Presentations of the First 100 Patients. Front. Neurol. 2021, 12, 738405. [Google Scholar] [CrossRef]
- Frontera, J.A.; Yang, D.; Lewis, A.; Patel, P.; Medicherla, C.; Arena, V.; Fang, T.; Andino, A.; Snyder, T.; Madhavan, M.; et al. A prospective study of long-term outcomes among hospitalized COVID-19 patients with and without neurological complications. J. Neurol. Sci. 2021, 426, 117486. [Google Scholar] [CrossRef]
- Holdsworth, D.A.; Chamley, R.; Barker-Davies, R.; O’Sullivan, O.; Ladlow, P.; Mitchell, J.L.; Dewson, D.; Mills, D.; May, S.L.J.; Cranley, M.; et al. Comprehensive clinical assessment identifies specific neurocognitive deficits in working-age patients with long-COVID. PLoS ONE 2022, 17, e0267392. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Dura-Perez, E.; Goodman-Casanova, J.M.; Vega-Nuñez, A.; Guerrero-Pertiñez, G.; Varela-Moreno, E.; Garolera, M.; Quintana, M.; Cuesta-Vargas, A.I.; Barnestein-Fonseca, P.; Sánchez-Lafuente, C.G.; et al. The Impact of COVID-19 Confinement on Cognition and Mental Health and Technology Use Among Socially Vulnerable Older People: Retrospective Cohort Study. J. Med. Internet Res. 2022, 24, e30598. [Google Scholar] [CrossRef]
- Gareri, P.; Fumagalli, S.; Malara, A.; Mossello, E.; Trevisan, C.; Volpato, S.; Coin, A.; Calsolaro, V.; Bellelli, G.; Del Signore, S.; et al. Management of Older Outpatients during the COVID-19 Pandemic: The GeroCovid Ambulatory Study. Gerontology 2021, 68, 412–417. [Google Scholar] [CrossRef]
- Paolini, S.; Devita, M.; Epifania, O.M.; Anselmi, P.; Sergi, G.; Mapelli, D.; Coin, A. Perception of stress and cognitive efficiency in older adults with mild and moderate dementia during the COVID-19-related lockdown. J. Psychosom. Res. 2021, 149, 110584. [Google Scholar] [CrossRef]
- Tondo, G.; Sarasso, B.; Serra, P.; Tesser, F.; Comi, C. The Impact of the COVID-19 Pandemic on the Cognition of People with Dementia. Int. J. Environ. Res. Public Health 2021, 18, 4285. [Google Scholar] [CrossRef]
- Tsatali, M.; Moraitou, D.; Poptsi, E.; Sia, E.; Agogiatou, C.; Gialaouzidis, M.; Tabakis, I.-M.; Avdikou, K.; Bakoglidou, E.; Batsila, G.; et al. Are There Any Cognitive and Behavioral Changes Potentially Related to Quarantine Due to the COVID-19 Pandemic in People with Mild Cognitive Impairment and AD Dementia? A Longitudinal Study. Brain Sci. 2021, 11, 1165. [Google Scholar] [CrossRef]
- Vislapuu, M.; Angeles, R.C.; Berge, L.I.; Kjerstad, E.; Gedde, M.H.; Husebo, B.S. The consequences of COVID-19 lockdown for formal and informal resource utilization among home-dwelling people with dementia: Results from the prospective PAN.DEM study. BMC Health Serv. Res. 2021, 21, 1003. [Google Scholar] [CrossRef]
- Aragón, I.; Flores, I.; Dorman, G.; Rojas, G.; Sanjurjo, N.S.; O’Neill, S. Quality of life, mood, and cognitive performance in older adults with cognitive impairment during the first wave of COVID 19 in Argentina. Int. J. Geriatr. Psychiatry 2022, 37. [Google Scholar] [CrossRef]
- Custodio, N.; Castro-Suárez, S.; Montesinos, R.; Failoc-Rojas, V.E.; del Castillo, R.C.; Herrera-Perez, E. Neuropsychiatric Symptoms in Patients with Alzheimer’s Disease During SARS-COV-2 Pandemic in Peru. Am. J. Alzheimer’s Dis. Other Dement. 2021, 36, 153331752110390. [Google Scholar] [CrossRef]
- Pereiro, A.; Dosil-Díaz, C.; Mouriz-Corbelle, R.; Pereira-Rodríguez, S.; Nieto-Vieites, A.; Pinazo-Hernandis, S.; Pinazo-Clapés, C.; Facal, D. Impact of the COVID-19 Lockdown on a Long-Term Care Facility: The Role of Social Contact. Brain Sci. 2021, 11, 986. [Google Scholar] [CrossRef]
- Tsiakiri, A.; Vlotinou, P.; Terzoudi, A.; Heliopoulos, I.; Vadikolias, K. Cognitive, Functional, and Emotional Changes During the COVID-19 Pandemic in Greek Patients with Neurocognitive Disorders. J. Alzheimer’s Dis. 2022, 88, 537–547. [Google Scholar] [CrossRef]
- Gan, J.; Liu, S.; Wu, H.; Chen, Z.; Fei, M.; Xu, J.; Dou, Y.; Wang, X.; Ji, Y. The Impact of the COVID-19 Pandemic on Alzheimer’s Disease and Other Dementias. Front. Psychiatry 2021, 12, 703481. [Google Scholar] [CrossRef]
- Vernuccio, L.; Sarà, D.; Inzerillo, F.; Catanese, G.; Catania, A.; Vesco, M.; Cacioppo, F.; Dominguez, L.J.; Veronese, N.; Barbagallo, M. Effect of COVID-19 quarantine on cognitive, functional and neuropsychiatric symptoms in patients with mild cognitive impairment and dementia. Aging Clin. Exp. Res. 2022, 34, 1187–1194. [Google Scholar] [CrossRef] [PubMed]
- Favieri, F.; Forte, G.; Agostini, F.; Giovannoli, J.; Di Pace, E.; Langher, V.; Tambelli, R.; Pazzaglia, M.; Giannini, A.M.; Casagrande, M. The Cognitive Consequences of the COVID-19 Pandemic on Members of the General Population in Italy: A Preliminary Study on Executive Inhibition. J. Clin. Med. 2021, 11, 170. [Google Scholar] [CrossRef] [PubMed]
- Cacciatore, M.; Raggi, A.; Pilotto, A.; Cristillo, V.; Guastafierro, E.; Toppo, C.; Magnani, F.G.; Sattin, D.; Mariniello, A.; Silvaggi, F.; et al. Neurological and Mental Health Symptoms Associated with Post-COVID-19 Disability in a Sample of Patients Discharged from a COVID-19 Ward: A Secondary Analysis. Int. J. Environ. Res. Public Health 2022, 19, 4242. [Google Scholar] [CrossRef] [PubMed]
- Cian, V.; De Laurenzis, A.; Siri, C.; Gusmeroli, A.; Canesi, M. Cognitive and Neuropsychiatric Features of COVID-19 Patients After Hospital Dismission: An Italian Sample. Front. Psychol. 2022, 13, 908363. [Google Scholar] [CrossRef] [PubMed]
- Filho, A.D.C.; van Duinkerken, E.; Tolentino, J.C.; Schmidt, S.L. Attention profile of physically recovered COVID-19 inpatients on the day of discharge. J. Psychiatr. Res. 2022, 150, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, S.; Sattler, S.M.; Miskowiak, K.W.; Kunalan, K.; Victor, A.; Pedersen, L.; Andreassen, H.F.; Jørgensen, B.J.; Heebøll, H.; Andersen, M.B.; et al. Descriptive analysis of long COVID sequelae identified in a multidisciplinary clinic serving hospitalised and non-hospitalised patients. ERJ Open Res. 2021, 7, 00205-2021. [Google Scholar] [CrossRef] [PubMed]
- Méndez, R.; Balanzá-Martínez, V.; Luperdi, S.C.; Estrada, I.; Latorre, A.; González-Jiménez, P.; Feced, L.; Bouzas, L.; Yépez, K.; Ferrando, A.; et al. Short-term neuropsychiatric outcomes and quality of life in COVID-19 survivors. J. Intern. Med. 2021, 290, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Pistarini, C.; Fiabane, E.; Houdayer, E.; Vassallo, C.; Manera, M.R.; Alemanno, F. Cognitive and Emotional Disturbances Due to COVID-19: An Exploratory Study in the Rehabilitation Setting. Front. Neurol. 2021, 12, 643646. [Google Scholar] [CrossRef] [PubMed]
- Priftis, K.; Velardo, V.; Vascello, M.G.F.; Villella, S.; Galeri, S.; Spada, M.S.; Algeri, L. Limited evidence for neuropsychological dysfunction in patients initially affected by severe COVID-19. Neurol. Sci. 2022, 43, 6661–6663. [Google Scholar] [CrossRef] [PubMed]
- Thornberg, U.B.; Andersson, A.; Lindh, M.; Hellgren, L.; Divanoglou, A.; Levi, R. Neurocognitive deficits in COVID-19 patients five months after discharge from hospital. Neuropsychol. Rehabil. 2022, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Braga, L.; Oliveira, S.; Moreira, A.; Pereira, M.; Carneiro, V.; Serio, A.; Freitas, L.; Isidro, H.; Souza, L. Neuropsychological manifestations of long COVID in hospitalized and non-hospitalized Brazilian Patients. Neurorehabilitation 2022, 50, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Calabria, M.; García-Sánchez, C.; Grunden, N.; Pons, C.; Arroyo, J.A.; Gómez-Anson, B.; García, M.d.C.E.; Belvís, R.; Morollón, N.; Igual, J.V.; et al. Post-COVID-19 fatigue: The contribution of cognitive and neuropsychiatric symptoms. J. Neurol. 2022, 269, 3990–3999. [Google Scholar] [CrossRef] [PubMed]
- Costas-Carrera, A.; Sánchez-Rodríguez, M.M.; Cañizares, S.; Ojeda, A.; Martín-Villalba, I.; Primé-Tous, M.; Rodríguez-Rey, M.A.; Segú, X.; Valdesoiro-Pulido, F.; Borras, R.; et al. Neuropsychological functioning in post-ICU patients after severe COVID-19 infection: The role of cognitive reserve. Brain Behav. Immun. Health 2022, 21, 100425. [Google Scholar] [CrossRef] [PubMed]
- Cristillo, V.; Pilotto, A.; Piccinelli, S.C.; Bonzi, G.; Canale, A.; Gipponi, S.; Bezzi, M.; Leonardi, M.; Padovani, A.; Libri, I.; et al. Premorbid vulnerability and disease severity impact on Long-COVID cognitive impairment. Aging Clin. Exp. Res. 2022, 34, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Crivelli, L.; Calandri, I.; Corvalán, N.; Carello, M.A.; Keller, G.; Martínez, C.; Arruabarrena, M.; Allegri, R. Cognitive consequences of COVID-19: Results of a cohort study from South America. Arq. Neuro-Psiquiatr. 2022, 80, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Dondaine, T.; Ruthmann, F.; Vuotto, F.; Carton, L.; Gelé, P.; Faure, K.; Deplanque, D.; Bordet, R. Long-term cognitive impairments following COVID-19: A possible impact of hypoxia. J. Neurol. 2022, 269, 3982–3989. [Google Scholar] [CrossRef] [PubMed]
- Dressing, A.; Bormann, T.; Blazhenets, G.; Schroeter, N.; Walter, L.I.; Thurow, J.; August, D.; Hilger, H.; Stete, K.; Gerstacker, K.; et al. Neuropsychologic Profiles and Cerebral Glucose Metabolism in Neurocognitive Long COVID Syndrome. J. Nucl. Med. 2021, 63, 1058–1063. [Google Scholar] [CrossRef] [PubMed]
- Duindam, H.B.; Kessels, R.P.; van den Borst, B.; Pickkers, P.; Abdo, W.F. Long-term cognitive performance and its relation to anti-inflammatory therapy in a cohort of survivors of severe COVID-19. Brain Behav. Immun. Health 2022, 25, 100513. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, R.; Dini, M.; Groppo, E.; Rosci, C.; Reitano, M.R.; Bai, F.; Poletti, B.; Brugnera, A.; Silani, V.; Monforte, A.D.; et al. Long-Lasting Cognitive Abnormalities after COVID-19. Brain Sci. 2021, 11, 235. [Google Scholar] [CrossRef] [PubMed]
- García-Grimshaw, M.; Chirino-Pérez, A.; Flores-Silva, F.D.; Valdés-Ferrer, S.I.; Vargas-Martínez, M.D.L.; Jiménez-Ávila, A.I.; Chávez-Martínez, O.A.; Ramos-Galicia, E.M.; Marché-Fernández, O.A.; Ramírez-Carrillo, M.F.; et al. Critical role of acute hypoxemia on the cognitive impairment after severe COVID-19 pneumonia: A multivariate causality model analysis. Neurol. Sci. 2022, 43, 2217–2229. [Google Scholar] [CrossRef] [PubMed]
- García-Molina, A.; García-Carmona, S.; Espiña-Bou, M.; Rodríguez-Rajo, P.; Sánchez-Carrión, R.; Enseñat-Cantallops, A. Neuropsychological Rehabilitation for Post-COVID-19 Syndrome: Results of a Clinical Program and Six-Month Follow Up. Neurologia 2022. [Google Scholar] [CrossRef] [PubMed]
- García-Sánchez, C.; Calabria, M.; Grunden, N.; Pons, C.; Arroyo, J.A.; Gómez-Anson, B.; Lleó, A.; Alcolea, D.; Belvís, R.; Morollón, N.; et al. Neuropsychological deficits in patients with cognitive complaints after COVID-19. Brain Behav. 2022, 12, e2508. [Google Scholar] [CrossRef] [PubMed]
- Hadad, R.; Khoury, J.; Stanger, C.; Fisher, T.; Schneer, S.; Ben-Hayun, R.; Possin, K.; Valcour, V.; Aharon-Peretz, J.; Adir, Y. Cognitive dysfunction following COVID-19 infection. J. Neurovirol. 2022, 28, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Hampshire, A.; Chatfield, D.A.; Mphil, A.M.; Jolly, A.; Trender, W.; Hellyer, P.J.; del Giovane, M.; Newcombe, V.F.J.; Outtrim, J.G.; Warne, B.; et al. Multivariate Profile and Acute-Phase Correlates of Cognitive Deficits in a COVID-19 Hospitalised Cohort. EClinicalMedicine 2022, 47, 101417. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, K.; Miller, A.K.; Reiter, K.; Bonner-Jackson, A. Neurocognitive Profiles in Patients with Persisting Cognitive Symptoms Associated With COVID-19. Arch. Clin. Neuropsychol. 2022, 37, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Lamontagne, S.J.; Winters, M.F.; Pizzagalli, D.A.; Olmstead, M.C. Post-acute sequelae of COVID-19: Evidence of mood & cognitive impairment. Brain Behav. Immun. Health 2021, 17, 100347. [Google Scholar] [CrossRef] [PubMed]
- Lier, J.; Stoll, K.; Obrig, H.; Baum, P.; Deterding, L.; Bernsdorff, N.; Hermsdorf, F.; Kunis, I.; Bräsecke, A.; Herzig, S.; et al. Neuropsychiatric phenotype of post COVID-19 syndrome in non-hospitalized patients. Front. Neurol. 2022, 13, 98835. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.; Ferrando, S.J.; Dornbush, R.; Shahar, S.; Smiley, A.; Klepacz, L. Screening for brain fog: Is the montreal cognitive assessment an effective screening tool for neurocognitive complaints post-COVID-19? Gen. Hosp. Psychiatry 2022, 78, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, F.; Stampatori, C.; Righetti, F.; Sala, E.; Tomasi, C.; De Palma, G. Neurological and cognitive sequelae of Covid-19: A four month follow-up. J. Neurol. 2021, 268, 4422–4428. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, F.; Piva, S.; Stampatori, C.; Righetti, F.; Mega, I.; Peli, E.; Sala, E.; Tomasi, C.; Indelicato, A.M.; Latronico, N.; et al. Neurologic and cognitive sequelae after SARS-CoV2 infection: Different impairment for ICU patients. J. Neurol. Sci. 2021, 432, 120061. [Google Scholar] [CrossRef] [PubMed]
- Miskowiak, K.; Johnsen, S.; Sattler, S.; Nielsen, S.; Kunalan, K.; Rungby, J.; Lapperre, T.; Porsberg, C. Cognitive impairments four months after COVID-19 hospital discharge: Pattern, severity and association with illness variables. Eur. Neuropsychopharmacol. 2021, 46, 39–48. [Google Scholar] [CrossRef]
- Ortelli, P.; Ferrazzoli, D.; Sebastianelli, L.; Maestri, R.; Dezi, S.; Spampinato, D.; Saltuari, L.; Alibardi, A.; Engl, M.; Kofler, M.; et al. Altered motor cortex physiology and dysexecutive syndrome in patients with fatigue and cognitive difficulties after mild COVID-19. Eur. J. Neurol. 2022, 29, 1652–1662. [Google Scholar] [CrossRef]
- Pilotto, A.; Cristillo, V.; Piccinelli, S.C.; Zoppi, N.; Bonzi, G.; Sattin, D.; Schiavolin, S.; Raggi, A.; Canale, A.; Gipponi, S.; et al. Long-term neurological manifestations of COVID-19: Prevalence and predictive factors. Neurol. Sci. 2021, 42, 4903–4907. [Google Scholar] [CrossRef]
- Stallmach, A.; Kesselmeier, M.; Bauer, M.; Gramlich, J.; Finke, K.; Fischer, A.; Fleischmann-Struzek, C.; Heutelbeck, A.; Katzer, K.; Mutschke, S.; et al. Comparison of fatigue, cognitive dysfunction and psychological disorders in post-COVID patients and patients after sepsis: Is there a specific constellation? Infection 2022, 50, 661–669. [Google Scholar] [CrossRef]
- Vannorsdall, T.D.; Brigham, E.; Fawzy, A.; Raju, S.; Gorgone, A.; Pletnikova, A.; Lyketsos, C.G.; Parker, A.M.; Oh, E.S. Cognitive Dysfunction, Psychiatric Distress, and Functional Decline After COVID-19. J. Acad. Consult. Liaison Psychiatry 2021, 63, 133–143. [Google Scholar] [CrossRef]
- Voruz, P.; Cionca, A.; de Alcântara, I.J.; Nuber-Champier, A.; Allali, G.; Benzakour, L.; Thomasson, M.; Lalive, P.H.; Lövblad, K.-O.; Braillard, O.; et al. Functional connectivity underlying cognitive and psychiatric symptoms in post-COVID-19 syndrome: Is anosognosia a key determinant? Brain Commun. 2022, 4, fcac057. [Google Scholar] [CrossRef]
- Voruz, P.; de Alcântara, I.J.; Nuber-Champier, A.A.; Cionca, A.A.; Allali, G.; Benzakour, L.; Lalive, P.H.; Lövblad, K.-O.; Braillard, O.O.; Nehme, M.; et al. Frequency of Abnormally Low Neuropsychological Scores in Post-COVID-19 Syndrome: The Geneva COVID-COG Cohort. Arch. Clin. Neuropsychol. 2023, 38, 1–11. [Google Scholar] [CrossRef]
- Whiteside, D.M.; Basso, M.R.; Naini, S.M.; Porter, J.; Holker, E.; Waldron, E.J.; Melnik, T.E.; Niskanen, N.; Taylor, S.E. Outcomes in post-acute sequelae of COVID-19 (PASC) at 6 months post-infection Part 1: Cognitive functioning. Clin. Neuropsychol. 2022, 36, 806–828. [Google Scholar] [CrossRef]
- Zhao, S.; Shibata, K.; Hellyer, P.J.; Trender, W.; Manohar, S.; Hampshire, A.; Husain, M. Rapid vigilance and episodic memory decrements in COVID-19 survivors. Brain Commun. 2022, 4, fcab295. [Google Scholar] [CrossRef]
- Andriuta, D.; Si-Ahmed, C.; Roussel, M.; Constans, J.-M.; Makki, M.; Aarabi, A.; Basille, D.; Andrejak, C.; Godefroy, O. Clinical and Imaging Determinants of Neurocognitive Disorders in Post-Acute COVID-19 Patients with Cognitive Complaints. J. Alzheimer’s Dis. 2022, 87, 1239–1250. [Google Scholar] [CrossRef]
- Cristillo, V.; Pilotto, A.; Piccinelli, S.C.; Gipponi, S.; Leonardi, M.; Bezzi, M.; Padovani, A. Predictors of “brain fog” 1 year after COVID-19 disease. Neurol. Sci. 2022, 43, 5795–5797. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Alonso, C.; Valles-Salgado, M.; Delgado-Álvarez, A.; Yus, M.; Gómez-Ruiz, N.; Jorquera, M.; Polidura, C.; Gil, M.J.; Marcos, A.; Matías-Guiu, J.; et al. Cognitive dysfunction associated with COVID-19: A comprehensive neuropsychological study. J. Psychiatr. Res. 2022, 150, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Díez-Cirarda, M.; Yus, M.; Gómez-Ruiz, N.; Polidura, C.; Gil-Martínez, L.; Delgado-Alonso, C.; Jorquera, M.; Gómez-Pinedo, U.; Matias-Guiu, J.; Arrazola, J.; et al. Multimodal neuroimaging in post-COVID syndrome and correlation with cognition. Brain 2022, awac384. [Google Scholar] [CrossRef]
- Fiorentino, J.; Payne, M.; Cancian, E.; Plonka, A.; Dumas, L.; Chirio, D.; Demonchy, É.; Risso, K.; Askenazy-Gittard, F.; Guevara, N.; et al. Correlations between Persistent Olfactory and Semantic Memory Disorders after SARS-CoV-2 Infection. Brain Sci. 2022, 12, 714. [Google Scholar] [CrossRef]
- Jennings, G.; Monaghan, A.; Xue, F.; Duggan, E.; Romero-Ortuño, R. Comprehensive Clinical Characterisation of Brain Fog in Adults Reporting Long COVID Symptoms. J. Clin. Med. 2022, 11, 3440. [Google Scholar] [CrossRef] [PubMed]
- Santoyo-Mora, M.; Villaseñor-Mora, C.; Cardona-Torres, L.M.; Martínez-Nolasco, J.J.; Barranco-Gutiérrez, A.I.; Padilla-Medina, J.A.; Bravo-Sánchez, M.G. COVID-19 Long-Term Effects: Is There an Impact on the Simple Reaction Time and Alternative-Forced Choice on Recovered Patients? Brain Sci. 2022, 12, 1258. [Google Scholar] [CrossRef]
- Stratford, P.; Kennedy, D.; Pagura, S.M.C.; Gollish, J.D. The relationship between self-report and performance-related measures: Questioning the content validity of timed tests. Arthritis Rheum. 2003, 49, 535–540. [Google Scholar] [CrossRef]
- Dennis, J.P.; Wal, J.S.V. The Cognitive Flexibility Inventory: Instrument Development and Estimates of Reliability and Validity. Cogn. Ther. Res. 2009, 34, 241–253. [Google Scholar] [CrossRef]
- Johnco, C.; Wuthrich, V.M.; Rapee, R.M. Reliability and validity of two self-report measures of cognitive flexibility. Psychol. Assess. 2014, 26, 1381–1387. [Google Scholar] [CrossRef]
- Holtgraves, T. Social Desirability and Self-Reports: Testing Models of Socially Desirable Responding. Pers. Soc. Psychol. Bull. 2004, 30, 161–172. [Google Scholar] [CrossRef]
- Sullman, M.J.; Taylor, J.E. Social desirability and self-reported driving behaviours: Should we be worried? Transp. Res. Part F Traffic Psychol. Behav. 2010, 13, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Howlett, C.A.; Wewege, M.A.; Berryman, C.; Oldach, A.; Jennings, E.; Moore, E.; Karran, E.L.; Szeto, K.; Pronk, L.; Miles, S.; et al. Same room—Different windows? A systematic review and meta-analysis of the relationship between self-report and neuropsychological tests of cognitive flexibility in healthy adults. Clin. Psychol. Rev. 2021, 88, 102061. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-Mental State. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, G.S.A.; Hagemann, P.D.M.S.; Coelho, D.D.S.; Dos Santos, F.H.; Bertolucci, P.H.F. Can MoCA and MMSE Be Interchangeable Cognitive Screening Tools? A Systematic Review. Gerontologist 2018, 59, e743–e763. [Google Scholar] [CrossRef]
- Shalash, A.; Roushdy, T.; Essam, M.; Fathy, M.; Dawood, N.L.; Abushady, E.M.; Elrassas, H.; Helmi, A.; Hamid, E. Mental Health, Physical Activity, and Quality of Life in Parkinson’s Disease During COVID-19 Pandemic. Mov. Disord. 2020, 35, 1097–1099. [Google Scholar] [CrossRef]
- Suárez-González, A.; Rajagopalan, J.; Livingston, G.; Alladi, S. The effect of COVID-19 isolation measures on the cognition and mental health of people living with dementia: A rapid systematic review of one year of quantitative evidence. Eclinicalmedicine 2021, 39, 101047. [Google Scholar] [CrossRef]
- Barguilla, A.; Fernández-Lebrero, A.; Estragués-Gázquez, I.; García-Escobar, G.; Navalpotro-Gómez, I.; Manero, R.M.; Puente-Periz, V.; Roquer, J.; Puig-Pijoan, A. Effects of COVID-19 Pandemic Confinement in Patients with Cognitive Impairment. Front. Neurol. 2020, 11, 589901. [Google Scholar] [CrossRef]
- Liu, K.Y.; Howard, R.; Banerjee, S.; Comas-Herrera, A.; Goddard, J.; Knapp, M.; Livingston, G.; Manthorpe, J.; O’Brien, J.T.; Paterson, R.W.; et al. Dementia wellbeing and COVID-19: Review and expert consensus on current research and knowledge gaps. Int. J. Geriatr. Psychiatry 2021, 36, 1597–1639. [Google Scholar] [CrossRef] [PubMed]
- Ciaramelli, E.; Serino, A.; Benassi, M.; Bolzani, R. Paced Auditory Serial Addition Task (PASAT) Standardizzazione Di Tre Test Di Memoria Di Lavoro. G. Ital. Di Psicol. 2006, 33, 607–624. [Google Scholar]
- Raskin, S.A. Memory for Intentions Screening Test: Psychometric Properties and Clinical Evidence. Brain Impair. 2009, 10, 23–33. [Google Scholar] [CrossRef]
- Scarpina, F.; Tagini, S. The Stroop Color and Word Test. Front. Psychol. 2017, 8, 557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamudio-Rodríguez, A.; Aguilar-Navarro, S.; Avila-Funes, J.A. Deterioro cognitivo en adultos mayores con VIH/sida y síndrome de fragilidad. Gac. Med. Mex. 2017, 153, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Zhang, X.; Gao, Y.; Turner, D.; Qian, F.; Lu, H.; Vermund, S.H.; Zhang, Y.; Qian, H.-Z. Association of HIV infection and cognitive impairment in older adults: A meta-analysis. Ageing Res. Rev. 2021, 68, 101310. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ji, M.; Yang, J. Current Understanding of Long-Term Cognitive Impairment After Sepsis. Front. Immunol. 2022, 13, 855006. [Google Scholar] [CrossRef]
- Iwashyna, T.J.; Ely, E.W.; Smith, D.M.; Langa, K.M. Long-term Cognitive Impairment and Functional Disability Among Survivors of Severe Sepsis. JAMA 2010, 304, 1787–1794. [Google Scholar] [CrossRef] [Green Version]
- Baig, A.M. Neurological manifestations in COVID-19 caused by SARS-CoV-2. CNS Neurosci. Ther. 2020, 26, 499–501. [Google Scholar] [CrossRef] [Green Version]
- Callard, F.; Perego, E. How and why patients made Long Covid. Soc. Sci. Med. 2020, 268, 113426. [Google Scholar] [CrossRef]
- Hampshire, A.; Trender, W.; Chamberlain, S.R.; Jolly, A.E.; Grant, J.E.; Patrick, F.; Mazibuko, N.; Williams, S.C.; Barnby, J.M.; Hellyer, P.; et al. Cognitive deficits in people who have recovered from COVID-19. Eclinicalmedicine 2021, 39, 101044. [Google Scholar] [CrossRef]
- Paterson, R.W.; Brown, R.L.; Benjamin, L.; Nortley, R.; Wiethoff, S.; Bharucha, T.; Jayaseelan, D.L.; Kumar, G.; Raftopoulos, R.E.; Zambreanu, L.; et al. The emerging spectrum of COVID-19 neurology: Clinical, radiological and laboratory findings. Brain 2020, 143, 3104–3120. [Google Scholar] [CrossRef]
- Brown, E.G.; Chahine, L.M.; Goldman, S.M.; Korell, M.; Mann, E.; Kinel, D.R.; Arnedo, V.; Marek, K.L.; Tanner, C.M. The Effect of the COVID-19 Pandemic on People with Parkinson’s Disease. J. Park. Dis. 2020, 10, 1365–1377. [Google Scholar] [CrossRef]
- Mishra, R.; Banerjea, A.C. Neurological Damage by Coronaviruses: A Catastrophe in the Queue! Front. Immunol. 2020, 11, 565521. [Google Scholar] [CrossRef]
- Lu, Y.; Li, X.; Geng, D.; Mei, N.; Wu, P.-Y.; Huang, C.-C.; Jia, T.; Zhao, Y.; Wang, D.; Xiao, A.; et al. Cerebral Micro-Structural Changes in COVID-19 Patients—An MRI-based 3-month Follow-up Study. Eclinicalmedicine 2020, 25, 100484. [Google Scholar] [CrossRef] [PubMed]
- Douaud, G.; Lee, S.; Alfaro-Almagro, F.; Arthofer, C.; Wang, C.; McCarthy, P.; Lange, F.; Andersson, J.L.R.; Griffanti, L.; Duff, E.; et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 2022, 604, 697–707. [Google Scholar] [CrossRef]
- Cecchetti, G.; Agosta, F.; Canu, E.; Basaia, S.; Barbieri, A.; Cardamone, R.; Bernasconi, M.P.; Castelnovo, V.; Cividini, C.; Cursi, M.; et al. Cognitive, EEG, and MRI features of COVID-19 survivors: A 10-month study. J. Neurol. 2022, 269, 3400–3412. [Google Scholar] [CrossRef]
- Soung, A.L.; Vanderheiden, A.; Nordvig, A.S.; Sissoko, C.A.; Canoll, P.; Mariani, M.B.; Jiang, X.; Bricker, T.; Rosoklija, G.B.; Arango, V.; et al. COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis. Brain 2022, 145, 4193–4201. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Galougahi, M.; Yousefi-Koma, A.; Bakhshayeshkaram, M.; Raad, N.; Haseli, S. 18FDG PET/CT Scan Reveals Hypoactive Orbitofrontal Cortex in Anosmia of COVID-19. Acad. Radiol. 2020, 27, 1042–1043. [Google Scholar] [CrossRef] [PubMed]
- Micarelli, A.; Pagani, M.; Chiaravalloti, A.; Bruno, E.; Pavone, I.; Candidi, M.; Danieli, R.; Schillaci, O.; Alessandrini, M. Cortical Metabolic Arrangement During Olfactory Processing. Medicine 2014, 93, e103. [Google Scholar] [CrossRef] [PubMed]
- Kuusinen, V.; Cesnaite, E.; Peräkylä, J.; Ogawa, K.H.; Hartikainen, K.M. Orbitofrontal Lesion Alters Brain Dynamics of Emotion-Attention and Emotion-Cognitive Control Interaction in Humans. Front. Hum. Neurosci. 2018, 12, 437. [Google Scholar] [CrossRef] [Green Version]
- Bryden, D.W.; Roesch, M.R. Executive Control Signals in Orbitofrontal Cortex during Response Inhibition. J. Neurosci. 2015, 35, 3903–3914. [Google Scholar] [CrossRef] [Green Version]
- Rolls, E.T.; Grabenhorst, F. The orbitofrontal cortex and beyond: From affect to decision-making. Prog. Neurobiol. 2008, 86, 216–244. [Google Scholar] [CrossRef]
Author/s | Location | Participants | Time Elapsed between the Testing and the Beginning of Confinement Measures | Standardized Tests | Cognitive Outcomes |
---|---|---|---|---|---|
Baschi et al., 2020 [25] | Italy | PD N = 96 N = 96 carers | Short | Itel-MMSE; | Both groups showed a worsening of pre-existing cognitive symptoms (37.5%), and new behavioural (26%), and motor symptoms (35.4%) during the COVID-19 lockdown, resulting in an increased caregiver burden in 26% of cases. |
Dura-Perez et al., 2022 [40] | Spain | MCI N = 151 | Short | MMSE | The outbreak did not significantly impact cognition in comparison with baseline assessments prior to the outbreak. |
Gareri et al., 2022 [41] | Italy | MCI N = 4 Vascular Dementia N = 30 AD = N = 28 Mixed Dementia N = 19 Frontotemporal Dementia N = 6 PD N = 2 Dementia with Lewy Bodies N = 1 | Short | MMSE | Most of the patients were clinically stable over time. |
Paolini et al., 2021 [42] | Italy | MCI N = 38 | Short | MMSE;ENB-2 | Cognitive functioning worsened during the lockdown. |
Tondo, Sarasso, Serra, Tesser and Comi, 2021 [43] | Italy | AD N = 68 Vascular Dementia N = 28 MCI N = 23 Frontotemporal Dementia N = 9 Lewy Bodies Dementia N =4 | Short | MMSE | The 2020-GROUP showed a significant loss of MMSE points per year compared to the 2019-GROUP and the 2018-GROUP (p = 0.021). |
Tsatali et al., 2021 [44] | Greece | MCI N = 296 AD N = 111 | Short | MMSE; MoCA; RAVLT; Phonemic Fluency; ROCF; WAIS | During the lockdown period, MCI and AD patients’ neuropsychological performance did not change (MMSE and MoCA), except for verbal memory (RAVLT), learning (WAIS), and phonemic fluency. |
Vislapuu et al., 2021 [45] | Norway | Dementia N = 105 N = 105 carers | Short | MMSE | Higher cognitive function (p = 0.044) was associated with a reduction in home nursing service during the lockdown. |
Aragón et al., 2022 [46] | Argentina | MCI N = 47 | Medium | Verbal fluency task; Memory task; Attention task; Reverse Digits | Performance worsened only in the Selective Attention Task. |
Custodio et al., 2021 [47] | Peru | AD N = 91 N = 91 carers | Medium | RUDAS; M@T; CDR | No significant differences were found in overall cognition (RUDAS), memory (M@T) and dementia severity (CDR) scores. |
Pereiro et al., 2021 [48] | Spain | N = 98 Unspecified Neurological | Medium | MMSE; CDR | Lower cognitive (MMSE) and functional scores (CDR) resulted during the lockdown compared to pre-COVIDE-19 time. |
Tsiakiri, Vlotinou, Terzoudi, Heliopoulos and Vadikolias, 2022 [49] | Greece | MCI N = 34 Dementia N = 21 N = 70 controls | Medium | MMSE; MoCA | In the patients‘ group, cognitive performance worsened with respect to the pre-COVIDE-19 time (MMSE and MoCA). |
Chen et al., 2021 [27] | China | MCI N = 50 AD N = 105 Lewy Bodies Dementia N = 22 | Long | MoCA; MMSE; NPI | 42% of MCI, 54.3% of AD and 72.7% of DLB showed a decline in MMSE scores and 54.4% of DLB reported a worsening in the neuropsychiatric inventory (NPI) scores. DLB showed a more rapid decline in the MMSE than AD. |
Gan et al., 2021 [50] | China | AD N = 131 Unspecified Dementia N = 60 MCI N = 14 | Long | C-MMSE; MoCA; CDR | A worsening in cognitive performance was reported in the MMSE and MoCA and in the NPI with respect to the pre-COVID-19 time. |
Vernuccio et al., 2022 [51] | Italy | AD N = 34 MCI N = 28 Mixed Dementia N = 20 Vascular Dementia N = 13 PD N = 2 Frontotemporal Dementia N = 2 Lewy Bodies Dementia N = 1 | Long | MMSE | A significant functional and cognitive decline was observed during the lockdown compared to the pre-COVID-19 time. |
Pisano et al., 2021 [20] | Italy | N = 150 Healthy People | Short | PASAT; MIST | A significant decrease in the participants’ working memory (PASAT) and in prospective memory (MIST) was present during the lockdown period compared to normative data. |
Favieri et al., 2022 [52] | Italy | N = 90 Healthy People | Medium | Stroop Test; Go/No-Go Task | Impaired Executive Functioning (Stroop Test) and in Motor Inhibition (Go/No-Go Task) was found in people with higher post-traumatic stress symptoms. |
Author/s | Location | Participants | Time Elapsed between the Testing and the Beginning of COVID-19 Infection | Standardized Tests | Cognitive Outcomes |
---|---|---|---|---|---|
Cacciatore et al., 2022 [53] | Italy | N = 83 Healthy People | Short | MoCA; | The average MoCA score revealed a worsening in cognitive performance. |
Cian, De Laurenzis, Siri, Gusmeroli & Canesi, 2022 [54] | Italy | N = 29 Healthy People N = 29 matched controls | Short | MMSE; RAVLT; CPM47; CDT; Phonemic/semantic and alternate fluency; Digit Span Forward and Backward | Significant differences between groups with and without COVID-19 (control) were found in the memory subtests (immediate, recall and recognition, RALVT). The MMSE, logical reasoning (CPM,) digit forward and backward, phonemic, semantic, and alternate fluency and executive functioning (CDT) did not show the presence of cognitive decline. |
do Carmo Filho, van Duinkerken, Tolentino and Schmidt, 2022 [55] | Brazil | N = 30 Healthy People N = 30 matched controls | Short | CVAT | Attentional performance (CVAT) was significantly worse in COVID-19 survivors when compared with controls and test norms. |
Johnsen et al., 2021 [56] | Denmark | N = 57 Healthy People | Short | SCIP-D; TMT | The SCIP-D did not reveal the presence of cognitive decline and or attention deficits (TMT). |
Méndez et al., 2021 [57] | Spain | N = 179 Healthy People | Short | SCIP; FAS; WAIS-III | 38% of participants presented moderate impairment and 11.2% severe impairment in immediate verbal memory task (SCIP). In relation to delayed memory, 11.8% reported moderate and 2.8% severe impairment (SCIP). In semantic verbal fluency, 34.6% showed moderate and 8.4% severe deficits (FAS). Working memory was moderately impaired in 6.1% and severely impaired in 1.1% participants (WAIS-III). Finally, 105 (58.7%) participants met criteria for moderate and 33 (18.4%) for severe cognitive impairment. |
Pistarini et al., 2021 [58] | Italy | N = 20 Healthy People | Short | MMSE; MoCA | Results showed that 35% of the participants manifested cognitive decline in the MMSE and in the MoCA. |
Priftis et al., 2022 [59] | Italy | N = 22 Healthy People | Short | MMSE; Corsi Backward and Forward; Digit Span Forward and Backward; RAVL; Semantic and phonemic fluency; TMT; Stroop Test, WCST | In total, 93.2% of the participants performed normally in phonological working memory task (digit span); 90.9% in long-term verbal learning (RAVL); 95.5% in visuospatial perception and praxis; and 82% in visuospatial long-term learning. On average, 96% performed normally also in attention and executive functions tasks (TMT, WCST, Stroop test). |
Birberg Thornberg et al., 2022 [60] | Sweden | N = 133 Healthy People | Medium | RBANS | In the RBANS global cognition index (attention, language, short-term memory, visuospatial abilities), 60% performed under the cut-off scores. |
Braga et al., 2022 [61] | Brazil | N = 614 Healthy People | Medium | BNIS | The BNIS revealed the presence of cognitive decline in memory tasks. |
Calabria et al., 2022 [62] | Spain | N = 136 Healthy People | Medium | T-MoCA; CPT-II; RAVLT; ROCF; BNT; Digit Span Forward and Backward; Block Design; Symbol Search; TMT; Stroop Test | 95 participants (69.8%) showed the presence of cognitive decline (T-MoCA), 6 (4.4%) were impaired in naming (BNT), 25 (18.3%) in semantic fluency, 23 (16.9%) in phonological fluency, and 44 (32.3%) in memory tasks (RAVLT, ROCFT). All patients showed difficulties in the attention task (CPT-II) and approximately 25% in executive functioning (Stroop test, TMT). |
Costas-Carrera et al., 2022 [63] | Spain | N = 58 Healthy People | Medium | MoCA; Digit Span Forward and Backward; WAIS-III; Stroop Test; FCSRT; JLO; TMT; COWAT; ANF; BNT | 53.4% of participants revealed the presence of mild cognitive impairment (MOCA). Compared to clinical data, on average all participants performed above cut-off scores in all other tests. |
Cristillo et al., 2022 [64] | Italy | N = 106 Healthy People | Medium | MoCA | 18 participants (17.82%) reported MoCA scores below the cut-off. |
Crivelli et al., 2022 [65] | Argentina | N = 45 Healthy People N = 45 matched controls | Medium | MoCA; TMT; Digit Span Forward; DSC; Craft Story;RAVL; BFT; WCST; Stroop Test; Phonological fluency; Semantic fluency;CDT; MNT | Compared to healthy controls, COVID-19 subjects reported a worse performance in memory tests (RAVLT, Digit span), naming (BNT), semantic and phonemic fluency, attention, and executive functions (TMT-A, TMT-B, WCST, CDT). |
Dondaine et al., 2022 [66] | France | N = 62 Healthy People | Medium | FCSRT; WAIS-IV;CPT3;Categorical and fluency test; TMT | Approximately 25% of participants reported pathological scores in memory tests (FCSRT), 11% in digit span, 6% in phonemic and semantic fluency and 17% in sustained attention (CPT3). |
Dressing et al., 2022 [67] | Germany | N = 31 Healthy People | Medium | HVLT; BVMT-R; Digit Span Forward and Backward; TMT; FWIT; SMDT; Semantic and phonemic fluency; MoCA | The MoCA did not reveal the presence of cognitive decline and, in general, half of the participants (N = 16) performed above the cut-off scores in all tests. |
Duindam, Kessels, van den Borst, Pickkers and Abdo, 2022 [68] | Netherlands | N = 96 Healthy People | Medium | MoCA; TMT; LDST; Digit Span | 26 participants (27%) were classified as cognitively impaired based on their test results. More specifically, 5% showed cognitive decline in the MoCA. On executive functioning tests, 21% were impaired in the TMT-A/B, and 18% in Digit Span test. Information-processing performances (LDST and TMT-A) were impaired in 23% and 15% of participants, respectively. |
Ferrucci et al., 2021 [69] | Italy | N = 38 Healthy People | Medium | BRB-NT | 42% showed processing speed deficits, 26% delayed verbal recall deficits and 10% immediate verbal recall deficits. Visual long-term and short-term memory were impaired in 18% and 16%, respectively. Working memory and semantic verbal fluency were impaired in 10% and 8% of participants, respectively. |
Frontera et al., 2021 [37] | USA | N = 196 Healthy People N = 186 controls | Medium | t-MoCA | Cognitive metrics were similar between the COVID-19 and control groups. |
García-Grimshaw et al., 2022 [70] | Mexico | N = 92 Healthy People | Medium | MoCA | The overall mean MoCA total scores were below the cut-off. |
García-Molina et al., 2022 [71] | Spain | N = 91 Healthy People N = 32 controls | Medium | BT; WAIS-III; RAVLT; Spanish-language neuropsychological battery | Significant differences were present between groups in learning, recall and recognition of the memory subtests (RAVLT), and in verbal fluency. |
García-Sánchez et al., 2022 [72] | Spain | N = 63 Healthy People | Medium | MoCA; CPT-II; RAVLT; ROCF; Digit Span Forward and Backward; BNT; Block Design; Coding; Symbol Search; TMT; Stroop Test; Verbal fluency tasks; 15-Objects Test | 19% of participants were impaired in Attention (TMT), 5% in executive functioning (TMT, Stroop test), 9.5% in long-term memory (RAVLT), 5 % in short-term memory (digit span) and 1.6% in naming (BNT). |
Hadad et al., 2022 [73] | Israel | N = 46 Healthy People | Medium | MoCA | Compared to normative data, all participants were below the cut-off score in the MoCA showing the presence of cognitive decline. |
Hampshire et al., 2022 [74] | UK | N = 46 Healthy People N = 460 matched controls | Medium | Cognitron | Compared to matched controls, participants were significantly less accurate in verbal analogies, 2D manipulation, verbal, and spatial short-term memory tests. |
Holdsworth et al., 2022 [38] | UK | N = 205 Healthy People | Medium | NIH Toolbox | The assessment of different cognitive functions (language, executive functioning, episodic and working memory) revealed normal performance. |
Krishnan, Miller, Reiter and Bonner Jackson, 2022 [75] | USA | N = 20 Healthy People | Medium | WMS-IV; RAVLT; BMVT-R; WRAT-IV; BNT; Semantic and phonemic fluency; JLO; WAIS-IV; DKEFS; TMT; WCST; CPT-3; SDMT | 20% of participants showed impairment in executive functions (TMT, WCST) and in the visuospatial Memory Test. |
Lamontagne, Winters, Pizzagalli and Olmstead, 2021 [76] | USA | N = 50 Healthy People N = 50 controls | Medium | ANT | COVID-19 participants reported a worsening in attention performance (ANT) compared to the control group. |
Lier et al., 2022 [77] | Germany | N = 105 Healthy People N = 55 controls | Medium | MoCA; TMT; Semantic fluency | 35 % of the participants showed slight cognitive impairments in the MoCA; deficits were also detected in memory, letter fluency and visuospatial functions (TMT); semantic verbal fluency was impaired in 14%. |
Lynch et al., 2022 [78] | USA | N = 60 Healthy People | Medium | MoCA; RBANS; TMT; Verbal fluency; Stroop test; TOPF | 36.7% showed the presence of cognitive decline in the MoCA. |
Mattioli et al., 2021 [79] | Italy | N = 120 Healthy People N = 30 controls | Medium | MMSE; COWA; ROCF; CVLT; TEA; TOL | No significant differences between the group with COVID-19 and the group without COVID-19 were found in any of the tests used. |
Mattioli et al., 2022 [80] | Italy | N = 215 Healthy People | Medium | MMSE; COWA-S; COWA-Ph; ROCF; CVLT; RAVLT; TOL | No significant differences between the group with COVID-19 and the group without COVID-19 were found in any of the tests used. |
Miskowiak et al., 2021 [81] | Denmark | N = 29 Healthy People N = 100 matched controls | Medium | SCIP-D; TMT-B | When compared to controls, participants had a significantly worse performance in Verbal Learning and Working Memory subtests of SCIP-D. Compared to norms, executive functioning (TMT-B) was also impaired. |
Ortelli et al., 2022 [82] | Italy | N = 67 Healthy People N = 22 matched controls | Medium | MoCA; FAB; Sustained Attention Task; Stroop Test; Navon Task | Compared to controls, significant differences were present in all tests in the COVID-19 group indicating the presence of cognitive decline (MoCA), in executive functions and sustained attention. |
Pilotto et al., 2021 [83] | Italy | N = 165 Healthy People | Medium | MoCA | Only 10% of participants showed the presence of cognitive decline in the MoCA test. |
Stallmach et al., 2022 [84] | Germany | N = 355 Healthy People | Medium | MoCA | Only 21% of participants showed the presence of cognitive decline in the MoCA test. |
Vannorsdall et al., 2021 [85] | USA | N = 82 Healthy People | Medium | RAVLT; TMT; Digit span forward and backward; Phonemic and semantic fluency; verbal fluency | Post-COVID-19 clinic patients produced lower cognitive scores than non-COVID-19 patients. |
Voruz et al., 2022 [86] | Switzerland | N = 102 Healthy People | Medium | Stroop test; TMT;GREFEX; Grober and Buschke free/cued recall paradigm; Digit Span Backward; Corsi backward; TAP; Digit Span Forward; ROCF; BECLA; MEM-III; VOSP; WAIS-IV; GERT | Analyses revealed that anosognosic participants (N = 26 who were not conscious about their memory deficits) performed more poorly than nosognosic participants (N = 76 who were conscious about their memory deficits) in verbal episodic memory (Grober and Buschke free/cued recall paradigm), visuospatial episodic memory (Rey figure), verbal short-term memory (MEM-III) and in Mental flexibility (GREFEX). |
Voruz et al., 2023 [87] | Switzerland | N = 121 Healthy People | Medium | VOSP; Moroni Praxis Battery; BECLA; GREFEX; WMS-III; WAIS-IV; TAP; ROCF; SAD | Significantly different performances in executive functioning (GREFEX) and in memory tests (WMS-III, ROCF). |
Whiteside et al., 2022 [88] | USA | N = 49 Healthy People | Medium | WAIS-IV; COWAT; Animal Fluency; Grooved Pegboard Test HVLT-R; WCST; Stroop Test; TMT | Impaired performances in Working Memory (WAIS-IV), Memory (HVLT-R; ROCF) and Executive Functioning (WCST; Stroop). |
Zhao et al., 2022 [89] | UK | N = 53 Healthy People N = 83 matched controls | Medium | Sustained Visual Attention Task | In the COVID-19 group, accuracy resulted more impaired than in the control group, but no differences were present in reaction times. |
Andriuta et al., 2022 [90] | France | N = 46 Healthy People N = 1003 matched controls | Long | MMSE; BNT; ROCF; FCSRT; DPT; GREFEX Verbal fluency test; TMT; Stroop Test | The COVID-19 group showed a deterioration in language (GREFEX, BNT), executive functioning (TMT; Stroop Test) and memory (MMSE; ROCF). |
Cristillo et al., 2022 [91] | Italy | N = 132 Healthy People | Long | MoCA | Logistic regression showed a significant correlation between brain fog and the self-rating depression scale values (p = 0.020). |
Delgado-Alonso et al., 2022 [92] | Spain | N = 50 Healthy People N = 50 matched controls | Long | Digit Span Forward and Backward; Corsi test; SDMT; BNT; JLO; ROCF; FCSRT; Verbal Fluency; Stroop Test; VOSP; TMT; FGT; TOL-F; INHIB; N-Back Verbal Test; Cognitrone; WAF | Participants reported significantly worse performance compared to matched controls in Memory (FGT), Executive Functioning (TMT-A; TMT-B), and Visuospatial abilities (WAF). |
Díez-Cirarda et al., 2022 [93] | Spain | N = 86 Healthy People N = 36 controls | Long | Digit Span Forward and Backward; SDMT; FCSRT; ROCF; Verbal Fluency; Stroop Test; BNT; JLO; VOSP | Most cognitive alterations were detected in attention (SDMT) and working memory (digit span) (up to 44.2%), but deficits were also found in memory (FCSRT) (up to 40.7%) and executive functions (Stroop test) (up to 39.5%), followed by visuospatial ability (JLO) (up to 36%), and naming (BNT, verbal fluency) (up to 18.6%). |
Fiorentino et al., 2022 [94] | France | N = 84 Healthy People | Long | PPTT; Grémots battery; | Semantic memory was impaired in 17 participants (20%). |
Jennings, Monaghan, Xue, Duggan and Romero-Ortuño, 2022 [95] | Ireland | N = 108 Healthy People | Long | Simple Response Time; Choice Reaction Time | Participants with self-reported brain fog had higher mean reaction time in simple response time (p = 0.028) and in choice reaction time (p = 0.035). |
Santoyo-Mora et al., 2022 [96] | Mexico | N = 106 Healthy People N = 38 matched controls | Long | 2AFC Test; Simple Reaction Test | Compared to controls, participants recovered from a severe–critical COVID-19 infection showed a poor performance in different cognitive tests: decision-making tasks (2AFC) and information processing speed. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manfredini, A.; Pisano, F.; Incoccia, C.; Marangolo, P. The Impact of COVID-19 Lockdown Measures and COVID-19 Infection on Cognitive Functions: A Review in Healthy and Neurological Populations. Int. J. Environ. Res. Public Health 2023, 20, 4889. https://doi.org/10.3390/ijerph20064889
Manfredini A, Pisano F, Incoccia C, Marangolo P. The Impact of COVID-19 Lockdown Measures and COVID-19 Infection on Cognitive Functions: A Review in Healthy and Neurological Populations. International Journal of Environmental Research and Public Health. 2023; 20(6):4889. https://doi.org/10.3390/ijerph20064889
Chicago/Turabian StyleManfredini, Alessio, Francesca Pisano, Chiara Incoccia, and Paola Marangolo. 2023. "The Impact of COVID-19 Lockdown Measures and COVID-19 Infection on Cognitive Functions: A Review in Healthy and Neurological Populations" International Journal of Environmental Research and Public Health 20, no. 6: 4889. https://doi.org/10.3390/ijerph20064889
APA StyleManfredini, A., Pisano, F., Incoccia, C., & Marangolo, P. (2023). The Impact of COVID-19 Lockdown Measures and COVID-19 Infection on Cognitive Functions: A Review in Healthy and Neurological Populations. International Journal of Environmental Research and Public Health, 20(6), 4889. https://doi.org/10.3390/ijerph20064889