A Dynamic DEA Analysis of Health Output Efficiencies of Cities and Counties in Taiwan
Abstract
:1. Introduction
2. Literature Review
2.1. The Relationship between the Healthcare System and Health
2.2. Health Expenditure
2.3. Healthcare Professionals
2.4. Income
2.5. Exercise Expenditure
3. Methodology
4. Empirical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okoi, O.; Bwawa, T. How Health Inequality Affect Responses to the COVID-19 Pandemic in Sub-Saharan Africa. World Dev. 2020, 135, 105067. [Google Scholar] [CrossRef] [PubMed]
- Breitenbach, M.; Ngobeni, V.; Aye, G. Global Healthcare Resource Efficiency in the Management of COVID-19 Death and Infection Prevalence Rates. Public Health Front. 2021, 29, 638481. [Google Scholar] [CrossRef] [PubMed]
- Braveman, P. Health Disparities and Health Equity: Concepts and Measurement. Annu. Rev. Public Health 2006, 27, 167–194. [Google Scholar] [CrossRef][Green Version]
- Grossman, M. On the Concept of Health Capital and the Demand for Health. J. Polit. Econ. 1972, 80, 223–255. [Google Scholar] [CrossRef][Green Version]
- Benos, N.; Karkalakos, S.; Zotou, S. Spatial and Economic Patterns in Life Expectancy among Us States. Appl. Econ. 2019, 51, 5856–5869. [Google Scholar] [CrossRef]
- Thornton, J. Estimating a Health Production Function for the Us: Some New Evidence. Appl. Econ. 2002, 34, 59–62. [Google Scholar] [CrossRef]
- Lin, T.F. Modifiable Health Risk Factors and Medical Expenditures—The Case of Taiwan. Soc. Sci. Med. 2008, 67, 1727–1736. [Google Scholar] [CrossRef]
- Berger, M.C.; Messer, J. Public Financing of Health Expenditures, Insurance, and Health Outcomes. Appl. Econ. 2002, 34, 2105–2113. [Google Scholar] [CrossRef]
- Mackenbach, J.P.; Slobbe, L.; Looman, C.W.N.; van der Heide, A.; Polder, J.; Garssen, J. Sharp Upturn of Life Expectancy in the Netherlands: Effect of More Health Care for the Elderly? Eur. J. Epidemiol. 2011, 26, 903–914. [Google Scholar] [CrossRef][Green Version]
- Thornton, J.A.; Rice, J.L. Determinants of Healthcare Spending: A State Level Analysis. Appl. Econ. 2008, 40, 2873–2889. [Google Scholar] [CrossRef]
- Lichtenberg, F. Sources of U.S. Longevity Increase, 1960–2001. Q. Rev. Econ. Financ. 2004, 44, 369–389. [Google Scholar] [CrossRef][Green Version]
- Hollingsworth, B.; Wildman, J. The Efficiency of Health Production: Re-Estimating the Who Panel Data Using Parametric and Non-Parametric Approaches to Provide Additional Information. Health Econ. 2003, 12, 493–504. [Google Scholar] [CrossRef]
- Miszczynska, K.; Miszczyński, P.M. Measuring the Efficiency of the Healthcare Sector in Poland—A Window-DEA Evaluation. Int. J. Product. Perform. 2022, 71, 2743–2770. [Google Scholar] [CrossRef]
- Marmot, M.; Allen, J.; Bell, R.; Bloomer, E.; Goldblatt, P. Who European Review of Social Determinants of Health and the Health Divide. Lancet 2012, 380, 1011–1029. [Google Scholar] [CrossRef] [PubMed]
- Keng, S.H.; Sheu, S.J. The Effect of National Health Insurance on Mortality and the SES-Health Gradient: Evidence from the Elderly in Taiwan. Health Econ. 2013, 22, 52–72. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, M. The Concepts and Principles of Equity and Health. Int. J. Health Serv. 1992, 22, 429–445. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. Dynamic DEA: A Slacks-Based Measure Approach. Omega 2010, 38, 145–156. [Google Scholar] [CrossRef][Green Version]
- Cheng, G.; Zervopoulos, P. Estimating the Technical Efficiency of Health Care Systems: A Cross-Country Comparison Using the Directional Distance Function. Eur. J. Oper. Res. 2014, 238, 899–910. [Google Scholar] [CrossRef][Green Version]
- Barney, J. Firm Resources and Sustained Competitive Advantage. J. Manag. 1991, 17, 99–120. [Google Scholar] [CrossRef]
- Ngandu, T.; Lehtisalo, J.; Solomon, A.; Levälahti, E.; Ahtiluoto, S.; Antikainen, R.; Bäckman, L.; Hänninen, T.; Jula, A.; Laatikainen, T.; et al. A 2 Year Multidomain Intervention of Diet, Exercise, Cognitive Training, and Vascular Risk Monitoring Versus Control to Prevent Cognitive Decline in at-Risk Elderly People (Finger): A Randomised Controlled Trial. Lancet 2015, 385, 2255–2263. [Google Scholar] [CrossRef]
- Malm, C.; Jakobsson, J.; Isaksson, J. Physical Activity and Sports-Real Health Benefits: A Review with Insight into the Public Health of Sweden. Sports 2019, 7, 127. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Joo, H.Y.; Park, J.Y.; Rhyu, H.S. Effects of the Senior Welfare Center Exercise Program on Body Shape, Physical Fitness Level, and Cardiovascular Health-Related Factors in Old Man from Korean Rural Areas. J. Exerc. Rehabil. 2019, 15, 282–286. [Google Scholar] [CrossRef]
- Stefko, R.; Gavurova, B.; Kocisova, K. Healthcare Efficiency Assessment Using DEA Analysis in the Slovak Republic. Health Econ. Rev. 2018, 8, 6. [Google Scholar] [CrossRef][Green Version]
- Zhang, T.; Chiu, Y.H.; Li, Y.; Lin, T.Y. Air Pollutant and Health-Efficiency Evaluation Based on a Dynamic Network Data Envelopment Analysis. Int. J. Environ. Res. Public Health 2018, 15, 2046. [Google Scholar] [CrossRef][Green Version]
- Chiu, C.M.; Chen, M.S.; Lin, C.S.; Lin, W.Y.; Lang, H.C. Evaluating the Comparative Efficiency of Medical Centers in Taiwan: A Dynamic Data Envelopment Analysis Application. BMC Health Serv. Res. 2022, 22, 435. [Google Scholar] [CrossRef]
- Malmquist, S. Index numbers and indifference surfaces. Trab. Estad. 1953, 4, 209–242. [Google Scholar] [CrossRef]
- Koltai, T.; Lozano, S.; Uzonyi-Kecskés, J.; Moreno, P. Evaluation of the Results of a Production Simulation Game Using a Dynamic DEA Approach. Comput. Ind. Eng. 2017, 105, 1–11. [Google Scholar] [CrossRef]
- Cuadros, S.; Rodríguez, Y.E.; Contreras, J. Dynamic Data Envelopment Analysis Model Involving Undesirable Outputs in the Electricity Power Generation Sector: The Case of Latin America and the Caribbean Countries. Energies 2020, 13, 6624. [Google Scholar] [CrossRef]
- Nutsford, D.; Pearson, A.L.; Kingham, S. An Ecological Study Investigating the Association between Access to Urban Green Space and Mental Health. Public Health 2013, 127, 1005–1011. [Google Scholar] [CrossRef]
- Nieman, D.C.; Wentz, L.M. The Compelling Link between Physical Activity and the Body’s Defense System. J. Sport Health Sci. 2019, 8, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Hu, K.; Han, Y.; Sheng, Q.; Fang, Y. Spatial Characteristics of Life Expectancy and Geographical Detection of Its Influencing Factors in China. Int. J. Environ. Res. Public Health 2020, 17, 906. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Huang, D.; Yang, S.; Liu, T. Life Expectancy in Chinese Cities: Spatially Varied Role of Socioeconomic Development, Population Structure, and Natural Conditions. Int. J. Environ. Res. Public Health 2020, 17, 6597. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.H.; Yang, C.H. Changes in Health Disparity after Introduction of National Health Insurance: Measurement on Life Expectancy. Taiwan J. Public Health 2007, 26, 196–207. [Google Scholar]
- Ramesh, B.; Nishant, J. Analysis of Public and Private Healthcare Expenditures. Econ. Polit. Wkly. 2006, 41, 57–68. [Google Scholar]
- Rad, R.H.; Vahedi, S.; Teimourizad, A.; Esmaeilzadeh, F.; Hadian, M.; Pour, A.T. Comparison of the Effects of Public and Private Health Expenditures on the Health Status: A Panel Data Analysis in Eastern Mediterranean Countries. Int. J. Health Policy Manag. 2013, 1, 163–167. [Google Scholar]
- Novignon, J.; Olakojo, S.; Nonvignon, J. The Effects of Public and Private Health Care Expenditure and Health Status in Sub-Saharan Africa: New Evidence from Panel Data Analysis. Health Econ. Rev. 2012, 2, 22. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Das, D. Public Expenditure and Healthcare Utilization: The Case of Reproductive Health Care in India. Int. J. Health Econ. Manag. 2017, 17, 473–494. [Google Scholar] [CrossRef]
- Halder, N. Investing in Human Capital: Exploring Causes, Consequences and Solutions to Nurses’ Dissatisfaction. J. Res. Nurs. 2018, 23, 659–675. [Google Scholar] [CrossRef]
- Storto, C.L.; Goncharuk, A. Performance Measurement of Healthcare Systems in Europe. J. Appl. Manag. Investig. 2017, 6, 170–174. [Google Scholar]
- Reche, E.; König, H.H.; Hajek, A. The Relationship between Income and Morbidity-Longitudinal Findings from the German Ageing Survey. Int. J. Environ. Res. Public Health 2021, 18, 12365. [Google Scholar] [CrossRef]
- Jones, A.; Wildman, J. Disentangling the Relationship between Health and Income. HEDG 2005. working paper 05/07. [Google Scholar]
- Barlow, R.; Vissandjee, B. Determinants of National Life Expectancy. Can. J. Dev. Stud. 1999, 20, 9–29. [Google Scholar] [CrossRef]
- Zhang, S.; Xiang, W. Income Gradient in Health-Related Quality of Life—The Role of Social Networking Time. Int. J. Equity Health 2019, 18, 44. [Google Scholar] [CrossRef] [PubMed][Green Version]
- King, A.C.; Haskell, W.L.; Taylor, C.B.; Kraemer, H.C.; DeBusk, R.F. Group- vs Home-Based Exercise Training in Healthy Older Men and Women. A Community-Based Clinical Trial. JAMA 1991, 266, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- Kreng, V.B.; Yang, C.T. The Equality of Resource Allocation in Health Care under the National Health Insurance System in Taiwan. Health Policy 2011, 100, 203–210. [Google Scholar] [CrossRef]
- Chiu, W.T.; Hsu, M.H.; Teng, S.W. Using Health Information Technology to Reduce Regional Health Inequality in Taiwan. J. Formos. Med. Assoc. 2015, 114, 1–2. [Google Scholar] [CrossRef][Green Version]
- Mariz, F.B.; Almeida, M.R.; Aloise, D. Review of Dynamic Data Envelopment Analysis: State of the Art and Applications. Int. Trans. Oper. Res. 2018, 25, 469–505. [Google Scholar] [CrossRef][Green Version]
- Charles, V.; Aparicio, J.; Zhu, J. The Curse of Dimensionality of Decision-Making Units: A Simple Approach to Increase the Discriminatory Power of Data Envelopment Analysis. Eur. J. Oper. Res. 2019, 279, 929–940. [Google Scholar] [CrossRef]
- Golany, B.; Roll, Y. An Application Procedure for DEA. Omega 1989, 17, 237–250. [Google Scholar] [CrossRef]
- Hu, J.L.; Chang, T.P. Total-Factor Energy Efficiency and Its Extensions: Introduction, Computation and Application. In Data Envelopment Analysis: A Handbook of Empirical Studies and Applications; Springer: Boston, MA, USA, 2016; Volume 238, pp. 45–69. [Google Scholar]
Variable Name | Variable Definition | Unit | |
---|---|---|---|
Input Variables | Public sector medical expenditure in total | Total government sector expenditures designated for medical care for the current year, as public goods | Thousand NT$ in 2014 |
Private sector medical expenditure per capita | Average medical expenditure per household in each county and city/average number of individuals per household, based on 2014 data, as private goods | NT$ in 2014 | |
Healthcare professionals in total | Number of practicing healthcare professionals, as public goods | People | |
Real income per capita | Average regular income per household in each county and city/average number of individuals per household, as private goods | NT$ in 2014 | |
Output Variable | Life expectancy per capita | Average remaining life in each county and city | Years |
Carry-over Variable | Exercise expenditure in total | Public sports funds of counties and cities as public goods | NT$ in 2014 |
Variable | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
| 1 | ||||
| 0.118 | 1 | |||
| 0.359 | 0.264 | 1 | ||
| 0.583 ** | 0.215 | 0.433 ** | 1 | |
| 0.535 ** | 0.002 | 0.262 ** | 0.717 ** | 1 |
Region | Public Sector Medical Expenditure | Private Sector Medical Expenditure | Healthcare Professionals | Income | Life Expectancy | Exercise Expenditure |
---|---|---|---|---|---|---|
Keelung City | 303,943.166 | 40,921.165 | 108.324 | 380,053.090 | 79.678 | 157,723,379.159 |
Taipei City | 5,016,109.934 | 43,332.437 | 195.490 | 543,513.955 | 83.418 | 3,961,894,013.620 |
New Taipei City | 1,843,125.920 | 33,392.196 | 85.582 | 402,599.242 | 81.054 | 1,475,044,255.602 |
Taoyuan City | 1,164,432.628 | 31,127.354 | 115.518 | 397,479.089 | 80.538 | 1,516,634,870.276 |
Hsinchu County | 369,445.201 | 34,743.803 | 75.392 | 441,312.176 | 80.018 | 398,399,035.314 |
Hsinchu City | 250,166.010 | 45,182.503 | 136.614 | 487,158.838 | 80.806 | 168,643,218.336 |
Miaoli County | 474,710.762 | 36,819.719 | 82.258 | 343,237.764 | 79.064 | 263,071,850.518 |
Taichung City | 1,802,338.756 | 38,384.257 | 136.590 | 398,528.211 | 80.186 | 1,317,647,142.145 |
Changhua County | 679,473.918 | 32,166.639 | 107.296 | 306,865.085 | 79.946 | 492,215,567.533 |
Yunlin County | 507,238.275 | 41,272.523 | 92.082 | 314,637.687 | 78.180 | 324,501,962.933 |
Chiayi County | 500,874.537 | 42,825.388 | 100.108 | 303,502.068 | 78.486 | 125,903,367.247 |
Chiayi City | 161,835.873 | 37,320.679 | 229.974 | 382,698.087 | 79.930 | 180,092,848.757 |
Nantou County | 438,141.504 | 39,129.874 | 91.414 | 308,143.820 | 78.264 | 67,149,016.798 |
Tainan City | 1,166,959.024 | 37,274.587 | 130.434 | 342,762.945 | 79.642 | 634,959,270.257 |
Kaohsiung City | 3,176,706.825 | 42,300.055 | 139.372 | 391,237.443 | 78.992 | 1,541,021,200.093 |
Pingtung County | 766,196.765 | 36,261.399 | 105.64 | 319,904.567 | 76.982 | 239,525,601.993 |
Yilan County | 507,238.275 | 45,630.157 | 120.624 | 367,873.094 | 79.554 | 295,075,887.526 |
Hualien County | 386,408.986 | 43,551.361 | 159.702 | 354,677.250 | 76.618 | 145,696,183.438 |
Taitung County | 575,836.082 | 36,278.866 | 108.386 | 338,179.322 | 75.284 | 71,239,017.974 |
Penghu County | 766,196.765 | 41,428.111 | 73.930 | 355,261.062 | 79.774 | 87,994,394.698 |
Min | 161,835.873 | 31,127.354 | 73.930 | 303,502.068 | 75.284 | 67,149,016.798 |
Max | 5,016,109.934 | 45,630.157 | 229.974 | 543,513.955 | 83.418 | 3,961,894,013.620 |
Total Avg | 1,042,868.960 | 38,967.154 | 119.737 | 373,981.240 | 79.321 | 673,221,604.211 |
STD | 11,180,581.182 | 4267.428 | 39.588 | 61,849.821 | 1.752 | 9,931,388,701.300 |
Region | 2014 | 2015 | 2016 | 2017 | 2018 | Avg | Rank |
---|---|---|---|---|---|---|---|
Keelung City | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Taipei City | 0.853 | 1 | 1 | 1 | 1 | 0.971 | 13 |
New Taipei City | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Taoyuan City | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Hsinchu County | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Hsinchu City | 1 | 0.998 | 1 | 1 | 1 | 1 | 11 |
Miaoli County | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Taichung City | 0.847 | 0.898 | 0.889 | 0.722 | 1 | 0.871 | 14 |
Changhua County | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Yunlin County | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Chiayi County | 1 | 1 | 1 | 0.983 | 1 | 0.997 | 12 |
Chiayi City | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Nantou County | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Tainan City | 0.970 | 1 | 0.372 | 0.988 | 0.598 | 0.786 | 17 |
Kaohsiung City | 0.782 | 0.908 | 1 | 1 | 0.512 | 0.840 | 16 |
Pingtung County | 0.242 | 0.892 | 0.305 | 0.493 | 0.718 | 0.530 | 20 |
Yilan County | 0.674 | 0.967 | 0.382 | 0.910 | 0.724 | 0.731 | 18 |
Hualien County | 0.591 | 1 | 0.346 | 0.575 | 0.406 | 0.583 | 19 |
Taitung County | 0.527 | 1 | 1 | 1 | 1 | 0.905 | 15 |
Penghu County | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Avg. | 0.874 | 0.983 | 0.865 | 0.934 | 0.8978 | 0.886 | |
Max | 1 | 1 | 1 | 1 | 1 | 1 | |
Min | 0.242 | 0.892 | 0.305 | 0.493 | 0.4056 | 0.418 | |
St Dev | 0.211 | 0.037 | 0.265 | 0.151 | 0.192 | 0.182 |
DMU | 2014 | 2015 | 2016 | 2017 | 2018 | Avg | Rank |
---|---|---|---|---|---|---|---|
Keelung City | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Taipei City | 1 | 1 | 1 | 1 | 1 | 1 | 13 |
New Taipei City | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Taoyuan City | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Hsinchu County | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Hsinchu City | 1 | 1 | 1 | 1 | 1 | 1 | 11 |
Miaoli County | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Taichung City | 0.735 | 0.866 | 0.800 | 0.618 | 1 | 0.860 | 14 |
Changhua County | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Yunlin County | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Chiayi County | 1 | 1 | 1 | 1 | 1 | 1 | 12 |
Chiayi City | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Nantou County | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Tainan City | 1 | 1 | 0.231 | 0.977 | 0.426 | 1 | 17 |
Kaohsiung City | 0.756 | 1 | 1 | 1 | 0.344 | 0.881 | 16 |
Pingtung County | 0.138 | 0.805 | 0.180 | 0.335 | 0.560 | 1.170 | 20 |
Yilan County | 0.525 | 0.937 | 0.242 | 0.837 | 0.567 | 0.806 | 18 |
Hualien County | 0.421 | 1 | 0.209 | 0.422 | 0.254 | 0.879 | 19 |
Taitung County | 0.377 | 1 | 1 | 1 | 1 | 0.910 | 15 |
Penghu County | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Urban | Non-Urban |
---|---|
Taipei City | Keelung City |
New Taipei City | Hsinchu County |
Taoyuan City | Hsinchu City |
Taichung City | Miaoli County |
Tainan City | Changhua County |
Kaohsiung City | Yunlin County |
Chiayi County | |
Chiayi City | |
Nantou County | |
Pingtung County | |
Yilan County | |
Hualien County | |
Taitung County | |
Penghu County |
Year | 2014 | 2015 | 2016 | 2017 | 2018 |
---|---|---|---|---|---|
p-value | 0.547 | 0.659 | 0.841 | 1.000 | 0.659 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.-L.; Chuang, M.-Y.; Yeh, S.-H. A Dynamic DEA Analysis of Health Output Efficiencies of Cities and Counties in Taiwan. Int. J. Environ. Res. Public Health 2023, 20, 4674. https://doi.org/10.3390/ijerph20064674
Hu J-L, Chuang M-Y, Yeh S-H. A Dynamic DEA Analysis of Health Output Efficiencies of Cities and Counties in Taiwan. International Journal of Environmental Research and Public Health. 2023; 20(6):4674. https://doi.org/10.3390/ijerph20064674
Chicago/Turabian StyleHu, Jin-Li, Min-Yueh Chuang, and Shang-Ho Yeh. 2023. "A Dynamic DEA Analysis of Health Output Efficiencies of Cities and Counties in Taiwan" International Journal of Environmental Research and Public Health 20, no. 6: 4674. https://doi.org/10.3390/ijerph20064674