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Abstract: Environmental pollution and the associated societal health issues have attracted recent
research attention. While most research has focused on the effect of air pollution on human health and
local economies, few articles have discussed the environment, health, and economic development in
in an integrated analysis. This paper used a Dynamic Network SBM Model to evaluate production
and health efficiencies in Chinese cities and found that the production efficiency scores were slightly
higher than the health efficiency scores, with the two-stage efficiency scores in most cities having
significant fluctuations. Labor, fixed assets, energy, GDP, and lung disease and mortality reduction
efficiencies in the first stage were generally high; however, the medical input efficiencies in the second
stage were low, indicating that there was there significant room for improvement in many cities.

Keywords: air pollutant emissions; Dynamic Network SBM (DNSBM) Model; efficiency;
health expenditure

1. Introduction

Air pollution is one the most worrying environmental issues in developing countries. Since 2013,
the atmospheric pollution; carbon dioxide, sulfur dioxide, and nitrogen oxides; resulting from rapid
industrial development has damaged the health of local communities. China’s rapid economic
development over the past few decades has resulted in serious air pollution and greenhouse gas
emissions. Table 1 shows the emissions from six major air pollutants; SO2, NO2, PM10, PM2.5, O3 and
CO; in mainland China (not including Hong Kong, Macau and Taiwan) from 2013, when the newest
air quality standards were put into practice, to 2017 [1]. As can be seen almost all air pollutants except
for O3 fell, with the reduction in SO2 being the highest (55.5%). These reductions are the result of
multiple government interventions to combat air pollution; the three-year plan for defending the blue
sky, the promotion of green development, and enhanced environmental law enforcement. However,
air pollution remains a serious problem in China as even after these significant interventions, the
PM10 and PM2.5 concentration levels have not yet reached the national secondary standard, therefore,
more concerted efforts are needed.
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Table 1. Six air pollutants in China from 2013 to 2017.

Air Pollutant Year Average * Range ** Reaching the Standard? *** Proportion of Cities
Reaching the Standard

SO2 (µg/m3)

2013 40 7~114 Yes 86.5%
2014 35 2~123 Yes 88.2%
2015 25 3~87 Yes 96.7%
2016 22 3~88 Yes 97.0%
2017 18 2~84 Yes 99.1%

NO2 (µg/m3)

2013 44 17~69 No 39.2%
2014 38 14~67 Yes 62.7%
2015 30 8~63 Yes 81.7%
2016 30 9~61 Yes 83.1%
2017 31 9~59 Yes 80.1%

PM10 (µg/m3)

2013 118 47~305 No 14.9%
2014 105 35~233 No 21.7%
2015 87 24~357 No 34.6%
2016 82 22~436 No 41.7%
2017 75 23~154 No 47.0%

PM2.5 (µg/m3)

2013 72 26~160 No 4.1%
2014 62 19~130 No 11.2%
2015 50 11~125 No 22.5%
2016 47 12~158 No 28.1%
2017 43 10~86 No 35.8%

O3 (µg/m3)

2013 139 72~190 Yes 77.0%
2014 140 69~210 Yes 78.2%
2015 134 62~203 Yes 84.0%
2016 138 73~200 Yes 82.5%
2017 149 78~218 Yes 67.8%

CO (mg/m3)

2013 2.5 1.0~5.9 Yes 85.1%
2014 2.2 0.9~5.4 Yes 96.9%
2015 2.1 0.4~6.6 Yes 96.7%
2016 1.9 0.8~5.0 Yes 97.0%
2017 1.7 0.5~5.1 Yes 98.8%

* The average for SO2, NO2, PM10 and PM2.5 refers to the annual average concentrations; the O3 average is the daily
maximum 8 h average; and the CO average is the daily average. ** The SO2, NO2, PM10 and PM2.5 range refers to
the annual average concentrations; the O3 range is a two-sided 90 per cent percentile for the daily maximum 8 h
average; and the CO average is a two-sided 95 per cent percentile for the daily average. *** The standard here refers
to the national secondary air quality standard for residential areas. The thresholds set for each air pollutant are: SO2
(60 µg/m3), NO2 (40 µg/m3), PM10 (70 µg/m3), PM2.5 (35 µg/m3), O3 (160 µg/m3) and CO (4 mg/m3).

Data collected by the World Meteorological Organization (WMO) Global Atmosphere Monitoring
System show that the CO2, methane, and nitrous oxide concentrations today are 145%, 257%, and 122%
higher than before industrialization [2]. Excessive carbon dioxide emissions have been a major
contributor to climate change, which has resulted in polar ice reductions, sea level rises, and soil
salinization in coastal areas. The temperature increases have also resulted in decreased mountain
snow cover and reduced water resources. After signing the Paris Agreement, many countries have
implemented policies to reduce emissions in an effort to reduce the climate change effects.

Past research on air pollution has focused on association assessments [3,4], risk assessments [5,6],
health impact assessments [7], life cycle assessments [8,9], or the effect of air pollution on public health
and the social economy in terms of the relationship between environmental pollution, diseases, and
social economics. However, there has been little research that has examined the coordinated effect
of the environment, health, and economic development from an efficiency perspective. To address
this research gap, this paper used a Dynamic Network SBM (DNSBM) Model to examine data from
2013 to 2016 in 31 Chinese cities and assess the combined environmental and health efficiencies. In the
first stage (production stage), labor, fixed assets, and energy consumption are the input indicators and
GDP is the output indicator, with the links to the health stage being CO2 and AQI variables. In the
second stage (health stage), health expenditure is the input and birth rate is the output variable, with
the carry-over variables being the respiratory diseases and the mortality rate reductions.

The remainder of this paper is organized as the follows: Section 2 gives a comprehensive literature
review, Section 3 describes the research method, Section 4 gives the comprehensive empirical results
and discussion, and Section 5 gives the conclusions and policy proposals.
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2. Literature Review

2.1. Air Pollution Intervention, Public Health and the Social Economy

Air pollution has been identified as a significant risk factor for various respiratory and
cardiovascular diseases. A meta-analysis [10] found that outdoor air pollution was a major contributor
to the increase in chronic obstructive pulmonary diseases (COPD). Clinical evidence from China,
the United States and the European Union concluded that a 10 µg/m3 increase in PM10 led to
a significant rise in COPD exacerbation and deaths. In another study, [11] epidemiological and
pathobiological evidence confirmed that both short and long-term exposure to air pollution increased
stroke risk, and in other studies, it was found that air pollution could also be associated with other
diseases and symptoms, such as still births [12], depression [13] and Alzheimer’s [14].

Given the serious air pollution impacts on public health, a rise in pro-environment attitudes
in society has led governments to consider a willingness-to-pay (WTP) to improve air quality [15].
Four main strategies have been suggested to improve air quality; general air quality control regulations,
traffic related emissions controls, energy related emissions controls, and greenhouse gas emissions
controls [16]. However, as air quality interventions can result in social and economic problems such as
inconvenient traffic, factory bankruptcies, and unemployment [17], governments need to weigh up the
costs and benefits associated with air pollution interventions so as to balance air pollution controls and
socio-economic development.

Generally, joint assessments of air pollution interventions, public health, and the socio-economic
effects need to include four assessment types; association assessments, risk assessments, health impact
assessments, and efficiency assessments.

2.1.1. Association Assessments

An association assessment uses mathematical modeling and statistical analysis to characterize
the distributional associations between air pollution, public health and social economy. Luo et al. [3]
analyzed the relationship between economic conditions and air pollutants in large Chinese cities
and found that there was a U-shaped curve for the relationship in which the environmental quality
first declined and then improved with income growth. Greenfield et al. [4] found that that while
the environmental and socioeconomic factors were both significantly associated with the disease
burden, the socio-economic factors were more closely associated with the disease burden than the
environmental factors.

A common misuse of association assessments can been to make causal inferences based solely
on the associations. Technically, association assessments involve an examination of the statistical
distributions of multiple factors; however, causal inferences focus on the treatment effects of certain
interventions [18]. This difference between association and causation can be exemplified by differences
between sunglasses and sunstroke; that is sunglasses can be associated with sunstroke, but do not
cause sunstroke. As air pollution control decision making requires a proof of causation rather than
association, it is vital to keep these differences in mind.

2.1.2. Risk Assessment

Risk assessment is a type of causal inference; for example for air pollution, it involves an
identification of the air pollution risks, the potential consequences, the occurrence probabilities,
the tolerability or acceptability of the air pollution risks, and methods for mitigating or reducing air
pollution risk probabilities.

One of the most widely used risk assessment approaches has been a comparative risk assessment
framework that estimates the levels and trends in exposure, deaths, and disability-adjusted life-years
(DALYs) from risk factors that include but are not limited to air pollution. Smith et al. gave details
about the methods used in the comparative risk assessment of household air pollution, such as how
the exposure-response model was built to estimate the relative risks.
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However, risk assessment models for outdoor air pollution are far less well developed [5,6],
primarily because outdoor air pollution exposure is much more difficult to measure. Dreaves claimed
that there was less focus on this type of risk assessment because of poor stakeholder involvement and
participation [7].

2.1.3. Health Impact Assessment

Health impact assessments (HIA) are a combination of procedures, methods and tools to assess
the potential effects of a policy, program, or project on the health of a population and the distribution
of those effects within the population [7].

There have been many methodological HIA iterations, and while there has not been a single
agreed HIA method, it is generally accepted that an HIA should include [19] screening (establishing
whether an HIA is required), scoping (planning what to do and how to do it), appraisal (identifying the
health hazards and considering impact evidence), reporting (developing recommendations to reduce
hazards and/or improve health), and monitoring (monitoring the implementation of the proposal and
evaluating whether the HIA has influenced the decision making process). For instance, the Aphekom
project used traditional HIA methods to assess the health impact of air pollution in 25 European cities,
finding that life expectancy and monetary benefits increased significantly beyond the achievements of
current EU legislation when fine particle levels were reduced in European cities and pollution was
regulated near busy roads.

HIAs can also have drawbacks. As HIAs emphasize the outcomes (impact) of a decision process,
when confronted with complicated real-world cases, they lack adequate methods to measure and
quantify the inputs, making it difficult to holistically evaluate the efficiency of each proposal. Birley,
for example, criticized HIAs for failing to validate scientific hypotheses and stop proposals (however
inappropriate) [20].

2.1.4. Life Cycle Assessment

As there are many interventions available to reduce the negative effects of air pollution on the
environment and public health, it is necessary to select the most efficient. Life-cycle assessments (LCA)
have been a key efficiency assessment method as these are able to evaluate the potential impacts
associated with air pollution interventions and interpret the results to help make informed decisions.
The LCA generally had four main phrases; goal and scope definitions, an inventory analysis, an impact
assessment, and interpretation [21].

A recent study examined the environmental effects of PM2.5 on human health and identified this
factor as an important for life cycle impact assessments [8]. The effect of PM on health in the U.S.
in 2005 was estimated at 130,000 deaths and 2 million DALY. In another study, Damgaard et al. [9]
compared eight different air pollution control technologies using lifecycle-assessment modelling and
found that the potential environmental air emissions impacts had decreased over the last 35 years and
that these impacts could be partly or fully offset by recovering the energy produced from fossil fuels.

However, as LCA methods are generally only able to assess a single exposure type or intervention,
they are unable to comprehensively assess both economic and health efficacy at the same time. Further
as LCA allows researchers to choose the parameters and data, there is a risk of conflict when seeking to
compare assessments as a favored proposal in one study may be disfavored in another study because
of different parameters and data.

2.2. Summary and Implications of the Literature Review

The literature review revealed that air pollution is an environmental, health, and socio-economic
issue. Previous research has provided sound evidence for the relationship between air pollution,
health, and the social economy and given examples of successful policies and regulations that have
sought to reduce the negative effects. However, even though there are available references, experiences,
and paradigms to assess air pollution control in China, it is necessary to determine which if any are the
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most appropriate at this time. In this paper, however, we have chosen to analyze effectiveness using
efficiency analyses, as these have been insufficient in previous research. Therefore, to examine the
association between air pollution, health, and the social economy, this study proposes a new method
to holistically evaluate socio-economic and health efficiencies under the same framework.

3. Research Methods

As in Tone and Tsutsui [22], a two-stage Dynamic Network DEA model was designed for the
input and output efficiency indicators. In this section, the Dynamic Network DEA model is analyzed
first, after which the two stage input and output efficiency indicators are described and assessed.

3.1. Dynamic Network DEA

Data Envelopment Analysis is based on a Pareto optimal solution concept and uses linear
programming techniques to evaluate the relative efficiencies of Decision Making Units (DMU). The first
use of this type of research method was 1957 in Farrell’s [23] study on the “Measurement of Productive
Efficiency”. However, Farrell’s efficiency assessment model was only suitable for a single input and
a single output. Because such research generally involves multiple inputs and multiple outputs,
Charnes, Cooper and Rhodes [24] proposed the CCR model in 1978, which extended Farrell’s model to
allow for multiple inputs and multiple outputs, with the optimal solution being solved using linear
programming, which is now known as Data Envelopment Analysis. In 1984, Banker, Charnes and
Cooper [25] proposed the BCC model that included a variable return to scale (VRS) assumption to
replace the constant return to scale (CRS) assumption. Tone [26] then proposed a Slacks-Based Measure
(SBM) to allow for any output and input slacks. Using non-radial estimation and a single scalar to
present the SBM efficiency, the efficiency values are typically between 0 and 1; when the efficiency of a
decision making unit is 1, there is no input or output slack on the production frontier.

Färe et al. [27] proposed Network Data Envelopment Analysis (NDEA) in 2007, in which the
production processes were broken up into secondary production technologies called Sub-DMUs,
and traditional CCR or BCC models employed to determine the optimal solutions. In 2013, Tone
and Tsutsui [22] proposed the SBM (weighted slack-based measures) Dynamic Network DEA, which
was based on the links between the decision-making units, included each department as a Sub-DMU,
and had carry-over link activities.

Dynamic Network DEA Model and Solution:

It is assumed that the number of DMUs is n (j = 1, ..., n), with each DMU being divided into a
number of k, (k = 1, . . . , K), and time periods t, (t = 1, . . . , T). Each DMU has an input and output in
period t through a carry over (link) to the next period t + 1.

Set mk and rk as the input and output for each division K, in which (k,h)i indicates division k to h,
and Lhk denotes the set of k and h.

Inputs and Outputs

Xt
ijk ∈ R+(i = 1, . . . , mk; j = 1, . . . , n; K = 1..., K; t = 1, . . . , T): indicates input i in period t for

division k in DMUj.
yt

rjk ∈ R+(r = 1, . . . , rk; j = 1, . . . , n; K = 1..., K; t = 1, . . . , T): indicates output r in period t for
division k in DMUj.

If part of the output is not good, it is considered an input to division k.

Links

Zt
j(kh)t ∈ R+(j = 1; . . . ; n; l = 1; ..; Lhk; t = 1; . . . ; T)0: denotes the link between division k and

division h in DMUj in period t, where Lhk is the number of links between k and h.
Zt

j(kh)t ε R+ (j = 1; . . . ; n; l = 1; . . . ; Lkh; t = 1; . . . ; T).

Carry-overs
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Z(t,t+1)
jkl ∈ R+(j = 1, . . . , n; l = 1, .., Lk; k = 1, . . . k, t = 1, . . . , T − 1): denotes the carry-overs from

division k to h in DMUj from period t to t + 1 where Lk is the number of carry-overs from division k.

Objective Function

Overall Efficiency:

θ∗0 = min

∑T
t=1 Wt

[
∑K

k=1 Wk

[
1− 1

mk+linkink+nbadk
(∑mk

i=1
St−

iok
xt

iok
+ ∑linkink

(kh)l=1

st
o(kh)l in

zt
o(kh)l in

+ ∑nbadk
kl=1

s(t,(t+1))
okl bad

z(t,(t+1))
okl bad

]]

∑T
t=1 Wt

[
∑K

k=1 Wk

[
1 + 1

rk+linkoutk+ngoodk
(∑rk

r=1
st+

rok
yt

rok
+ ∑linkoutk

(kh)l=1

st
o(kh)l out

zt
o(kh)l out

+ ∑
ngoodk
kl=1

s(t,(t+1))
oklgood

z(t,(t+1))
oklgood

]]

Constraints:
xt

ok = Xt
kλt

k + st−
ko (∀k, ∀t)

yt
ok = Yt

kλt
k − st+

ko (∀k, ∀t)
eλt

k = 1 (∀k, ∀t)
λt

k ≥ 0, st−1
ko ≥ 0, st+

ko ≥ 0, (∀k, ∀t)
Zt
(kh) f reeλt

h = Zt
(kh) f reeλt

k (∀(k, h) f ree, ∀t)

Zt
(kh) f ree = (Zt

1(kh) f ree, . . . , Zt
n(kh) f ree) ∈ RL(h) f ree×n

Zt
o(kh) f ix = Zt

(kh) f ixλt
h (∀(k, h) f ix, ∀t)

Zt
o(kh) f ix = Zt

(kh) f ixλt
k (∀(k, h) f ix, ∀t)

Zt
o(kh)in = Zt

(kh)inλt
k + St

o(kh)in ((kh)in = 1, . . . , linkink)

Zt
o(kh)out = Zt

(kh)outλ
t
k − St

o(kh)out ((kh)out = 1, . . . , linkoutk)

∑n
j=1 z(t,(t+1))

jk1α λt
jk = ∑n

j=1 z(t,(t+1))
jk1α λt+1

jk (∀k; ∀kl ; t = 1, . . . , T − 1)

Z(t,(t+1))
okl good = ∑n

j=1 z(t,(t+1))
jkl good

λt
jk − s(t,(t+1))

okl good kl = 1, . . . , ngoodk; ∀k; ∀t)

Z(t,(t+1))
oklbad = ∑n

j=1 z(t,(t+1))
jkl bad

λt
jk − s(t,(t+1))

oklbad kl = 1, . . . , nbadk; ∀k; ∀t)

Z(t,(t+1))
okl f ree = ∑n

j=1 z(t,(t+1))
jkl f ree

λt
jk − s(t,(t+1))

okl f ree kl = 1, . . . , n f reek; ∀k; ∀t)

Z(t,(t+1))
okl f ix = ∑n

j=1 z(t,(t+1))
jkl f ix

λt
jk − s(t,(t+1))

okl f ix kl = 1, . . . , n f ixk; ∀k; ∀t)

s(t,(t+1))
okl good ≥ 0,s(t,(t+1))

oklbad ≥ 0,s(t,(t+1))
okl f ree : f ree(∀kl ; ∀t) (1)

Period and Division Efficiencies
Period efficiency:

τt∗
0 = min

∑K
k=1 Wk

[
1− 1

mk+linkink+nbadk
(∑mk

i=1
St−

iok
xt

iok
+ ∑linkink

(kh)l=1

st
o(kh)l in

zt
o(kh)l in

+ ∑nbadk
kl=1

s(t,(t+1))
okl bad

z(t,(t+1))
okl bad

]

∑K
k=1 Wk

[
1 + 1

rk+linkoutk+ngoodk
(∑rk

r=1
st+

rok
yt

rok
+ ∑linkoutk

(kh)l=1

st
o(kh)l out

zt
o(kh)l out

+ ∑
ngoodk
kl=1

s(t,(t+1))
okl good

z(t,(t+1))
okl good

]

Division efficiency:

δ∗0t = min

∑T
t=1 Wt

[
1− 1

mk+linkink+nbadk
(∑mk

i=1
St−

iok
xt

iok
+ ∑linkink

(kh)l=1

st
o(kh)l in

zt
o(kh)l in

+ ∑nbadk
kl=1

s(t,(t+1))
okl bad

z(t,(t+1))
okl bad

]

∑T
t=1 Wt

[
1 + 1

rk+linkoutk+ngoodk
(∑rk

r=1
st+

rok
yt

rok
+ ∑linkoutk

(kh)l=1

st
o(kh)l out

zt
o(kh)l out

+ ∑
ngoodk
kl=1

s(t,(t+1))
okl good

z(t,(t+1))
okl good

]
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Division Period efficiency:

pt∗
0k =

1− 1
mk+linkink+nbadk

(∑mk
i=1

St−
iok

xt
iok

+ ∑linkink
(kh)l=1

st
o(kh)l in

zt
o(kh)l in

+ ∑nbadk
kl=1

s(t,(t+1))
okl bad

z(t,(t+1))
okl bad

1 + 1
rk+linkoutk+ngoodk

(∑rk
r=1

st+
rok

yt
rok

+ ∑linkoutk
(kh)l=1

st
o(kh)l out

zt
o(kh)l out

+ ∑
ngoodk
kl=1

s(t,(t+1))
okl good

z(t,(t+1))
okl good

(∀k; ∀t)

Z(0,1)
olk

= ∑n
j=1 Z(0,1)

jlk λl
jk(∀lk) (2)

From the above results, the overall efficiency, period efficiency, division efficiency and division
period efficiency can be determined.

3.2. Fixed Assets, Labor, Energy Consumption, GDP, Health Expenditure, Birth Rate, Respiratory Disease,
and Death Rate Efficiencies

Hu and Wang’s [28] total-factor energy efficiency index is employed here to overcome any possible
biases in the traditional energy efficiency indicators. There are nine key features used in this present
study: fixed assets, labor, energy consumption, GDP, health expenditure, birth rate, respiratory diseases
and death rate. In our study, “I” represents area and “t” represents time.

3.2.1. Fixed Asset Efficiency

Fixed asset efficiency is the ratio of target fixed asset input to actual fixed asset input, the model
for which is:

Fixed asset efficiency =
Target Fixed asset input (i, t)
Actual Fixed asset input (i, t)

.

If the target fixed asset input is equal to the actual input level, then the fixed asset efficiency
equals 1, indicating efficiency; however, if the target fixed asset input is less than the actual input level,
then the fixed asset efficiency is less than 1, indicating inefficiency.

3.2.2. Labor Efficiency

Labor efficiency is the ratio of target labor input to actual labor input, the model for which is:

Labor efficiency =
Target Labor input (i, t)
Actual Labor input (i, t)

If the target labor input is equal to the actual input level, then labor efficiency equals 1, indicating
efficiency; however, if the target labor input is less than the actual input, then the labor efficiency is
less than 1, indicating inefficiency.

3.2.3. Energy Consumption Efficiency

Energy consumption efficiency is the ratio of target energy input to actual energy input, the model
for which is:

Energy consumption efficiency =
Target energy input (i, t)
Actual energy input (i, t)

If the target energy input is equal to the actual input level, then energy consumption efficiency
equals 1, indicating efficiency; however, if the target energy input is less than the actual input level,
then the energy consumption efficiency is less than 1, indicating inefficiency.
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3.2.4. GDP Efficiency

GDP efficiency is the ratio of actual desirable GDP output to target desirable GDP output, the
model for which is:

GDP efficiency =
Actual desirable GDP output (i, t)
Target desirable GDP output (i, t)

If the target desirable GDP output is equal to the actual desirable GDP output level, then the
GDP efficiency equals 1, indicating efficiency. If the actual desirable GDP output is less than the target
desirable GDP output level, then the GDP efficiency is less than 1, indicating inefficiency.

3.2.5. Health Expenditure Efficiency

Health expenditure efficiency is the ratio of target health expenditure input to actual health
expenditure input, the model for which is:

Health Expenditure efficiency =
Target Health Expenditure input (i, t)
Actual Health Expenditure input (i, t)

If the target health expenditure input is equal to the actual health expenditure input level, then the
health expenditure efficiency equals 1, indicating efficiency; however, if the target health expenditure
input is less than the actual health expenditure input level, then the health expenditure efficiency is
less than 1, indicating inefficiency.

3.2.6. Birth Rate Efficiency

Birth rate efficiency is the ratio of actual desirable birth rate output to target desirable birth rate
output, the model for which is:

Birth Rate efficiency =
Actual desirable Birth Rate output (i, t)
Target desirable Birth Rate output (i, t)

If the target desirable birth rate output is equal to the actual desirable birth rate output level,
then the birth rate efficiency equals 1, indicating efficiency; however, if the actual desirable birth rate
output is less than the target desirable birth rate output level, then the birth rate efficiency is less than
1, indicating inefficiency.

3.2.7. Respiratory Disease Efficiency

Respiratory disease efficiency is the ratio of target undesirable respiratory disease output to actual
undesirable respiratory disease output, the model for which is;

Respiratory

Diseases efficiency =
Target Respiratory Disease Undesirable output (i, t)
Actual Respiratory Disease Undesirable output (i, t)

If the target undesirable respiratory disease output is equal to the actual undesirable respiratory
disease output, then the respiratory diseases efficiency equals 1, indicating efficiency; however, if the
target undesirable respiratory disease output is less than the actual undesirable respiratory disease
output, then the respiratory disease efficiency is less than 1, indicating inefficiency.

3.2.8. Death Rate Efficiency

The death rate efficiency is the ratio of target undesirable death rate output to actual undesirable
death rate output, the model for which is;
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Death Rate efficiency =
Target Death Rate Undesirable output (i, t)
Actual Death Rate Undesirable output (i, t)

If the target undesirable death rate output is equal to the actual undesirable death rate output,
then the death rate efficiency equals 1, indicating efficiency; however, if the undesirable target death
rate output is less than the actual undesirable death rate output, then the death rate efficiency is less
than 1, indicating inefficiency.

4. Results and Discussion

4.1. Data Sources and Description

This study used panel data from 31 of the most developed cities in eastern and western China.
The economic and social development data from 2013 to 2016 were collected from the Statistical
Yearbook of China, the Demographics and Employment Statistical Yearbook of China, and the
City Statistical Yearbooks. Air pollutant data were collected from the China Environmental and
Protection Bureau Annual Reports and the China Environmental Statistical Yearbook. As the 31 sample
cities varied widely in terms of population, industries, natural resources, meteorological conditions,
and geographical positions, they were considered to be representative of the general air pollution
emissions and treatment situations in China.

Figure 1 shows the framework for the inter-temporal efficiency measurements and variables for
the Network Dynamic Model.
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The specific variables are explained in the following:

Input variables:

Labor input (lab): numbers of employees in each city at the end of each year; unit = persons.
Fixed Assets (assets): the capital stock in each city based on the fixed asset investment in each city;

unit = 100 million CNY.
Energy consumption (com): the total energy consumption in each city; unit = 100 million Dun.

Output variable:

Desirable output (GDP): the GDP in each city; unit = 100 million CNY.

Link Production Stage and health stage variables:

PM2.5: atmospheric particulate matter (PM) with a diameter of less than 2.5 micrometers; unit =
micrograms/cubic meter.

SO2: sulfur dioxide; released naturally by volcanic activity and produced as a by-product of the
burning of fossil fuels contaminated with sulfur compounds.

NO2; Nitrogen dioxide (NO2); one of a group of highly reactive gases known as oxides of nitrogen
or nitrogen oxides (NX). NO2, is an intermediate emission in the industrial synthesis of nitric acid,
millions of tonnes of which are produced each year.

Second stage health stage

Input variables:

Government Health Expenditure

Output variables:

Birth rate

Carry-over variables:

Respiratory Disease and Death Rate

4.2. Input-Output Index Statistical Analyses

Figure 2 shows the statistical analysis of the input-output indicators. From 2013 to 2016, the growth
in employment (em) was relatively slow, so the four years trend was slightly upward. The fixed assets
input was large and significantly increased over the years. The maximum employed population
increased slightly and the average and minimum employed population fluctuated.

While there were some fluctuations in energy consumption, the average growth was not significant
and decreased in 2016, with the minimum decreasing significantly after 2014; however, maximum
energy consumption had an upward trend, particular in 2016 and 2017. The gap between the maximum
and minimum energy consumption was therefore increasing.

The government health expenditure input indicators also fluctuated, with the average increasing
from 2013 to 2015 and falling in 2016. The maximum government Health Expenditure input in 2014
was slightly lower than in 2013, but increased significantly in 2015 and continued to increase in 2016.
The birth rate maximum had a continuous upward trend with a significant overall increase; however,
while the mean birth rate had a fluctuating upward trend, the minimum birth rate had a downward
trend; therefore, the gap between the maximum and minimum birth rate was increasing.

The total GDP rose significantly over the years. While there was a significant increase in the
maximum GDP, the average GDP was relatively flat, and the minimum GDP tended to fluctuate.
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4.3. Total City Efficiency Scores for Each Year

Table 2 shows the total efficiency scores and ranks for 31 Chinese cities from 2013 to 2016.
Five cities had total efficiency scores of 1; Beijing, Fuzhou, Guangzhou, Lhasa, Urumqi, and Yinchuan;
Changsha, Nanning, and Wuhan had total efficiency scores around 0.95, and the total efficiency of the
other cities was below 0.7. The lowest five ranked cities were Shijiazhuang, Haikou, Harbin, Chengdu,
and Tianjin, all of which had total efficiency scores below 0.4.

Only three cities had continually rising efficiency; Guiyang, Kunming, and Nanjing; with all
other cities having large efficiency fluctuations. Changchun’s efficiency rose significantly in 2016 from
around 0.5 in 2015 to 0.88 in 2016. In 2016, Hefei’s efficiency rose to 0.89 from 0.65 in 2015 (the highest
in the previous three years). Jinan’s efficiency was 0.5 or below in the first three years, but rose to 1
in 2016.

Several cities saw a decrease in their overall efficiency. Lanzhou’s total efficiency decreased from
0.89 in 2014 to 0.5 in 2015, the lowest level, before rising again to around 0.6 in 2016. Shanghai’s
efficiency was 1 in 2013, but after 2014, fell to 0.63.

Some cities saw little or no change in their efficiency. Xining’s efficiency was around 0.7 in 2015
but below 0.5 in the other years. Tianjin’s efficiency was around 0.5 in 2013, rose to 0.65 in 2014,
the highest, and then dropped again to around 0.40 in 2015 and 2016. Therefore, there were only 5 cities
with an overall efficiency of 1, and all other 26 cities needed improvements, especially Shijiazhuang,
Haikou, Harbin, Chengdu, and Tianjin.
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Table 2. Annual efficiency by city from 2013 to 2016.

DMU Overall Score Rank 2013 (1) 2014 (1) 2015 (1) 2016 (1)

Beijing 1 1 1 1 1 1
Chengdu 0.4658 28 0.4263 0.4421 0.5063 0.4948

Changchun 0.6432 15 0.5767 0.6785 0.4996 0.8751
Changsha 0.9547 9 0.9992 0.9999 0.9998 0.8199

Chongqing 0.5254 22 0.5205 0.4758 0.4991 0.6148
Fuzhou 1 1 1 1 1 1

Guangzhou 1 1 1 1 1 1
Guiyang 0.5069 25 0.4535 0.4964 0.5168 0.5832
Harbin 0.4248 29 0.4725 0.3774 0.366 0.4901
Haikou 0.4167 30 0.4167 0.4167 0.4167 0.4167

Hangzhou 0.6063 18 0.5643 0.6218 0.5502 0.7066
Hefei 0.6474 14 0.556 0.5213 0.6475 0.8939

Huhehot 0.6699 13 0.6012 0.7384 0.6331 0.7115
Jinan 0.6018 19 0.4808 0.5184 0.5049 1

Kunming 0.5196 23 0.4696 0.4835 0.5401 0.6076
Lanzhou 0.6777 12 0.8884 0.7573 0.4961 0.6167

Lhasa 1 1 1 1 1 1
Nanchang 0.6411 16 0.6521 0.6497 0.6124 0.6502

Nanjing 0.6018 19 0.547 0.5733 0.5807 0.7211
Nanning 0.9488 10 0.9999 0.9998 0.887 0.9105
Shanghai 0.7096 11 1 0.6348 0.6214 0.6488
Shenyang 0.9985 7 0.9946 0.9996 1 1

Shijiazhuang 0.3891 31 0.4368 0.378 0.3893 0.3542
Taiyuan 0.5185 24 0.511 0.4428 0.5371 0.5819
Tianjin 0.475 27 0.4966 0.6479 0.3834 0.4247
Wuhan 0.9615 8 0.943 0.9586 0.9456 0.9995
Urumqi 1 1 1 1 1 1

Xian 0.4937 26 0.4416 0.5128 0.4966 0.5253
Xining 0.5347 21 0.4831 0.711 0.4972 0.4974

Yinchuan 1 1 1 1 1 1
Zhengzhou 0.6064 17 0.6038 0.6133 0.6062 0.602

DMU: Decision Making Units.

4.4. Annual Efficiency Analysis at Each Stage

4.4.1. Comparison of Total Efficiency, Stage Efficiency, Overall Rank, and Stage Rank

Table 3 shows the total efficiency scores and total ranks, the average efficiency scores, and the ranks
in the two stages. Cities with efficiency below 0.5 in the first stage; Guiyang, Kunming, Shijiazhuang,
Taiyuan, Xi’an, and Xining; were classified into one category, and cities with efficiency at 0.5 or greater
were classified into another category. The cities with efficiencies greater than or equal to 0.5 in the first
stage were embedded into the second stage; cities with efficiencies below 0.5 in the second stage were
classified as “a city with an efficiency greater than 0.5 in the first stage but an efficiency less than 0.5 in
the second stage” (In Table 3, these cities were Chengdu, Chongqing, Harbin, Haikou and Tianjin).
“There were 20 (64.52% of our observations) cities with efficiencies greater than 0.5 in both stages”.
After classifying the 31 provincial capital cities based on the above, the results were as follows:

(1) Characteristics of cities with efficiencies less than 0.5 in the first stage

From Table 3, there were six cities with efficiencies below 0.5 in the first stage; Guiyang, Kunming,
Shijiazhuang, Taiyuan, Xi’an, and Xining. The main features of these cities were single industrial
structures, a lack of characteristic industries, and with the main industries being labor intensive with
high energy consumption. Therefore, these cities lack innovation and competitiveness, need to adjust
their industrial structures away from traditional industries, and need to introduce new energy sources.

(2) Characteristics of cities with efficiencies greater than 0.5 in the first stage but below 0.5 in the
second stage.

From Table 3, there were five cities in this category; Chengdu, Chongqing, Harbin, Haikou
and Tianjin. The main characteristics were serious air pollution (Chengdu, Chongqing, and Tianjin),
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cities with large immigrant populations (higher immigrants from other cities increase local medical
burdens), and were comparatively less developed than other municipalities (Chongqing and Tianjin).
Chengdu for example has high prices, high house prices, and a large population, and due to its
geographic location, it does not have abundant available resources for development, all of which
places a significant burden on the economy, the environment, and the population, which in turn
reduces the economic efficiency and the medical input efficiency.

(3) Characteristics of cities with efficiencies above 0.5 in both stages

Twenty cities had efficiencies greater than 0.5 in both stages, with an average efficiency in the first
stage of 0.8339, a standard deviation of 0.1738, and a median of 0.9350, and average efficiency in the
second stage of 0.8131, a standard deviation of 0.1872, and a median of 0.8894. However, there were
two main issues:

1. There were large differences between the mean and median efficiencies in the two stages,
and there were outliers (maximum or minimum). With the outliers, the median should describe
central trends.

2. The median efficiencies in the first stage were about 5% higher than in the second stage, and the
total first stage efficiencies were slightly higher than in the second stage.

The two-stage efficiency analysis indicated that out of the 31 cities, 20 cities were performing well
as they had efficiencies over 0.5 in both stages; however, the performance of the average production
efficiency in the first stage was slightly higher than the average health efficiency in the second stage.

4.4.2. Two stage Relative Change Rate

A relative change rate was used to assess the efficiency score change trends in the two stages;
relative change rate = (second stage efficiency score − first stage efficiency score)/first stage efficiency
score. A negative relative change rate indicated that the city’s second stage efficiency was lower than
the first stage efficiency. Conversely, a positive relative change rate indicated that the city’s second
stage efficiency was higher than the first stage efficiency. Table 4 shows the relative change rates for
the 20 cities with two stage efficiencies greater than 0.5. As can be seen in Table 4 there were are
eight cities with negative relative change rates, with a median relative change rate value of −0.1184.
There were six cities with a positive relative change rate, with a median relative change rate value
of 0.0626, which indicated that the efficiency improvements from the first stage to the second stage
were less than the reduction in efficiency. Of the cities with negative relative change rates, Shanghai
(−0.4472) and Hangzhou (−0.20431) had outliers. Of the cities with a positive relative change rate,
the city with the largest change was Lanzhou (0.5673). As Lanzhou is a western city, this indicated
that efficiency improvements are not necessarily reliant on the amount of capital. In fact, without
the necessary adjustment measures, if the city were inefficient, capital accumulation could result in a
waste of resources, as can be seen in the total efficiency scores in Table 5. The total efficiency scores in
the western region cities of Lhasa, Urumqi, and Yinchuan were 1, while the total efficiency scores in
the eastern region cities of Haikou, Hangzhou, and Jinan were very low (0.4167, 0.6063, and 0.6018),
which indicated that the more developed eastern regions were not performing better than the western
regions in terms of their rational use of resources. Therefore, there is an urgent need in China to
optimize energy, economic, and medical input efficiencies.
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Table 3. City efficiencies for the first and second stages from 2013 to 2016.

DMU Overall Score Rank
Div1 (0.5) Div2 (0.5)

2013 2014 2015 2016 Average Rank 2013 2014 2015 2016 Average Rank

Beijing 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Chengdu 0.4658 28 0.543 0.487 0.582 0.591 0.5507 24 0.29 0.38 0.401 0.351 0.3534 29

Changchun 0.6432 15 0.5778 0.745 0.639 0.774 0.6839 14 0.58 0.61 0.412 1 0.6503 17
Changsha 0.9547 9 0.999 1 1 0.782 0.9451 10 1 1 1 0.858 0.9642 9

Chongqing 0.5254 22 0.6633 0.598 0.611 0.701 0.6433 19 0.39 0.34 0.379 0.531 0.4093 27
Fuzhou 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Guangzhou 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Guiyang 0.5069 25 0.3635 0.411 0.495 0.53 0.4499 28 0.65 0.64 0.54 0.648 0.6174 20
Harbin 0.4248 29 0.573 0.48 0.603 0.643 0.5747 22 0.4 0.3 0.254 0.403 0.3406 30
Haikou 0.4167 30 0.5 0.5 0.5 0.5 0.5 25 0.33 0.33 0.333 0.333 0.3333 31

Hangzhou 0.6063 18 0.5996 0.642 0.722 0.783 0.6867 13 0.53 0.6 0.428 0.631 0.5464 25
Hefei 0.6474 14 0.5972 0.588 0.588 0.8 0.6431 20 0.51 0.47 0.707 1 0.6714 15

Huhehot 0.6699 13 0.5298 0.74 0.768 0.684 0.6803 15 0.66 0.74 0.556 0.733 0.6723 14
Jinan 0.6018 19 0.4144 0.478 0.438 1 0.5824 21 0.58 0.57 0.577 1 0.681 13

Kunming 0.5196 23 0.4088 0.417 0.521 0.592 0.4846 26 0.58 0.61 0.566 0.628 0.5966 21
Lanzhou 0.6777 12 0.7966 0.605 0.384 0.463 0.5618 23 1 1 0.623 0.891 0.8785 11

Lhasa 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Nanchang 0.6411 16 0.5888 0.657 0.67 0.676 0.648 18 0.72 0.64 0.562 0.619 0.6344 19

Nanjing 0.6018 19 0.5925 0.597 0.691 0.803 0.6708 16 0.51 0.55 0.5 0.639 0.5486 24
Nanning 0.9488 10 1 1 1 1 1 1 1 1 0.781 0.821 0.9003 10
Shanghai 0.7096 11 1 1 1 1 1 1 1 0.39 0.402 0.415 0.5528 23
Shenyang 0.9985 7 0.9941 1 1 1 0.9984 9 1 1 1 1 0.9986 8

Shijiazhuang 0.3891 31 0.2963 0.269 0.276 0.276 0.2794 31 0.77 0.66 0.596 0.516 0.6345 18
Taiyuan 0.5185 24 0.376 0.412 0.402 0.432 0.4057 29 0.7 0.48 0.679 0.751 0.6523 16
Tianjin 0.475 27 0.6023 1 0.637 0.714 0.7383 12 0.43 0.41 0.285 0.287 0.355 28
Wuhan 0.9615 8 0.8904 0.918 0.891 0.999 0.9248 11 1 1 1 1 0.9999 7
Urumqi 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Xian 0.4937 26 0.4267 0.469 0.502 0.5 0.4746 27 0.46 0.57 0.489 0.564 0.5215 26
Xining 0.5347 21 0.3317 0.531 0.316 0.348 0.3815 30 0.75 0.96 0.855 0.776 0.8354 12

Yinchuan 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Zhengzhou 0.6064 17 0.627 0.632 0.655 0.697 0.6527 17 0.58 0.6 0.565 0.507 0.5632 22
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Table 4. Relative change rate in the 20 cities with two stage efficiencies greater than 0.5.

DMU Total Efficiency
Score

The First Stage
Average Efficiency

The Second Stage
Average Efficiency

Relative Change
Rate

Beijing 1 1 1 0
Changchun 0.6432 0.6839 0.6503 −0.04913
Changsha 0.9547 0.9451 0.9642 0.02021

Fuzhou 1 1 1 0
Guangzhou 1 1 1 0
Hangzhou 0.6063 0.6867 0.5464 −0.20431

Hefei 0.6474 0.6431 0.6714 0.044006
Huhehot 0.6699 0.6803 0.6723 −0.01176

Jinan 0.6018 0.5824 0.681 0.169299
Lanzhou 0.6777 0.5618 0.8785 0.563724

Lhasa 1 1 1 0
Nanchang 0.6411 0.648 0.6344 −0.02099

Nanjing 0.6018 0.6708 0.5486 −0.18217
Nanning 0.9488 1 0.9003 −0.0997
Shanghai 0.7096 1 0.5528 −0.4472
Shenyang 0.9985 0.9984 0.9986 0.0002

Wuhan 0.9615 0.9248 0.9999 0.081207
Urumqi 1 1 1 0

Yinchuan 1 1 1 0
Zhengzhou 0.6064 0.6527 0.5632 −0.13712

Figure 3 shows that from 2013 to 2016, the cities in which the efficiencies continued to rise in the
first stage were Guiyang, Hangzhou, Kunming, Nanchang, Nanjing, Xian, and Zhengzhou. However,
while the other cities experienced fluctuations, the overall efficiency in the first stage in 2016 was
higher than in the previous three years, indicating that in general, the production input and output
efficiencies in the first stage improved.

The second stage shows that from 2013 to 2016, most cities experienced fluctuating efficiencies.
Of the nine cities with efficiencies of 1 in the first stage, four saw an efficiency drop in the second stage;
Nanning’s efficiency dropped to around 0.8 in 2015 and 2016, Shanghai’s efficiency dropped sharply
to around 0.4 from 2014 to 2016, and Zhengzhou’s efficiency in the second stage was declining from
2015, which was opposite to its efficiency movement in the first stage. Therefore, very few cities had
continual efficiency rises in the second stage with most having significant fluctuations.

Compared to the first stage, Nanchang’s overall efficiency in the second stage rose, even though
there were declines from 2013 to 2015. Nanning’s overall efficiency rose in the first stage; however,
there were fluctuations in the second stage, with rises in 2013 and 2014, a fall in 2015, and a rise again
in 2016 to over 0.6. Shijiazhuang and Tianjin’s efficiencies in the second stage declined, with Tianjin
falling to below 0.3 in 2015 and 2016.

Many cities’ overall efficiency in the second stage rose significantly in 2016; in particular,
Changchun’s efficiency rose from 0.4 in 2015 to 1 in 2016, in 2015, Hefei and Jinan’s efficiency scores
were less than 0.7 but rose to 1 in 2016, and Wuhan’s efficiency in the first stage only reached 1 in 2016,
but was 1 in all four years in the second stage, which indicated that the health input and death rate
reduction efficiencies in the second stage had improved.
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4.5. Efficiency Scores and Rankings for Labor, Fixed Assets, Energy Consumption, and GDP from 2013 to 2016

Figure 4 shows each city’s efficiency for the production input and output indicators. Of the
first-stage inputs (employment, fixed assets, and energy consumption), the average employment
efficiency was the highest at more than 0.9, the average fixed asset efficiency was the lowest at around
0.77, the average energy consumption efficiency was around 0.85, and the average GDP efficiency was
around 0.78. Overall, employment efficiency was the highest; except for Chongqing and Harbin in
which the efficiencies were lower than 0.7, most cities had efficiencies higher than 0.8, and 18 cities has
efficiencies of 1. However, there were only 9 cities with overall efficiencies of 1. Generally, in most
cities, the fixed asset and energy consumption input needed small adjustments.
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4.6. Efficiency Scores and Rankings for Birth Rate and Medical Input from 2013 to 2016

Table 5 and Figure 5 shows the birth rate and medical input efficiency scores in each city from
2013 to 2016. As can be seen, there were significant differences in the health input efficiencies, with
most cities being very low; for example, Chengdu, Harbin, Xian, and Zhengzhou’s medical input
efficiencies were less than 0.3.

Table 5. Medical input and birth rate efficiencies by city from 2013 to 2016.

Efficiency City

=1 Beijing, Fuzhou, Guangzhou, Haikou, Lhasa, Shenyang, Wuhan, Urumqi, Yinchuan

<0.6 Chengdu, Chongqing, Guiyang, Harbin, Hangzhou, Kunming, Nanchang, Nanjing,
Shijiazhuang, Tianjin, Xian, Zhengzhou

>0.6, <1 Huhehot, Lanzhou, Nanning, Taiyuan, Xining

The differences in health input efficiencies were greater than the differences in the birth rate efficiencies, which tended
to be high in most cities, with only Harbin, Huhehot, and Tianjin having an efficiency lower than 0.8. In 2016, the
medical input and birth rate efficiencies rose significantly compared to the previous three years. However, as the
average medical input efficiency was low, the differences between the cities needs to be addressed.

Int. J. Environ. Res. Public Health 2018, 15, x  19 of 23 

4.6. Efficiency Scores and Rankings for Birth Rate and Medical Input from 2013 to 2016 

Table 5 and Figure 5 shows the birth rate and medical input efficiency scores in each city from 
2013 to 2016. As can be seen, there were significant differences in the health input efficiencies, with 
most cities being very low; for example, Chengdu, Harbin, Xian, and Zhengzhou’s medical input 
efficiencies were less than 0.3. 

Table 5. Medical input and birth rate efficiencies by city from 2013 to 2016. 

Efficiency City 
=1 Beijing, Fuzhou, Guangzhou, Haikou, Lhasa, Shenyang, Wuhan, Urumqi, Yinchuan 

<0.6 
Chengdu, Chongqing, Guiyang, Harbin, Hangzhou, Kunming, Nanchang, Nanjing, 
Shijiazhuang, Tianjin, Xian, Zhengzhou 

>0.6, <1 Huhehot, Lanzhou, Nanning, Taiyuan, Xining 
The differences in health input efficiencies were greater than the differences in the birth rate 
efficiencies, which tended to be high in most cities, with only Harbin, Huhehot, and Tianjin having 
an efficiency lower than 0.8. In 2016, the medical input and birth rate efficiencies rose significantly 
compared to the previous three years. However, as the average medical input efficiency was low, the 
differences between the cities needs to be addressed. 

 
Figure 5. Input and output efficiencies from 2013–2016. Figure 5. Input and output efficiencies from 2013–2016.

4.7. Respiratory Disease and Death Rate Reduction Analyses in Each City

Table 6 shows the respiratory disease and death rate reduction efficiency scores in each city.
The respiratory disease reduction efficiencies in Beijing, Changsha, Fuzhou, Guangzhou, Lhasa,
Wuhan, Urumqi, and Yinchuan were 1, indicating high efficiency. Chengdu had the lowest respiratory
disease reduction efficiency at below 0.4 in all four years, Chongqing was slightly better at below 0.6,
and Hangzhou was slightly higher at close to 0.7.
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Table 6. Respiratory disease and death rate reduction efficiencies in each city.

Overall Score Rank
2013 2014 2015 2016

Breath Dead Breath Dead Breath Dead Breath Dead

Beijing 1 1 1 1 1 1 1 1 1 1
Chengdu 0.4658 28 0.319154 0.574365 0.379511 0.64613 0.403979 0.662443 0.308138 0.529095

Changchun 0.6432 15 0.997303 1 0.822928 0.862604 1 1 1 1
Changsha 0.9547 9 0.999742 0.99974 0.999986 0.999983 1 1 1 0.987481

Chongqing 0.5254 22 0.603698 0.6151 0.494049 0.515881 0.567756 0.561586 0.50591 0.562721
Fuzhou 1 1 1 1 1 1 1 1 1 1

Guangzhou 1 1 1 1 1 1 1 1 1 1
Guiyang 0.5069 25 0.848056 0.854939 0.866644 0.868156 0.858574 0.84627 0.856479 0.856481
Harbin 0.4248 29 0.727852 0.732364 0.494426 0.494427 0.663949 0.642656 0.919001 0.919702
Haikou 0.4167 30 0 0 0 0 0 0 0 0

Hangzhou 0.6063 18 0.684498 0.907921 0.630953 0.82618 0.648427 0.83625 0.695218 0.899324
Hefei 0.6474 14 0.650572 0.665066 0.834373 0.850786 1 1 1 1

Huhehot 0.6699 13 0.95108 0.951264 0.972262 0.972264 0.991562 0.979371 1 0.996874
Jinan 0.6018 19 0.840146 0.877419 0.880102 0.903538 1 1 1 1

Kunming 0.5196 23 0.750716 0.760086 0.746365 0.759292 0.743585 0.74358 0.750919 0.750914
Lanzhou 0.6777 12 1 1 1 1 0.847356 0.83677 0.980481 1

Lhasa 1 1 1 1 1 1 1 1 1 1
Nanchang 0.6411 16 0.801558 0.810759 0.796958 0.79695 0.811009 0.799423 0.838847 0.834847

Nanjing 0.6018 19 0.787322 0.804454 0.792394 0.810068 0.77166 0.771659 0.765302 0.76531
Nanning 0.9488 10 0.999991 1 0.999826 0.999862 1 0.981644 0.959953 0.933696
Shanghai 0.7096 11 1 1 0.835315 0.85977 0.996068 1 0.804818 0.9051
Shenyang 0.9985 7 1 1 1 1 1 1 1 1

Shijiazhuang 0.3891 31 0.864608 0.879941 0.8302 0.830193 0.831052 0.82729 0.671766 0.671762
Taiyuan 0.5185 24 0.942516 0.943528 0.819034 0.811193 0.969421 0.929005 1 1
Tianjin 0.475 27 0.880586 0.899683 0.810255 0.855752 0.878549 0.9359 0.777527 0.868989
Wuhan 0.9615 8 1 1 1 1 1 0.999984 1 1
Urumqi 1 1 1 1 1 1 1 1 1 1

Xian 0.4937 26 0.703679 0.715885 1 0.630384 0.745394 0.704918 0.733021 0.739352
Xining 0.5347 21 0.987678 1 0.936726 0.936704 0.946721 0.946691 0.879909 0.873636

Yinchuan 1 1 1 1 1 1 1 1 1 1
Zhengzhou 0.6064 17 0.955971 0.891323 0.955839 0.826401 0.929376 0.863725 0.54588 0.748732
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The death rate reduction efficiency in Changsha in 2016 dropped slightly; however in all other
years as in nine other cities, it was 1; therefore, there is no room for improvement. Although the
death rate reduction efficiency was slightly higher than the respiratory disease reduction efficiency in
Chengdu and Chongqing, it was still low at around 0.6. Xian had a death rate reduction efficiency of
around 0.7 and Guiyang, Hangzhou, Kunming, Nanchang, Nanjing, and Shijiazhuang had efficiencies
of around 0.8. Therefore, generally, the respiratory disease and death rate reduction efficiencies were
high (more than 0.7); however, Chongqing and Chengdu need improvements.

5. Conclusions and Policy Recommendations

5.1. Conclusions

This paper used a DNSBM model to analyze two stages; production efficiency and health
efficiency; in 31 provincial capital cities in China, and identified the areas that needed improvement as
a reference for reform, health promotion, and socio-economic development. The following conclusions
were made from the overall analysis:

(1) As only five cities had overall efficiencies of 1, 26 cities need improvement. The total efficiencies
and the efficiencies in the two stages varied widely across the cities, which could not be explained
by the eastern and western regional differences. For example, some western cities (such as Lhasa,
Urumqi and Yinchuan) had higher efficiency in both stages than some eastern cities (such as
Hangzhou and Haikou), which indicated that cities with better economic development do not
necessarily have higher efficiency. These results clearly indicated that efficiency improvements
depend on the overall development of all aspects of society such as politics, culture, education,
and medical care. The analysis in this paper demonstrated that even though the eastern cities
are known to have higher economic development, this does not mean that they were efficient,
and pointed to the fact that China still needs to focus on economic, energy, and medical input
efficiency improvements.

(2) The two stage efficiency scores in most cities had significant fluctuations, with only a few cities
having a continuous rise (Guiyang, Kunming and Nanjing). This indicated again that overall
efficiency is influenced by many factors. From 2013 to 2016, China experienced many major
events, such as the “Internet +” action plan, industrial restructuring, supply structure reform,
and “Health China 2020”. The effect of these major events and the many practical problems
such as limited industrial structures, a lack of particular industries, and a lack of innovation and
competitiveness, indicated the many facets of efficiency. Further, even though the central and
local governments are seeking measures to improve efficiency, it is not an easy task. Therefore,
it is necessary to develop effective measures to fit China’s national and regional conditions.

(3) From the analysis of the individual stage input and output efficiencies, it was evident that there
needs to be improvements in government medical expenditures, with special focus needed on
respiratory disease and death rate decreases, especially in Chongqing and Chengdu. Although the
Chinese government’s medical input has gradually increased in recent years, the medical input
efficiency had not significantly improved. Therefore, in further health care reforms, there needs
to be a more rational allocation of medical resources. According to Yip and Hsiao [28], China’s
primary health care is very weak and ineffective in terms of disease prevention, consultation
and management, patient referrals, and medical coordination (especially in the prevention and
control of non-contagious diseases). Yip and Hsiao [29] used diabetes as an example, pointing
out that the hospitalization rate for diabetes complications in China was five times higher than
the OECD average.

5.2. Policy Recommendations

Based on the results of this study, the following policy recommendations are proposed:
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First, supply side structural reform is necessary. Local governments need to optimize their
industrial structures rather than only pursuing GDP growth; therefore. The government should
support innovation and enhance industrial competitiveness.

Second, local governments need to ensure the clean use of traditional energy as well as promoting
the use of new energy. Further, when adjusting the energy structure, the government needs to focus on
energy-conservation, emissions reductions, ecological protection, and pollution control to reduce the
negative environmental impacts of economic development.

Third, China should improve medical investments, regulations, guidance, and supervision.
Disease prevention needs to be promoted and national medical funding control policies implemented
to ensure precise medical investment management and improved medical input efficiency.
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13. Łopuszańska, U.; MakaraStudzińska, M. The correlations between air pollution and depression. Curr. Probl. Psychiatry
2017, 18, 100–109. [CrossRef]

14. Yang, W.; Bai, Z.P.; Zhou, X.H. Association between Alzheimer’s disease and air pollution. J. Environ. Health
2015, 9, 753–764. [CrossRef]

15. Yu, K.; Chen, Z.; Gao, J.; Zhang, Y.; Wang, S.; Chai, F. Relationship between Objective and Subjective
Atmospheric Visibility and Its Influence on Willingness to Accept or Pay in China. PLoS ONE 2015, 10,
e139495. [CrossRef] [PubMed]

16. Wang, L.; Zhong, B.; Vardoulakis, S.; Zhang, F.; Pilot, E.; Li, Y.; Yang, L.; Wang, W.; Krafft, T. Air Quality
Strategies on Public Health and Health Equity in Europe-A Systematic Review. Int. J. Environ. Res. Public Health
2016, 13, 1196. [CrossRef] [PubMed]

17. Tang, X.; Chen, W.; Wu, T. Do Authoritarian Governments Respond to Public Opinion on the Environment?
Evidence from China. Int. J. Environ. Res. Public Health 2018, 15, 266. [CrossRef] [PubMed]

18. Holland, P.W. Statistics and Causal Inference: Rejoinder. J. Am. Stat. Assoc. 1986, 81, 968–970. [CrossRef]
19. Health Impact Assessment (HIA). Available online: http://www.who.int/hia/en/ (accessed on 7 August

2018).
20. Birley, M. Health Impact Assessment: Principles and Practice. 2011. Available online: http://tinyurl.com/

qdwmshf (accessed on 5 July 2011).
21. ISO 14040:2006: Environmental Management—Life Cycle Assessment–Principles and Framework. Available

online: https://www.iso.org/standard/37456.html (accessed on 7 August 2018).
22. Tsutsui, M.; Tone, K. Dynamic DEA with network structure: A slacks-based measure approach. Omega 2014,

42, 124–131.
23. Farrell, M.J. The Measurement of Productive Efficiency. J. R. Stat. Soc. 1957, 120, 253–281. [CrossRef]
24. Charnes, A.; Cooper, W.; Rhodes, E. Measuring the Efficiency of Decision-Making Units. Eur. J. Oper. Res.

1978, 2, 429–444. [CrossRef]
25. Banker, R.D.; Charnes, R.F.; Cooper, W.W. Some Models for Estimating Technical and Scale Inefficiencies in

Data Envelopment Analysis. Manag. Sci. 1984, 30, 1078–1092. [CrossRef]
26. Tone‚, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130,

498–509.
27. Färe, R.; Grosskopf, S.; Pasurka, C.A. Environmental production functions and environmental directional

distance functions. Energy 2007, 32, 1055–1066. [CrossRef]
28. Hu, J.L.; Wang, S.C. Total-factor energy efficiency of regions in China. Energy Policy 2006, 34, 3206–3217.

[CrossRef]
29. Yip, W.; Hsiao, W. Harnessing the privatisation of China’s fragmented health-care delivery. Lancet 2014, 384,

805–818. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1515/cpp-2017-0009
http://dx.doi.org/10.16241/j.cnki.1001-5914.2015.09.001
http://dx.doi.org/10.1371/journal.pone.0139495
http://www.ncbi.nlm.nih.gov/pubmed/26444563
http://dx.doi.org/10.3390/ijerph13121196
http://www.ncbi.nlm.nih.gov/pubmed/27918457
http://dx.doi.org/10.3390/ijerph15020266
http://www.ncbi.nlm.nih.gov/pubmed/29401701
http://dx.doi.org/10.2307/2289069
http://www.who.int/hia/en/
http://tinyurl.com/qdwmshf
http://tinyurl.com/qdwmshf
https://www.iso.org/standard/37456.html
http://dx.doi.org/10.2307/2343100
http://dx.doi.org/10.1016/0377-2217(78)90138-8
http://dx.doi.org/10.1287/mnsc.30.9.1078
http://dx.doi.org/10.1016/j.energy.2006.09.005
http://dx.doi.org/10.1016/j.enpol.2005.06.015
http://dx.doi.org/10.1016/S0140-6736(14)61120-X
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Literature Review 
	Air Pollution Intervention, Public Health and the Social Economy 
	Association Assessments 
	Risk Assessment 
	Health Impact Assessment 
	Life Cycle Assessment 

	Summary and Implications of the Literature Review 

	Research Methods 
	Dynamic Network DEA 
	Fixed Assets, Labor, Energy Consumption, GDP, Health Expenditure, Birth Rate, Respiratory Disease, and Death Rate Efficiencies 
	Fixed Asset Efficiency 
	Labor Efficiency 
	Energy Consumption Efficiency 
	GDP Efficiency 
	Health Expenditure Efficiency 
	Birth Rate Efficiency 
	Respiratory Disease Efficiency 
	Death Rate Efficiency 


	Results and Discussion 
	Data Sources and Description 
	Input-Output Index Statistical Analyses 
	Total City Efficiency Scores for Each Year 
	Annual Efficiency Analysis at Each Stage 
	Comparison of Total Efficiency, Stage Efficiency, Overall Rank, and Stage Rank 
	Two stage Relative Change Rate 

	Efficiency Scores and Rankings for Labor, Fixed Assets, Energy Consumption, and GDP from 2013 to 2016 
	Efficiency Scores and Rankings for Birth Rate and Medical Input from 2013 to 2016 
	Respiratory Disease and Death Rate Reduction Analyses in Each City 

	Conclusions and Policy Recommendations 
	Conclusions 
	Policy Recommendations 

	References

