Nutrition and Hydration for High-Altitude Alpinism: A Narrative Review
Abstract
:1. Introduction
1.1. Environmental Considerations
1.2. Style of Ascent
1.3. Impact of High Altitude on Physical Performance
2. Methods
3. Discussion
3.1. Body Weight Loss and Changes in Body Composition at Altitude
Reference | n | Altitude (m) | Time at Altitude (days) | Total BW Loss (kg) | Body Fat Loss (kg) | FFM Loss (kg) | % BW Loss (FFM) |
---|---|---|---|---|---|---|---|
[55] | 10♂ | ≥4500 | 16 | 3.3 | 2.2 | 1.1 | 33.3 |
2♀ | |||||||
[62] | 14♂ | <5400 | 23 | 1.9 | 1.34 | 0.56 | 29.5 |
>5400 | 26 | 4 | 2 | 2.8 | 70 | ||
[45] | 16♂ | 3700–4300 | 16 | 5.9 | 2.53 | 3.37 | 57.1 |
[6] | 5♂ | 5900–8046 | 40 | 3.7 | 0.9 | 1.9 | 51.4 |
1♀ | |||||||
[36] | 8♂ | 8846 | 38 | 7.4 | 2.51 | 5.05 | 66.8 |
[63] | 5♂ | 2200–3400 | 21 | 4.2 | 1.1 | 3.2 | 75 |
[8] | 3♂ | 5300–8872 | 30 | 2.2 | 1.4 | 0.8 | 36.4 |
2♀ | |||||||
[60] | 4♂ | 6542 | 21 | 4.9 | 3.5 | 1.3 | 27 |
2♀ | |||||||
[64] | 10♂ | 2835–5364 | 13 | * C:1.8 | 0.6 | 1.2 | 66 |
8♀ | L: 1.9 | 1.1 | 0.8 | 42 |
3.2. Macronutrient Needs at High Altitude
3.3. Micronutrient Needs at High Altitude
3.4. Hydration at High Altitude
3.5. Nutrition in the Different Stages of an Expedition: Trekking and Acclimatisation to Moderate Altitude
3.6. Nutrition in the Different Stages of an Expedition: Base Camp
3.7. Nutrition in the Different Stages of an Expedition: High-Altitude Camps
3.8. Nutrition in the Different Stages of an Expedition: Summit Day
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Twight, M.; Martin, J.; Graydon, D. Extreme Alpinism: Climbing Light, Fast & High, 1st ed.; Mountaineers: Seattle, WA, USA, 1999. [Google Scholar]
- Hawley, E.; Salisbury, R. The Himalaya by the Numbers: A Statistical Analysis of Mountaineering in the Nepal Himalaya, 1st ed.; The Mountaineers Books: Seattle, WA, USA, 2011. [Google Scholar]
- Richalet, J.P.; Herry, J.P. Médecine de l’alpinisme et des Sports de Montagne, 4th ed.; Masson: Paris, France, 2006. [Google Scholar]
- Bourrilhon, C.; Philippe, M.; Chennaoui, M.; Van Beers, P.; Lepers, R.; Dussault, C.; Guezennec, C.Y.; Gomez-Merino, D. Energy Expenditure during an Ultraendurance Alpine Climbing Race. Wilderness Environ. Med. 2009, 20, 225–233. [Google Scholar] [CrossRef]
- Carceller, A.; Javierre, C.; Corominas, J.; Viscor, G. Differences in Cardiorespiratory Responses in Winter Mountaineering According to the Pathway Snow Conditions. High Alt. Med. Biol. 2019, 20, 89–93. [Google Scholar] [CrossRef]
- Pulfrey, S.M.; Jones, P.J. Energy Expenditure and Requirement While Climbing above 6000 m. J. Appl. Physiol. 1996, 81, 1306–1311. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, R.D.; Lickteig, J.A.; Deuster, P.A.; Howard, M.P.; Conway, J.M.; Pietersma, A.; deStoppelaar, J.; Deurenberg, P. Energy Metabolism Increases and Regional Body Fat Decreases While Regional Muscle Mass Is Spared in Humans Climbing Mt. Everest. J. Nutr. 1999, 129, 1307–1314. [Google Scholar] [CrossRef]
- Westerterp, K.R.; Kayser, B.; Brouns, F.; Herry, J.P.; Saris, W.H. Energy Expenditure Climbing Mt. Everest. J. Appl. Physiol. 1992, 73, 1815–1819. [Google Scholar] [CrossRef]
- Watts, P.B.; Martin, D.T.; Schmeling, M.H.; Silta, B.C.; Watts, A.G. Exertional Intensities and Energy Requirements of Technical Mountaineering at Moderate Altitude. J. Sports Med. Phys. Fitness 1990, 30, 365–376. [Google Scholar] [PubMed]
- Burtscher, M.; Gatterer, H.; Domej, W. Physiological Basis to Climb Mt. Everest in One Day. Respir. Physiol. Neurobiol. 2009, 166, 3. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, M.; Viscor, G. How important is when climbing Everest (8849 m)? Respir. Physiol. Neurobiol. [CrossRef]
- Gore, C.J.; Hahn, A.G.; Scroop, G.C.; Watson, D.B.; Norton, K.I.; Wood, R.J.; Campbell, D.P.; Emonson, D.L. Increased Arterial Desaturation in Trained Cyclists during Maximal Exercise at 580 m Altitude. J. Appl. Physiol. 1996, 80, 2204–2210. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, T.; Inagaki, M.; Takaki, H.; Kawada, T.; Shishido, T.; Kamiya, A.; Sugimachi, M. Adaptation of the Respiratory Controller Contributes to the Attenuation of Exercise Hyperpnea in Endurance-Trained Athletes. Eur. J. Appl. Physiol. 2012, 112, 237–251. [Google Scholar] [CrossRef]
- Fulco, C.S.; Rock, P.B.; Cymerman, A. Maximal and Submaximal Exercise Performance at Altitude. Aviat. Space Environ. Med. 1998, 69, 793–801. [Google Scholar]
- Burtscher, M.; Gatterer, H.; Kleinsasser, A. Cardiorespiratory Fitness of High Altitude Mountaineers: The Underestimated Prerequisite. High Alt. Med. Biol. 2015, 16, 169–170. [Google Scholar] [CrossRef]
- Salisbury, R.; Hawley, E. The Himalaya by the Numbers, 1st ed.; Vajra Publications: Kathmandu, Nepal, 2012; pp. 55–116. [Google Scholar]
- International Climbing and Mountaineering Federation. The Tyrol Declaration. Available online: https://www.theuiaa.org/declarations/tyrol-declaration/ (accessed on 2 February 2023).
- Donegani, E.; Paal, P.; Küpper, T.; Hefti, U.; Basnyat, B.; Carceller, A.; Bouzat, P.; van der Spek, R.; Hillebrandt, D. Drug Use and Misuse in the Mountains: A UIAA MedCom Consensus Guide for Medical Professionals. High Alt. Med. Biol. 2016, 17, 157–184. [Google Scholar] [CrossRef] [PubMed]
- Robach, P.; Trebes, G.; Lasne, F.; Buisson, C.; Méchin, N.; Mazzarino, M.; de la Torre, X.; Roustit, M.; Kérivel, P.; Botré, F. Drug Use on Mont Blanc: A Study Using Automated Urine Collection. PLoS ONE 2016, 11, e0156786. [Google Scholar] [CrossRef] [PubMed]
- Masuyama, S.; Kimura, H.; Sugita, T.; Kuriyama, T.; Tatsumi, K.; Kunitomo, F.; Okita, S.; Tojima, H.; Yuguchi, Y.; Watanabe, S.; et al. Control of Ventilation in Extreme-Altitude Climbers. J. Appl. Physiol. 1986, 61, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Maher, J.T.; Jones, L.G.; Hartley, L.H. Effects of High-Altitude Exposure on Submaximal Endurance Capacity of Men. J. Appl. Physiol. 1974, 37, 895–898. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, G.; Moia, C.; Thomet, J.M.; Kayser, B. The Decrease of Maximal Oxygen Consumption during Hypoxia in Man: A Mirror Image of the Oxygen Equilibrium Curve. J. Physiol. 1997, 498, 231–237. [Google Scholar] [CrossRef]
- Burtscher, M.; Faulhaber, M.; Flatz, M.; Likar, R.; Nachbauer, W. Effects of Short-Term Acclimatization to Altitude (3200 m) on Aerobic and Anaerobic Exercise Performance. Int. J. Sports Med. 2006, 27, 629–635. [Google Scholar] [CrossRef]
- Bernardi, L. Hypoxic Ventilatory Response in Successful Extreme Altitude Climbers. Eur. Respir. J. 2006, 27, 165–171. [Google Scholar] [CrossRef]
- Burtscher, M.; Niedermeier, M.; Burtscher, J.; Pesta, D.; Suchy, J.; Strasser, B. Preparation for Endurance Competitions at Altitude: Physiological, Psychological, Dietary and Coaching Aspects. A Narrative Review. Front. Physiol. 2018, 9, 1504. [Google Scholar] [CrossRef]
- Papandreou, I.; Cairns, R.A.; Fontana, L.; Lim, A.L.; Denko, N.C. HIF-1 Mediates Adaptation to Hypoxia by Actively Downregulating Mitochondrial Oxygen Consumption. Cell Metab. 2006, 3, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Wehrlin, J.P.; Zuest, P.; Hallén, J.; Marti, B. Live High-Train Low for 24 Days Increases Hemoglobin Mass and Red Cell Volume in Elite Endurance Athletes. J. Appl. Physiol. 2006, 100, 1938–1945. [Google Scholar] [CrossRef]
- Horscroft, J.A.; Murray, A.J. Skeletal Muscle Energy Metabolism in Environmental Hypoxia: Climbing towards Consensus. Extreme Physiol. Med. 2014, 3, 19. [Google Scholar] [CrossRef]
- Bärtsch, P.; Saltin, B. General Introduction to Altitude Adaptation and Mountain Sickness. Scand. J. Med. Sci. Sports 2008, 18, 1–10. [Google Scholar] [CrossRef]
- Mizuno, M.; Savard, G.K.; Areskog, N.-H.; Lundby, C.; Saltin, B. Skeletal Muscle Adaptations to Prolonged Exposure to Extreme Altitude: A Role of Physical Activity? High Alt. Med. Biol. 2008, 9, 311–317. [Google Scholar] [CrossRef]
- Hochachka, P.W.; Beatty, C.L.; Burelle, Y.; Trump, M.E.; McKenzie, D.C.; Matheson, G.O. The Lactate Paradox in Human High-Altitude Physiological Performance. Physiology 2002, 17, 122–126. [Google Scholar] [CrossRef] [PubMed]
- van Hall, G.; Lundby, C.; Araoz, M.; Calbet, J.A.L.; Sander, M.; Saltin, B. The Lactate Paradox Revisited in Lowlanders during Acclimatization to 4100 m and in High-Altitude Natives. J. Physiol. 2009, 587, 1117–1129. [Google Scholar] [CrossRef]
- Bartlett, M.F.; Lehnhard, R.A. The Lactate Paradox: A Review. Comp. Exerc. Physiol. 2010, 7, 1–13. [Google Scholar] [CrossRef]
- Flueck, M. Plasticity of the Muscle Proteome to Exercise at Altitude. High Alt. Med. Biol. 2009, 10, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, G.; Hauser, H.; di Prampero, P., VII. Maximal Muscular Power before and after Exposure to Chronic Hypoxia. Int. J. Sports Med. 1990, 11, S31–S34. [Google Scholar] [CrossRef] [PubMed]
- Rose, M.S.; Houston, C.S.; Fulco, C.S.; Coates, G.; Sutton, J.R.; Cymerman, A. Operation Everest. II: Nutrition and Body Composition. J. Appl. Physiol. 1988, 65, 2545–2551. [Google Scholar] [CrossRef]
- Imoberdorf, R.; Garlick, P.J.; Mcnurlan, M.A.; Casella, G.A.; Marini, J.C.; Turgay, M.; Bärtsch, P.; Ballmer, P.E. Skeletal Muscle Protein Synthesis after Active or Passive Ascent to High Altitude. Med. Sci. Sports Exerc. 2006, 38, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Rennie, M.J.; Babij, P.; Sutton, J.R.; Tonkins, W.J.; Read, W.W.; Ford, C.; Halliday, D. Effects of Acute Hypoxia on Forearm Leucine Metabolism. Prog. Clin. Biol. Res. 1983, 136, 317–323. [Google Scholar]
- Kleger, G.-R.; Turgay, M.; Imoberdorf, R.; McNurlan, M.A.; Garlick, P.J.; Ballmer, P.E. Acute Metabolic Acidosis Decreases Muscle Protein Synthesis but Not Albumin Synthesis in Humans. Am. J. Kidney Dis. 2001, 38, 1199–1207. [Google Scholar] [CrossRef]
- Brugarolas, J. Regulation of MTOR Function in Response to Hypoxia by REDD1 and the TSC1/TSC2 Tumor Suppressor Complex. Genes Dev. 2004, 18, 2893–2904. [Google Scholar] [CrossRef]
- Wing-Gaia, S. Nutritional Strategies for the Preservation of Fat Free Mass at High Altitude. Nutrients 2014, 6, 665–681. [Google Scholar] [CrossRef] [PubMed]
- Wagner, P.D. Operation Everest II. High Alt. Med. Biol. 2010, 11, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Sergi, G.; Imoscopi, A.; Sarti, S.; Perissinotto, E.; Coin, A.; Inelmen, E.M.; Meral Inelmen, E.; Zambon, S.; Busetto, L.; Seresin, C.; et al. Changes in Total Body and Limb Composition and Muscle Strength after a 6-8 Weeks Sojourn at Extreme Altitude (5000–8000 m). J. Sports Med. Phys. Fitness 2010, 50, 450–455. [Google Scholar] [PubMed]
- Fulco, C.S.; Friedlander, A.L.; Muza, S.R.; Rock, P.B.; Robinson, S.; Lammi, E.; Baker-Fulco, C.J.; Lewis, S.F.; Cymerman, A. Energy Intake Deficit and Physical Performance at Altitude. Aviat. Space Environ. Med. 2002, 73, 758–765. [Google Scholar]
- de Glisezinski, I.E.; Crampes, F.; Harant, I.E.; Havlik, P.; Gardette, B.; Jammes, Y.; Souberbielle, J.-C.; Richalet, J.-P.; Rivière, D. Decrease of Subcutaneous Adipose Tissue Lipolysis after Exposure to Hypoxia during a Simulated Ascent of Mt Everest. Pflüg. Arch. -Eur. J. Physiol. 1999, 439, 134–140. [Google Scholar] [CrossRef]
- Hochachka, P.W.; Stanley, C.; Matheson, G.O.; McKenzie, D.C.; Allen, P.S.; Parkhouse, W.S. Metabolic and Work Efficiencies during Exercise in Andean Natives. J. Appl. Physiol. 1991, 70, 1720–1730. [Google Scholar] [CrossRef]
- Katayama, K.; Goto, K.; Ishida, K.; Ogita, F. Substrate Utilization during Exercise and Recovery at Moderate Altitude. Metabolism 2010, 59, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Oliver, S.J.; Golja, P.; Macdonald, J.H. Carbohydrate Supplementation and Exercise Performance at High Altitude: A Randomized Controlled Trial. High Alt. Med. Biol. 2012, 13, 22–31. [Google Scholar] [CrossRef]
- Lundby, C.; Van Hall, G. Substrate Utilization in Sea Level Residents during Exercise in Acute Hypoxia and after 4 Weeks of Acclimatization to 4100 m. Acta Physiol. Scand. 2002, 176, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Narravula, S.; Colgan, S.P. Hypoxia-Inducible Factor 1-Mediated Inhibition of Peroxisome Proliferator-Activated Receptor α Expression during Hypoxia. J. Immunol. 2001, 166, 7543–7548. [Google Scholar] [CrossRef]
- Tschöp, M.; Strasburger, C.J.; Hartmann, G.; Biollaz, J.; Bärtsch, P. Raised Leptin Concentrations at High Altitude Associated with Loss of Appetite. Lancet 1998, 352, 1119–1120. [Google Scholar] [CrossRef]
- Wasse, L.K.; Sunderland, C.; King, J.A.; Batterham, R.L.; Stensel, D.J. Influence of Rest and Exercise at a Simulated Altitude of 4000 m on Appetite, Energy Intake, and Plasma Concentrations of Acylated Ghrelin and Peptide YY. J. Appl. Physiol. 2012, 112, 552–559. [Google Scholar] [CrossRef]
- Kayser, B. Nutrition and Energetics of Exercise at Altitude: Theory and Possible Practical Implications. Sports Med. 1994, 17, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, G.E.; Gates, J.; Fleming, S.; Brooks, G.A.; Sutton, J.R.; Reeves, J.T. Increased Energy Intake Minimizes Weight Loss in Men at High Altitude. J. Appl. Physiol. 1992, 72, 1741–1748. [Google Scholar] [CrossRef]
- Armellini, F.; Zamboni, M.; Robbi, R.; Todesco, T.; Bissoli, L.; Mino, A.; Angelini, G.; Micciolo, R.; Bosello, O. The Effects of High Altitude Trekking on Body Composition and Resting Metabolic Rate. Horm. Metab. Res. 1997, 29, 458–461. [Google Scholar] [CrossRef]
- Macdonald, J.H.; Oliver, S.J.; Hillyer, K.; Sanders, S.; Smith, Z.; Williams, C.; Yates, D.; Ginnever, H.; Scanlon, E.; Roberts, E.; et al. Body Composition at High Altitude: A Randomized Placebo-Controlled Trial of Dietary Carbohydrate Supplementation. Am. J. Clin. Nutr. 2009, 90, 1193–1202. [Google Scholar] [CrossRef]
- Reynolds, R.D.; Lickteig, J.A.; Howard, M.P.; Deuster, P.A. Intakes of High Fat and High Carbohydrate Foods by Humans Increased with Exposure to Increasing Altitude During an Expedition to Mt. Everest. J. Nutr. 1998, 128, 50–55. [Google Scholar] [CrossRef]
- Karl, J.P.; Cole, R.E.; Berryman, C.E.; Finlayson, G.; Radcliffe, P.N.; Kominsky, M.T.; Murphy, N.E.; Carbone, J.W.; Rood, J.C.; Young, A.J.; et al. Appetite Suppression and Altered Food Preferences Coincide with Changes in Appetite-Mediating Hormones During Energy Deficit at High Altitude, But Are Not Affected by Protein Intake. High Alt. Med. Biol. 2018, 19, 156–169. [Google Scholar] [CrossRef] [Green Version]
- West, J.B. The Physiologic Basis of High-Altitude Diseases. Ann. Intern. Med. 2004, 141, 789. [Google Scholar] [CrossRef] [PubMed]
- Westerterp, K.R.; Kayser, B.; Wouters, L.; Le Trong, J.L.; Richalet, J.P. Energy Balance at High Altitude of 6542 m. J. Appl. Physiol. 1994, 77, 862–866. [Google Scholar] [CrossRef] [PubMed]
- Kalson, N.S.; Hext, F.; Davies, A.J.; Chan, C.W.M.; Wright, A.D.; Imray, C.H.E.; the Birmingham Medical Research Expeditionary Society. Do Changes in Gastro-Intestinal Blood Flow Explain High-Altitude Anorexia? Eur. J. Clin. Investig. 2010, 40, 735–741. [Google Scholar] [CrossRef]
- Boyer, S.J.; Blume, F.D. Weight Loss and Changes in Body Composition at High Altitude. J. Appl. Physiol. 1984, 57, 1580–1585. [Google Scholar] [CrossRef] [PubMed]
- Tanner, D.A.; Stager, J.M. Partitioned Weight Loss and Body Composition Changes during a Mountaineering Expedition: A Field Study. Wilderness Environ. Med. 1998, 9, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Wing-Gaia, S.L.; Gershenoff, D.C.; Drummond, M.J.; Askew, E.W. Effect of Leucine Supplementation on Fat Free Mass with Prolonged Hypoxic Exposure during a 13-Day Trek to Everest Base Camp: A Double-Blind Randomized Study. Appl. Physiol. Nutr. Metab. 2014, 39, 318–323. [Google Scholar] [CrossRef]
- Golja, P.; Flander, P.; Klemenc, M.; Maver, J.; Princi, T. Carbohydrate Ingestion Improves Oxygen Delivery in Acute Hypoxia. High Alt. Med. Biol. 2008, 9, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Fulco, C.S.; Kambis, K.W.; Friedlander, A.L.; Rock, P.B.; Muza, S.R.; Cymerman, A. Carbohydrate Supplementation Improves Time-Trial Cycle Performance during Energy Deficit at 4300-m Altitude. J. Appl. Physiol. 2005, 99, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, K.E.; Berryman, C.E.; Wilson, M.A.; Luippold, A.J.; Kenefick, R.W.; Young, A.J.; Pasiakos, S.M. Effects of Carbohydrate Supplementation on Aerobic Exercise Performance during Acute High Altitude Exposure and after 22 Days of Acclimatization and Energy Deficit. J. Int. Soc. Sports Nutr. 2020, 17, 4. [Google Scholar] [CrossRef] [PubMed]
- Young, A.J.; Berryman, C.E.; Kenefick, R.W.; Derosier, A.N.; Margolis, L.M.; Wilson, M.A.; Carrigan, C.T.; Murphy, N.E.; Carbone, J.W.; Rood, J.C.; et al. Altitude Acclimatization Alleviates the Hypoxia-Induced Suppression of Exogenous Glucose Oxidation During Steady-State Aerobic Exercise. Front. Physiol. 2018, 9, 830. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A. A Step towards Personalized Sports Nutrition: Carbohydrate Intake during Exercise. Sports Med. 2014, 44, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.; Mitmesser, S. Potential Impact of Nutrition on Immune System Recovery from Heavy Exertion: A Metabolomics Perspective. Nutrients 2017, 9, 513. [Google Scholar] [CrossRef]
- Burke, L.M.; Hawley, J.A.; Wong, S.H.S.; Jeukendrup, A.E. Carbohydrates for Training and Competition. J. Sports Sci. 2011, 29, S17–S27. [Google Scholar] [CrossRef]
- Jeukendrup, A.E. Carbohydrate and Exercise Performance: The Role of Multiple Transportable Carbohydrates. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 452–457. [Google Scholar] [CrossRef]
- Viribay, A.; Arribalzaga, S.; Mielgo-Ayuso, J.; Castañeda-Babarro, A.; Seco-Calvo, J.; Urdampilleta, A. Effects of 120 g/h of Carbohydrates Intake during a Mountain Marathon on Exercise-Induced Muscle Damage in Elite Runners. Nutrients 2020, 12, 1367. [Google Scholar] [CrossRef]
- Costa, R.J.S.; Miall, A.; Khoo, A.; Rauch, C.; Snipe, R.; Camões-Costa, V.; Gibson, P. Gut-Training: The Impact of Two Weeks Repetitive Gut-Challenge during Exercise on Gastrointestinal Status, Glucose Availability, Fuel Kinetics, and Running Performance. Appl. Physiol. Nutr. Metab. 2017, 42, 547–557. [Google Scholar] [CrossRef]
- Westerterp, K.R.; Kayser, B. Body Mass Regulation at Altitude. Eur. J. Gastroenterol. Hepatol. 2006, 18, 1–3. [Google Scholar] [CrossRef]
- Tome, D. Protein, Amino Acids and the Control of Food Intake. Br. J. Nutr. 2004, 92, S27–S30. [Google Scholar] [CrossRef]
- Kayser, B.; Acheson, K.; Decombaz, J.; Fern, E.; Cerretelli, P. Protein Absorption and Energy Digestibility at High Altitude. J. Appl. Physiol. 1992, 73, 2425–2431. [Google Scholar] [CrossRef]
- Berryman, C.E.; Young, A.J.; Karl, J.P.; Kenefick, R.W.; Margolis, L.M.; Cole, R.E.; Carbone, J.W.; Lieberman, H.R.; Kim, I.; Ferrando, A.A.; et al. Severe Negative Energy Balance during 21 d at High Altitude Decreases Fat-free Mass Regardless of Dietary Protein Intake: A Randomized Controlled Trial. FASEB J. 2018, 32, 894–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, S.M.; Van Loon, L.J.C. Dietary Protein for Athletes: From Requirements to Optimum Adaptation. J. Sports Sci. 2011, 29, S29–S38. [Google Scholar] [CrossRef]
- Fujita, S.; Dreyer, H.C.; Drummond, M.J.; Glynn, E.L.; Cadenas, J.G.; Yoshizawa, F.; Volpi, E.; Rasmussen, B.B. Nutrient Signalling in the Regulation of Human Muscle Protein Synthesis. J. Physiol. 2007, 582, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Michalczyk, M.; Czuba, M.; Zydek, G.; Zając, A.; Langfort, J. Dietary Recommendations for Cyclists during Altitude Training. Nutrients 2016, 8, 377. [Google Scholar] [CrossRef] [PubMed]
- West, J.B.; Schoene, R.B.; Luks, A.; Milledge, J.S. High Altitude Medicine and Physiology, 5th ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Askew, E.W. Work at High Altitude and Oxidative Stress: Antioxidant Nutrients. Toxicology 2002, 180, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Mawson, J.T.; Braun, B.; Rock, P.B.; Moore, L.G.; Mazzeo, R.; Butterfield, G.E. Women at Altitude: Energy Requirement at 4300 m. J. Appl. Physiol. 2000, 88, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Koivisto, A.E.; Olsen, T.; Paur, I.; Paulsen, G.; Bastani, N.E.; Garthe, I.; Raastad, T.; Matthews, J.; Blomhoff, R.; Bøhn, S.K. Effects of Antioxidant-Rich Foods on Altitude-Induced Oxidative Stress and Inflammation in Elite Endurance Athletes: A Randomized Controlled Trial. PLoS ONE 2019, 14, e0217895. [Google Scholar] [CrossRef]
- Merry, T.L.; Ristow, M. Do Antioxidant Supplements Interfere with Skeletal Muscle Adaptation to Exercise Training?: Antioxidants and Skeletal Muscle Adaptation. J. Physiol. 2016, 594, 5135–5147. [Google Scholar] [CrossRef]
- Bigard, A.X.; Lavier, P.; Ullmann, L.; Legrand, H.; Douce, P.; Guezennec, C.Y. Branched-Chain Amino Acid Supplementation during Repeated Prolonged Skiing Exercises at Altitude. Int. J. Sport Nutr. 1996, 6, 295–306. [Google Scholar] [CrossRef]
- Wagenmakers, A.J. Branched-Chain Amino Acid Supplementation during Trekking at High Altitude. The Effects on Loss of Body Mass, Body Composition and Muscle Power. Eur. J. Appl. Physiol. 1993, 67, 92–95. [Google Scholar] [CrossRef] [PubMed]
Mountain Range | Altitude (m) | Duration (days) | Energy Expenditure (Kcal/day) |
---|---|---|---|
Alps [4] | 3422 | 2 | 5572.8 |
Himalaya [6] | 5900–8046 | 7 | 4636 |
Himalaya [7] | 8840 | 7–10 | 3250 |
Himalaya [8] | 8840 | 40 | 3274 climbers/5394 porters |
Cascade Range [9] | 2500–3100 | 7 | 4558 |
Mountain | Altitude 1 | Country | Mountain Range 2 | Capital of Arrival 4 |
---|---|---|---|---|
Everest (Sagarmāthā/Chomolungma) | 8848 m | Nepal/China | Himalaya | Kathmandu |
K2 | 8611 m | Pakistan/China | Karakorum | Islamabad |
Kanchenjunga | 8586 m | Nepal/India | Himalaya | Kathmandu |
Lhotse | 8516 m | Nepal/China | Himalaya | Kathmandu |
Makalu | 8463 m | Nepal/China | Himalaya | Kathmandu |
Cho Oyu | 8201 m | Nepal/China | Himalaya | Kathmandu |
Dhaulagiri | 8167 m | Nepal | Himalaya | Kathmandu |
Manaslu (Kutang) | 8163 m | Nepal | Himalaya | Kathmandu |
Nanga Parbat (Diamer) | 8125 m | Pakistan | Himalaya 3 | Islamabad |
Annapurna | 8091 m | Nepal | Himalaya | Kathmandu |
Gasherbrum I/Hidden Peak | 8068 m | Pakistan/China | Karakorum | Islamabad |
Broad Peak | 8047 m | Pakistan/China | Karakorum | Islamabad |
Gasherbrum II/K4 | 8035 m | Pakistan/China | Karakorum | Islamabad |
Shishapangma (Gosainthān) | 8027 m | China | Himalaya | Kathmandu |
System | Acute Exposure | Chronic Exposure | Effects on Performance | Strategies |
---|---|---|---|---|
Pulmonary | ↑ ventilation ↓ arterial oxygen saturation | Hypoventilation ↑ lung capillary blood volume pulmonary hypertension | Increased cost of breathing. Irritative cough at altitude due to dehydration of mucosa is nearly universal. | Gentle acclimatisation. Protecting face with masks that maintain humidity in the bronchial tract. |
Cardiovascular | Transient ↑ blood pressure ↑ heart rate ↑ cardiac output, | ↓ systolic & diastolic pressure, | Decrease in physical performance. Difficulty to measure the intensity of exercise by using the heart rate. | Optimal strategy of acclimatisation. |
Hematological | ↑ haemoglobin concentration ↓ plasma volume | Polycythaemia ↑ blood O2 carrying capacity | Helps performance at altitude, but needs time. Can be a cause of thrombosis among climbers. | Leave enough time for altitude exposure so erythropoiesis can begin. Hydrate and avoid long periods of inactivity when there is bad weather to prevent thrombosis |
Renal | ↑ bicarbonate excretion hypocapnic respiratory alkalosis ↑diuresis | Hyperuricemia microalbuminuria ↓ renal plasma flow ↑ filtration fraction | Partial compensation of the effects of hypoxia. Some drugs as acetazolamide can enhance this physiological response. Dehydration can occur. | Optimal hydration strategies and urine colour control. |
Metabolic | ↓ use of exogenous carbohydrate ↑ use endogenous carbohydrate ↓ use of fat | ↑ glycolytic enzymes ↓ oxidative phosphorylation ↓ blood lactate ↑ buffer capacity ↑ carbohydrate as fuel | Not known, but theoretically more efficient in terms of oxygen cost for metabolism. | Provide enough carbohydrates in the diet. |
Neurological | ↓ synthesis of neurotransmitters, mood change, ↓ motor/sensory functions | Cerebral hypoxia, biochemical dysfunction ↓ sleep quality ↑ mood disorders | Strong impairment of motivation, lucidity, and quality of sleep. | Avoid sedative medication to prevent cerebral hypoxia while sleeping. Try to sleep at lower altitude to recover. |
Expedition Phase | Principles | Recommendations | Logistics |
---|---|---|---|
Trekking and moderate altitude acclimatisation |
|
|
|
Trekking and moderate altitude training |
|
|
|
Base camp |
|
|
|
High-altitude camps |
|
|
|
Summit day |
|
|
|
Expedition Phase | Carbohydrate Sources | Protein Sources | Practical Aspects |
---|---|---|---|
Base camp | Pasta, rice, quinoa, polenta, potatoes, sliced bread, chapatis, crepes, porridge, muesli/granola, chocolate (solid or soluble), jam, honey, dried fruits (dates, figs, apricots). | Eggs, meat (chicken, yak, goat), legumes, cheese, sausage, milk powder, ham, canned fish, nuts, textured soya, silken tofu. |
|
Mountain activities and training during expedition. | Chapati or sliced bread, sports bars, dried fruits, mashed salty potatoes, sandwiches or wraps, rice or polenta cakes, chocolate. Carbohydrate and electrolyte-enriched beverage. | Eggs, ham, cheese in small amounts, nuts. |
|
High-altitude camps | Easy to cook sources: couscous, polenta, instant potato pure, instant soup. Figs, dates, chocolate (better if soluble), jam, honey, cereal baby food, sliced bread, cookies. Muesli/granola. Lyophilised or dehydrated food. | Ham, sausages, cheese, previously boiled eggs, canned tuna or sardines. Milk powder. Lyophilised or dehydrated food. |
|
Summit | Sports gels. Gummy bars. Chocolate. Carbohydrate–electrolyte beverage. Rehydration solutions. |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viscor, G.; Corominas, J.; Carceller, A. Nutrition and Hydration for High-Altitude Alpinism: A Narrative Review. Int. J. Environ. Res. Public Health 2023, 20, 3186. https://doi.org/10.3390/ijerph20043186
Viscor G, Corominas J, Carceller A. Nutrition and Hydration for High-Altitude Alpinism: A Narrative Review. International Journal of Environmental Research and Public Health. 2023; 20(4):3186. https://doi.org/10.3390/ijerph20043186
Chicago/Turabian StyleViscor, Ginés, Jordi Corominas, and Anna Carceller. 2023. "Nutrition and Hydration for High-Altitude Alpinism: A Narrative Review" International Journal of Environmental Research and Public Health 20, no. 4: 3186. https://doi.org/10.3390/ijerph20043186
APA StyleViscor, G., Corominas, J., & Carceller, A. (2023). Nutrition and Hydration for High-Altitude Alpinism: A Narrative Review. International Journal of Environmental Research and Public Health, 20(4), 3186. https://doi.org/10.3390/ijerph20043186