Effects of Additional Plyometric Training on the Jump Performance of Elite Male Handball Players: A Systematic Review
Abstract
:1. Introduction
- -
- The main objective was to review the available literature systematically and to determine if there are any, and if so, what are the effects of additional plyometric training on handball players’ vertical jump ability.
- -
- The objective was to determine whether this type of additional plyometric training improves the performance of handball players and, if so, in what way.
- -
- Finally, the authors opted for a review study that could be useful when creating training plans and programs for handball players in the future.
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Quality Assessment
2.4. Data Extraction
2.5. Studies Selected
2.6. Risk of Bias Assessment or Quality Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luig, P.; Krutsch, W.; Nerlich, M.; Henke, T.; Klein, C.; Bloch, H.; Platen, P.; Achenbach, L. Increased injury rates after the restructure of Germany’s national second league of team handball. Knee Surg. Sport. Traumatol. Arthrosc. 2018, 26, 1884–1891. [Google Scholar] [CrossRef] [PubMed]
- Meier, H.E.; Schreyer, D.; Jetzke, M. German Handball TV Demand: Did It Pay for The Handball-Bundesliga to Move from Free to Pay TV? Eur. Sport Manag. Q. 2019, 20, 618–635. [Google Scholar] [CrossRef]
- Kruger, K.; Pilat, C.; Uckert, K.; Frech, T.; Mooren, F.C. Physical performance profile of handball players is related to playing position and playing class. J. Strength Cond. Res. 2014, 28, 117–125. [Google Scholar] [CrossRef]
- Buchheit, M.; Millet, G.P.; Parisy, A.; Pourchez, S.; Laursen, P.B.; Ahmaidi, S. Supramaximal training and postexercise parasympathetic reactivation in adolescents. Med. Sci. Sports Exerc. 2008, 40, 362–371. [Google Scholar] [CrossRef] [Green Version]
- Massuca, L.M.; Fragoso, I.; Teles, J. Attributes of top elite team-handball players. J. Strength Cond. Res. 2014, 28, 178–186. [Google Scholar] [CrossRef]
- Gorostiaga, E.M.; Granados, C.; Ibanez, J.; Gonzalez-Badillo, J.J.; Izquierdo, M. Effects of an entire season on physical fitness changes in elite male handball players. Med. Sci. Sports Exerc. 2006, 38, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Jakšić, D.; Trbojević Jocić, J.; Maričič, S.; Miçoogullari, B.; Sekulić, D.; Foretić, N.; Bianco, A.; Drid, P. Mental skills in Serbian handball players: In relation to the position and gender of players. Front. Psychol. 2022, 13, 960201. [Google Scholar] [CrossRef] [PubMed]
- Keller, S.; Koob, A.; Corak, D.; von Schoning, V.; Born, D.P. How to improve change-of-direction speed in junior team sport athletes—Horizontal, vertical, maximal, or explosive strength training? J. Strength Cond. Res. 2018, 34, 473–482. [Google Scholar] [CrossRef]
- Dello Iacono, A.; Ardigo, L.P.; Meckel, Y.; Padulo, J. Effect of small-sided games and repeated shuffle sprint training on physical performance in elite handball players. J. Strength Cond. Res. 2016, 30, 830–840. [Google Scholar] [CrossRef]
- Dello Iacono, A.; Eliakim, A.; Meckel, Y. Improving fitness of elite handball players: Small-sided games vs. high-intensity intermittent training. J. Strength Cond. Res. 2015, 29, 835–843. [Google Scholar] [CrossRef]
- Hermassi, S.; Chelly, M.S.; Fathloun, M.; Shephard, R.J. The effect of heavy- vs. moderate-load training on the development of strength, power, and throwing ball velocity in male handball players. J. Strength Cond. Res. 2010, 24, 2408–2418. [Google Scholar] [CrossRef]
- Hermassi, S.; Chelly, M.S.; Tabka, Z.; Shephard, R.J.; Chamari, K. Effects of 8-week in-season upper and lower limb heavy resistance training on the peak power, throwing velocity, and sprint performance of elite male handball players. J. Strength Cond. Res. 2011, 25, 2424–2433. [Google Scholar] [CrossRef]
- Herrero, J.A.; Izquierdo, M.; Maffiuletti, H.A.; García-López, J. Electromyostimulation and plyometric training effects on jumping and sprint time. Int. J. Sports Med. 2006, 27, 533–539. [Google Scholar] [CrossRef] [Green Version]
- Hermassi, S.; Gabbett, T.J.; Ingebrigtsen, J.; van den Tillaar, R.; Chelly, M.S.; Chamari, K. Effects of a short-term in-season plyometric training program on repeated sprint ability, leg power and jump performance of elite handball players. Int. J. Sports Sci. Coach. 2014, 9, 1205–1215. [Google Scholar] [CrossRef]
- Ingebrigtsen, J.; Jeffreys, I.; Rodahl, S. Physical characteristics and abilities of junior male and female handball players. J. Strength Cond. Res. 2013, 27, 302–309. [Google Scholar] [CrossRef]
- Wagner, H.; Finkenzeller, T.; Wurth, S.; von Duvillard, S. Individual and team performance in team-handball: A review. J. Sports Sci. Med. 2014, 13, 808–816. [Google Scholar]
- Wagner, H.; Buchecker, M.; Von Duvillard, S.; Müller, E. Kinematic description of elite vs. lov level players in team-handball jump throw. J. Sports Sci. Med. 2010, 9, 15–23. [Google Scholar]
- Granados, C.; Izquierdo, M.; Ibañez, J.; Bonnabau, H.; Gorostiaga, E. Differences in physical fitness and throwing velocity among elite and amateur female handball players. Int. J. Sports Med. 2007, 28, 860–867. [Google Scholar] [CrossRef] [Green Version]
- Chelly, M.S.; Hermassi, S.; Aouadi, R.; Shephard, R.J. Effects of 8-week in-season plyometric training on upper and lower limb performance of elite adolescent handball players. J. Strength Cond. Res. 2014, 28, 1401–1410. [Google Scholar] [CrossRef]
- Marković, G.; Jukić, I.; Milanović, D.; Metikoš, D. Effects of sprint and plyometric training on muscle function and athletic performance. J. Strength Cond. Res. 2007, 21, 543–549. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Gallardo, F.; Henriquez-Olguin, C.; Meylan, C.M.; Martinez, C.; Alvarez, C.; Caniuqueo, A.; Cadore, E.L.; Izquierdo, M. Effect of vertical, horizontal, and combined plyometric training on explosive, balance, and endurance performance of young soccer players. J. Strength Cond. Res. 2015, 29, 1784–1795. [Google Scholar] [CrossRef] [Green Version]
- De Villarreal, E.S.; Requena, B.; Cronin, J.B. The effects of plyometric training on sprint performance: A meta analysis. J. Strength Cond. Res. 2012, 26, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Alvarez, C.; Garcia-Hermoso, A.; Ramirez-Velez, R.; Gentil, P.; Asadi, A.; Chaabene, H.; Moran, J.; Meylan, C.; García-De-Alcaraz, A.; et al. Methodological characteristics and future directions for plyometric jump training research: A scoping review. Sports Med. 2018, 48, 1059–1081. [Google Scholar] [CrossRef]
- Haff, G.G.; Triplett, T.N. Essentials of Strength Training and Conditioning, 4th ed.; Human Kinetics: Champaign, IL, USA, 2016. [Google Scholar]
- Bishop, D.; Spencer, M.R. Determinants of repeated-sprint ability in well-trained team-sport athletes and endurance-trained. J. Sport. Med. Phys. Fit. 2004, 44, 1–7. [Google Scholar]
- De Villarreal, E.; Kellis, E.; Kraemer, W.J.; Izquierdo, M. Determining variables of plyometric training for improving vertical jump height performance: A meta-analysis. J. Strength Cond. Res. 2009, 23, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Markovic, G. Does plyometric training improve vertical jump height? A meta-analytical review. Br. J. Sport. Med. 2007, 41, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Hansen, D.; Kennelly, S. Plyometric Anatomy; Human Kinetics: Champaign, IL, USA, 2017. [Google Scholar]
- Di Giminiani, R.; Petricola, S. The power output-drop height relationship to determine the optimal dropping intensity and to monitor the training intervention. J. Strength Cond. Res. 2016, 30, 117–125. [Google Scholar] [CrossRef]
- Marshall, B.M.; Moran, K.A. Which drop jump technique is most effective at enhancing countermovement jump ability, “countermovement” drop jump or “bounce” drop jump? J. Sport. Sci. 2013, 31, 1368–1374. [Google Scholar] [CrossRef]
- Ramírez-Campillo, R.; Vergara-Pedreros, M.; Henríquez-Olguín, C.; Martínez-Salazar, C.; Alvarez, C.; Nakamura, F.Y.; De la Fuente, C.I.; Caniuqueo, A.; Alonso-Martinez, A.M.; Izquierdo, M. Effects of plyometric training on maximal-intensity exercise and endurance in male. J. Sport. Sci. 2015, 34, 687–693. [Google Scholar] [CrossRef]
- Slimani, M.; Chamari, K.; Miarka, B.; Del Vecchio, F.; Chéour, F. Effects of plyometric training on physical fitness in team sport athletes: A systematic review. J. Hum. Kinet. 2016, 53, 231–247. [Google Scholar] [CrossRef] [Green Version]
- Pieper, H.G.; Muschol, M. Sportverletzungen und uberlastungsschaden im handball-sport. Sport Orthop. Traumatol. 2007, 23, 4–10. [Google Scholar] [CrossRef]
- Achenbach, L.; Krutsch, V.; Weber, J.; Nerlich, M.; Luig, P.; Loose, O.; Angele, P.; Krutsch, W. Neuromuscular exercies prevent severe knee injury in adolescent team handball players. Knee Surg. Sport. Traumatol. Arthrosc. 2018, 26, 1901–1908. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Marques, M.C. In-season resistance training and detraining in professional team handball players. J. Strength Cond. Res. 2006, 20, 563–571. [Google Scholar] [CrossRef]
- Matavulj, D.; Kukolj, M.; Ugarkovic, D.; Tihanyi, J.; Jaric, S. Effects of plyometric training on jumping performance in junior basketball players. J. Sport. Med. Phys. Fit. 2001, 41, 159–164. [Google Scholar]
- Giroto, N.; Hespanhol Junior, L.; Gomes, M.; Lopes, A. Incidence and risk factors of injuries in Brazilian elite handball players: A prospective cohort study. Scand. J. Med. Sci. Sport. 2015, 27, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Rafnsson, E.T.; Valdimarsson, O.; Sveinsson, T.; Arnason, A. Injury pattern in icelandic elite male handball players. Clin. J. Sport Med. 2017, 29, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Vila, H.; Barreiro, A.; Ayan, C.; Antunez, A.; Ferragut, C. The most common handball injuries: A systematic review. Int. J. Environ. Res. Public Health 2022, 19, 10688. [Google Scholar] [CrossRef]
- Falch, H.N.; Haugen, M.E.; Kristiansen, E.L.; van den Tillaar, R. Effect of strength vs. plyometric training upon change of direction performance in young female handball players. Int. J. Environ. Res. Public Health 2022, 19, 6946. [Google Scholar] [CrossRef]
- Komi, P. Physiological and biomechanical correlates of muscle function: Effects of muscle strukture and stretch-shortening cycle on force and speed. Exerc. Sport. Sci. Rev. 1984, 12, 81–121. [Google Scholar] [CrossRef]
- Markovic, G.; Mikulic, P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010, 40, 859–895. [Google Scholar] [CrossRef] [PubMed]
- Povoas, S.C.; Seabra, A.F.; Ascensao, A.A.; Magalhaes, J.; Soares, J.M.; Rebelo, A.N. Physical and physiological demands of elite team handball. J. Strength Cond. Res. 2012, 26, 3365–3375. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 62, e1–e34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maher, C.; Sherrington, C.; Herbert, R.; Moseley, A.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Morton, N. The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. Aust. J. Physiother. 2009, 55, 129–133. [Google Scholar] [CrossRef]
- Hammami, M.; Gaamouri, N.; Ramirez-Campillo, R.; Shephard, R.; Bragazzi, N.; Chelly, M.; Knechtle, B.; Gaied, S. Effects of high-intensity interval training and plyometric exercise on the physical fitness of junior male handball players. Eur. Rev. Med. Pharmacol. 2021, 25, 7380–7389. [Google Scholar] [CrossRef]
- Mazurek, K.; Zmijewski, P.; Makaruk, H.; Mróz, A.; Czajkowska, A.; Witek, K.; Bodasiński, S.; Lipińska, P. Effects of short-term plyometric training on physical performance in male handball players. J. Hum. Kinet. 2018, 63, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Aloui, G.; Hermassi, S.; Hammami, M.; Cherni, Y.; Gaamouri, N.; Shephard, R.; Tillaar, R.V.D.; Chelly, M.S. Effects of elastic band based plyometric exercise on explosive muscular performance and change of direction abilities of male team handball players. Front. Physiol. 2020, 11, 604983. [Google Scholar] [CrossRef]
- Spieszny, M.; Zubik, M. Modification of strength training programs in handball players and its influence on power during the competitive period. J. Hum. Kinet. 2018, 63, 149–160. [Google Scholar] [CrossRef] [Green Version]
- Castro-Piñero, J.; Ortega, F.B.; Artero, E.G.; Girela-Rejón, M.J.; Mora, J.; Sjöström, M.; Ruiz, J.R. Assessing muscular strength in youth: Usefulness of standing long jump as a general index of muscular fitness. J. Strength Cond. Res. 2010, 24, 1810–1817. [Google Scholar] [CrossRef]
- Sanchez-Sixto, A.; Harrison, A.J.; Floria, P. Effects of plyometric vs. combined plyometric training on vertical jump biomechanics in female basketball players. J. Hum. Kinet. 2021, 77, 25–35. [Google Scholar] [CrossRef]
- Čaprić, I.; Stanković, M.; Manić, M.; Preljević, A.; Špirtović, O.; Đorđević, D.; Spehnjak, M.; Damjan, B.; Sporiš, G.; Trajković, N. Effects of plyometric training on agility in male soccer players—A systematic review. J. Mens Health 2022, 18, 147. [Google Scholar] [CrossRef]
- Trajković, N.; Milanović, Z.; Sporis, G.; Milić, V.; Stanković, R. The effects of 6 weeks of pre-season skill-based conditioning on physical performance in male volleyball players. J. Strength Cond. Res. 2012, 26, 1475–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, C.; Marques, A.; Oliveira, J.; Morais, F. Evaluation of Load Intensity (60 vs. 90% 1HD) in Plyometric Training Programs. In Proceedings of the of International Conference on Weightlifting and Strength Training; Conference Book; Gummerus Printing: Helsinki, Finland, 1998; pp. 307–308. [Google Scholar]
- Arntz, F.; Mkaouer, B.; Markov, A.; Schoenfeld, B.J.; Moran, J.; Ramirez-Campillo, R.; Behrens, M.; Baumert, P.; Erskine, R.M.; Hauser, L.; et al. Effect of plyometric jump training on skeletal muscle hyperthrophy in healthy individuals: A systematic review with multilevel meta-analysis. Front. Physiol. 2022, 13, 888464. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, V.C.; de Salles, B.F.; Trajano, G.S. Volume for muscle hyperthrophy and health outcomes: The most effective variable in resistance training. Sports Med. 2018, 48, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The importance of muscular strength: Training considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef] [PubMed]
- Prieske, O.; Chaabene, H.; Puta, C.; Behm, D.G.; Büsch, D.; Granacher, U. Effects of drop height on jump performance in male and female elite adolescent handball players. Int. J. Sport. Physiol. Perform. 2019, 14, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Aboodarda, S.J.; Byrne, J.M.; Samson, M.; Wilson, B.D.; Mokhtar, A.H.; Behm, D.G. Does performing drop jumps with additional eccentric loading improve jump performance? J. Strength Cond. Res. 2014, 28, 2314–2323. [Google Scholar] [CrossRef]
- Horita, T.; Komi, P.V.; Nicol, C.; Kyrolainen, H. Stretch shortening cycle fatigue: Interactions among joint stiness, reflex, and muscle mechanical performance in the drop jump. Eur. J. Appl. Phyisiol. 1996, 73, 393–403. [Google Scholar] [CrossRef]
- Andrade, D.C.; Manzo, O.; Beltran, A.R.; Alvarez, C.; Del Rio, R.; Toledo, C.; Moran, J.; Ramirez-Campillo, R. Kinematic and neuromuscular measures of intensity during plyometric jumps. J. Strength Cond. Res. 2017, 34, 3395–3402. [Google Scholar] [CrossRef] [Green Version]
- Guan, S.; Lin, N.; Yin, Y.; Liu, H.; Liu, L.; Qi, L. The effects of inter-set recovery time on explosive power, electromyography activity, and tissue oxygenation during plyometric training. Sensors 2021, 21, 3015. [Google Scholar] [CrossRef]
- Monti, E.; Franchi, M.V.; Badiali, F.; Quinlan, J.I.; Longo, S.; Narici, M.V. The time-course of changes in muscle mass, architecture and power during 6 weeks of plyometric training. Front. Physiol. 2020, 11, 946. [Google Scholar] [CrossRef]
- Vissing, K.; Brink, M.; Lønbro, S.; Sørensen, H.; Overgaard, K.; Danborg, K.; Mortensen, J.; Elstrøm, O.; Rosenhøj, N.; Ringgaard, S.; et al. Muscle adaptations to plyometric vs. resistance training in untrained young men. J. Strength Cond. Res. 2008, 22, 1799–1810. [Google Scholar] [CrossRef] [PubMed]
- Negra, Y.; Chaabene, H.; Sammoud, S.; Prieske, O.; Moran, J.; Ramirez-Campillo, R.; Nejmaoui, A.; Granacher, U. The increased effectiveness of loaded versus unloaded plyometric-jump training in improving muscle power, speed, change-of-direction, and kicking-distance performance in prepubertal male soccer players. Int. J. Sport. Physiol Perform. 2019, 15, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Granacher, U.; Prieske, O.; Majewski, M.; Busch, D.; Muehlbauer, T. The role of instability with plyometric training in sub-elite adolescent soccer players. Int. J. Sport. Med. 2015, 36, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Arazi, H.; Mohammadi, M.; Asadi, A. Muscular adaptations to depth jump plyometric training: Comparison of sand vs. land surface. Interv. Med. Appl. Sci. 2014, 6, 125–130. [Google Scholar] [CrossRef] [PubMed]
PICO Components | Review Article Components |
---|---|
Population | Elite male or national-level handball players |
Intervention | Plyometric training: additional or combination |
Comparison | Control group: without plyometric intervention |
Outcome | Jump performance: especially jump height |
Study | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Score |
---|---|---|---|---|---|---|---|---|---|---|---|
Chelly et al., 2014 [19] | + | - | + | x | x | x | + | + | + | + | 6 |
Hermassi et al., 2014 [14] | + | - | + | x | x | x | - | + | + | + | 5 |
Hammami et al., 2021 [47] | + | - | + | x | x | x | + | + | + | - | 5 |
Mazurek et al., 2018 [48] | + | - | + | x | x | x | + | + | + | - | 5 |
Aloui et al., 2020 [49] | + | - | + | x | x | x | - | + | + | + | 5 |
Spieszny and Zubik, 2018 [50] | - | - | + | x | x | x | - | - | + | - | 2 |
Authors | Sample and Handball Training Experience | Weekly Training Load | Experimental Training Frequency | Type of Training | Measurements/Testing Protocols | Outcomes | EG | CG |
---|---|---|---|---|---|---|---|---|
Chelly et al., 2014 [19] | 23 elite male hp 17.2 ± 0.5 years EG = 12 CG = 11 HTE = 7.2 ± 1.1 years | Five training sessions lasting 90 min and one official game. | Two times per week for 2 months. | CG, handball training and strength sessions; EG, handball plus plyometric training (push-ups and hurdle and drop jumps). | - Anthropometry. - Force–velocity test for the upper and lower limbs. - Jump performance. - Handball throwing. - Sprint running. | - Thigh and leg muscle volume. | ⇧* | ⬄ |
- Maximal anaerobic power. | ⇧* | ⬄ | ||||||
- SJ height, power, and force. | ⇧* | ⬄ | ||||||
- CMJ height and force. | ⇧* | ⬄ | ||||||
- Jump velocities. | ⬄ | ⬄ | ||||||
- Thrown ball velocity. | ⇧* | ⬄ | ||||||
- First-step velocity, 5 m velocity, and maximal velocity. | ⇧* | ⬄ | ||||||
Hermassi et al., 2014 [14] | 24 elite male hp 20.03 ± 0.3 years EG = 14 CG = 10 THE = 12.4 ± 2.1 years | Six training sessions lasting 90 min and one official game. | Two times per week for 2 months. | CG, only handball training; EG, handball plus plyometric training (hurdle and drop jumps 5–10 sets × 10 repetitions). | - RSA 6 x (2 × 15 m) shuttle sprints. - Jump performance. - Leg power (7-second all-out cycling test). | - RSAbest. | ⇧* | ⬄ |
- RSATT. | ⇧* | ⬄ | ||||||
- RSAdec. | ⇧* | ⇧* | ||||||
- SJ and CMJ height. | ⇧* | ⇧ | ||||||
- Peak and relative peak power. | ⇧* | ⬄ | ||||||
Hammami et al., 2021 [47] | 32 male hp EG = 17 (16.6 ± 0.5 years) CG = 15 (16.5 ± 0.8 years) the > 5 years | Five training sessions lasting 90–120 min and one official game. | Two times per week for 2 months. | CG, standard handball training program (SHTP); EG, replaced a part of SHTP by HIIT with plyometric exercise twice per week. | - 30 m sprint test (5 m, 10 m, 20 m, and 30 m). - Modified agility T-test (T-half test). - Illinois modified test. - Jump performance - Repeated sprint T-test. - 20-meter shuttle run test. | - Sprint test (5 m, 10 m, 20 m, and 30 m). | ⇧* | ⬄ |
- Agility test best time. | ⇧* | ⬄ | ||||||
- Best time. | ⇧* | ⬄ | ||||||
- SJ and CMJ height. | ⇧* | ⇧* | ||||||
- The best time, average time, and total time. | ⇧* | ⇧* | ||||||
- AMS and PMOI. | ⇧* | ⬄ | ||||||
Mazurek et al., 2018 [48] | PLYOmetric group; n = 14 Standard jump training group CG = 12 20.2 ± 2.2 years HTE = 8.4 ± 6.3 years | Eight training sessions including five conditioning, two resistance training, and three sport-specific. | Three times per week for five pre-season weeks. | - Hurdles jumps 2 × 10. - Vertical jumps 3 × 8. - Stride jumps 3 × 8. - Double leg 5 × 5. - Drop jumps 3 × 6 (20-40-60 cm). - Drop + hurdle 3 × 6 (20 cm + 76 cm; 40 cm + 76 cm; 60 cm + 76 cm). | - Anthropometry. - Repeated sprint ability. - Jumping ability. - Maximal oxygen uptake. - Aerobic power at the anaerobic threshold. | - Fat mass (%). | ⇩ | ⇩ |
- Prsa max (W) and (W/kg). | ⇧ | ⇧ | ||||||
- SJ and CMJ height. | ⇩ | ⇩ | ||||||
- Drop jump height. | ⇧ | ⇩ | ||||||
- VO2max. | ⬄ | ⬄ | ||||||
- PAT. | ⇧ | ⇧ | ||||||
Aloui et al., 2020 [49] | CG = 15 (18.1 ± 0.5 years) EG = 14 (17.7 ± 0.3 years) HTE = 6.3 ± 0.7 years | Five training sessions lasting 90 min and one official game. | Two times per week for 8 weeks. | - EG replaced the part of technical-tactical training with plyometric training with elastic bands. - CG maintains a standard training regimen. | - Muscle volumes. - Force–velocity test (cycle-ergometer). - Sprint performance. - Repeated COD. - Jump performance. - 1-RM strength. | - Leg and thigh muscle volume. | ⇧* | ⇧* |
- Body fat %. | ⇧ | ⬄ | ||||||
- Absolute and relative muscle power. | ⇧* | ⇧ | ||||||
- Sprint. | ⇧* | ⇧ | ||||||
- Repeated COD best, average, and total time. | ⇧* | ⇧* | ||||||
- SJ and CMJ height. | ⇧* | ⇧ | ||||||
- Back-half squat. | ⇧* | ⇧ | ||||||
Spieszny and Zubik, 2018 [50] | 28 professional hp EG plyo = 8 (21.1 ± 2.17 years) CG = 12 (23 ± 3.05 years) EG strength = 8 (23.1 ± 2.53 years) HTE > 6 years | Five training sessions including three handball-specific and two resistance training lasting 30–45 min. | Two times per week for 4 months (15–16 weeks; the beginning of September to the end of December 2014). | EG plyo, two additional plyometric training twice a week (medicine ball throws, jumping over obstacles, hurdles, drop jumps, skipping, and multi-jumps (3–4 sets 5–10 repetitions)); EG strength, additional strength training CG maintains a standard training regimen. | - Anthropometry. - Jump performance. - 10 s trial on cycle-ergometer. - Ball-throwing velocity. | - Body weight. | ⬄ | ⬄ |
- CMJ height and maximal power. | ⇧* | ⇧ | ||||||
- SJ height. | ⇧* | ⇧ | ||||||
- Maximum and relative power. | ⇧* | ⇧* | ||||||
- Flight speed of the thrown ball. | ⇧* | ⇧* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakšić, D.; Maričić, S.; Maksimović, N.; Bianco, A.; Sekulić, D.; Foretić, N.; Drid, P. Effects of Additional Plyometric Training on the Jump Performance of Elite Male Handball Players: A Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 2475. https://doi.org/10.3390/ijerph20032475
Jakšić D, Maričić S, Maksimović N, Bianco A, Sekulić D, Foretić N, Drid P. Effects of Additional Plyometric Training on the Jump Performance of Elite Male Handball Players: A Systematic Review. International Journal of Environmental Research and Public Health. 2023; 20(3):2475. https://doi.org/10.3390/ijerph20032475
Chicago/Turabian StyleJakšić, Damjan, Stefan Maričić, Nemanja Maksimović, Antonino Bianco, Damir Sekulić, Nikola Foretić, and Patrik Drid. 2023. "Effects of Additional Plyometric Training on the Jump Performance of Elite Male Handball Players: A Systematic Review" International Journal of Environmental Research and Public Health 20, no. 3: 2475. https://doi.org/10.3390/ijerph20032475
APA StyleJakšić, D., Maričić, S., Maksimović, N., Bianco, A., Sekulić, D., Foretić, N., & Drid, P. (2023). Effects of Additional Plyometric Training on the Jump Performance of Elite Male Handball Players: A Systematic Review. International Journal of Environmental Research and Public Health, 20(3), 2475. https://doi.org/10.3390/ijerph20032475