Moderate–Vigorous Physical Activity, Screen Time and Sleep Time Profiles: A Cluster Analysis in Spanish Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Subjects
2.2. Instrument and Variables
2.3. Procedure
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strain, T.; Brage, S.; Sharp, S.J.; Richards, J.; Tainio, M.; Ding, D.; Benichou, J.; Kelly, P. Use of the prevented fraction for the population to determine deaths averted by existing prevalence of physical activity: A descriptive study. Lancet Glob. Health 2020, 8, e920–e930. [Google Scholar] [CrossRef] [PubMed]
- Martinez, R.; Lloyd-Sherlock, P.; Soliz, P.; Ebrahim, S.; Vega, E.; Ordunez, P.; McKee, M. Trends in premature avertable mortality from non-communicable diseases for 195 countries and territories, 1990–2017: A population-based study. Lancet Glob. Health 2020, 8, e523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, D.; Lawson, K.D.; Kolbe-Alexander, T.L.; Finkelstein, E.A.; Katzmarzyk, P.T.; van Mechelen, W.; Pratt, M.; Lancet Physical Activity Series 2 Executive Committee. The economic burden of physical inactivity: A global analysis of major non-communicable diseases. Lancet 2016, 24, 1311–1324. [Google Scholar] [CrossRef] [PubMed]
- Australian Institute of Health and Welfare. Australia’s Health 2018; AIHW: Canberra, Australia, 2018.
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/es/news-room/factsheets/detail/obesity-and-overweight (accessed on 20 November 2022).
- Kumar, S.; Kelly, A.S. Review of Childhood Obesity: From Epidemiology, Etiology, and Comorbidities to Clinical Assessment and Treatment. Mayo Clin. Proc. 2017, 92, 251–265. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, B.; Jain, V. Obesity in Children: Definition, Etiology and Approach. Indian J. Pediatr. 2018, 85, 463–471. [Google Scholar] [CrossRef]
- Warburton, D.E.R.; Bredin, S.S.D. Health benefits of physical activity: A systematic review of current systematic reviews. Curr. Opin. Cardiol. 2017, 32, 541–556. [Google Scholar] [CrossRef]
- Rodriguez-Ayllon, M.; Cadenas-Sánchez, C.; Estévez-López, F.; Muñoz, N.E.; Mora-Gonzalez, J.; Migueles, J.H.; Molina-García, P.; Henriksson, H.; Mena-Molina, A.; Martínez-Vizcaíno, V.; et al. Role of Physical Activity and Sedentary Behavior in the Mental Health of Preschoolers, Children and Adolescents: A Systematic Review and Meta-Analysis. Sports Med. 2019, 49, 1383–1410. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines on Physical Activity and Sedentary Behaviour; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Ruiz, I.M.; Martín-Matillas, M.; Delgado-Fernández, M.; Delgado-Rico, E.; Campoy, C.; Verdejo-García, A. Effect of increased physical activity on physical fitness in an overweight and/or obese group of adolescents. SPORT TK Rev. Euroam. Cienc. Deporte 2021, 10, 17–28. [Google Scholar]
- Biddle, S.J.H.; Ciaccione, S.; Thomas, G.; Vergeer, I. Physical activity and mental health in children and adolescents: An updated review of reviews and an analysis of causality. Psychol. Sport Exerc. 2019, 42, 146–155. [Google Scholar] [CrossRef]
- Sanz-Martín, D.; Melguizo-Ibáñez, E.; Ruiz-Tendero, G.; Ubago-Jiménez, J.L. An Explanatory Model of the Relationships between Physical Activity, Social Support and Screen Time among Adolescents. Int. J. Environ. Res. Public Health 2022, 19, 7463. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans, 2nd ed.; Department of Health and Human Services: Washington, DC, USA, 2018.
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1.6 million participants. Lancet Child Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef]
- Steene-Johannessen, J.; Herman, B.; Eirik, K.; Kolle, E.; Northstone, K.; Christian, N.; Grøntved, A.; Wedderkopp, N.; Kriemler, S.; Page, A.S.; et al. Variations in accelerometry measured physical activity and sedentary time across Europe—Harmonized analyses of 47,497 children and adolescents. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos-Labrador, R.M. Measurement by accelerometry of physical activity levels in a sample of Spanish adolescents. Rev. Salud Pública 2019, 21, 485–491. [Google Scholar]
- Sanz-Martín, D. Levels of Physical Activity and Perceived Social Support of Adolescent Students in the Province of Soria. Ph.D. Thesis, Complutense University of Madrid, Madrid, Spain, 2018. [Google Scholar]
- Castañeda-Vázquez, C.; Corral-Pernía, J.A.; Chacón-Borrego, F. Influencia de la actividad física sobre la capacidad aeróbica en escolares españoles. J. Sport Health Res. 2020, 12, 31–38. [Google Scholar]
- Craggs, C.; van Sluijs, E.M.F.; Corder, K.; Panter, J.R.; Jones, A.P.; Griffin, S.J. Do children’s individual correlates of physical activity differ by home setting? Health Place 2011, 17, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.F.; Prochaska, J.J.; Taylor, W.C. A review of correlates of physical activity of children and adolescents. Med. Sci. Sports Exerc. 2000, 32, 963–975. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Adams, S.K.; Cohen, S.A.; Earp, J.E.; Greaney, M.L. Relationship between Physical Activity, Screen Time, and Sleep Quantity and Quality in US Adolescents Aged 16⁻19. Int. J. Environ. Res. Public Health 2019, 30, 1524. [Google Scholar] [CrossRef] [Green Version]
- Lizandra, J.; Devís-Devís, J.; Valencia-Peris, A.; Tomás, J.M.; Peiró-Velert, C. Screen time and moderate-to-vigorous physical activity changes and displacement in adolescence: A prospective cohort study. Eur. J. Sport Sci. 2019, 19, 686–695. [Google Scholar] [CrossRef]
- National Library of Medicine. Medline Plus. Medical Encyclopedia. Screen Time and Children. Available online: https://medlineplus.gov/ency/patientinstructions/000355.htm (accessed on 20 November 2022).
- Moraleda-Cibrián, M.; Albares-Tendero, J.; Pin-Arboledas, G. Screen media use and sleep patterns in Spanish adolescents during the lockdown of the coronavirus pandemic. Sleep Breath. 2022, 15, 1993–2000. [Google Scholar] [CrossRef]
- Schmidt, S.C.E.; Anedda, B.; Burchartz, A.; Eichsteller, A.; Kolb, S.; Nigg, C.; Niessner, C.; Oriwol, D.; Worth, A.; Woll, A. Physical activity and screen time of children and adolescents before and during the COVID-19 lockdown in Germany: A natural experiment. Sci. Rep. 2020, 10, 21780. [Google Scholar] [CrossRef]
- O’Brien, W.; Issartel, J.; Belton, S. Relationship between Physical Activity, Screen Time and Weight Status among Young Adolescents. Sports 2018, 6, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hrafnkelsdottir, S.M.; Brychta, R.J.; Rognvaldsdottir, V.; Chen, K.Y.; Johannsson, E.; Gudmundsdottir, S.L.; Arngrimsson, S.A. Less screen time and more physical activity is associated with more stable sleep patterns among Icelandic adolescents. Sleep Health 2020, 6, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Kjellenberg, K.; Ekblom, Ö.; Stålman, C.; Helgadóttir, B.; Nyberg, G. Associations between Physical Activity Patterns, Screen Time and Cardiovascular Fitness Levels in Swedish Adolescents. Children 2021, 8, 998. [Google Scholar] [CrossRef] [PubMed]
- Bejarano, C.M.; Carlson, J.A.; Conway, T.L.; Saelens, B.E.; Glanz, K.; Couch, S.C.; Cain, K.L.; Sallis, J.F. Physical Activity, Sedentary Time, and Diet as Mediators of the Association Between TV Time and BMI in Youth. Am. J. Health Promot. 2021, 35, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Braig, S.; Genuneit, J.; Walter, V.; Brandt, S.; Wabitsch, M.; Goldbeck, L.; Brenner, H.; Rothenbacher, D. Screen Time, Physical Activity and Self-Esteem in Children: The Ulm Birth Cohort Study. Int. J. Environ. Res. Public Health 2018, 15, 1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz-Sánchez, J.A.; del Pozo-Cruz, J.; Alfonso-Rosa, R.M.; Gallardo-Gómez, D.; Álvarez-Barbosa, F. Effects of sedentary school-age children: A systematic review of longitudinal studies. Retos 2021, 40, 404–412. [Google Scholar]
- Ghekiere, A.; Van Cauwenberg, J.; Vandendriessche, A.; Inchley, J.; Gaspar, M.; Borraccino, A.; Gobina, I.; Tynjälä, J.; Deforche, B.; de Clercq, B. Trends in sleeping difficulties among European adolescents: Are these associated with physical inactivity and excessive screen time? Int. J. Public Health 2019, 64, 487–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L.; et al. National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health 2015, 1, 40–43. [Google Scholar] [CrossRef]
- Tremblay, M.S.; Carson, V.; Chaput, J.P.; Connor, S.; Dinh, T.; Duggan, M.; Faulkner, G.; Gray, C.E.; Gruber, R.; Janson, K.; et al. Canadian 24-Hour Movement Guidelines for Children and Youth: An Integration of Physical Activity, Sedentary Behaviour, and Sleep. Appl. Physiol. Nutr. Metab. 2016, 41, S311–S327. [Google Scholar] [CrossRef]
- Gariepy, G.; Danna, S.; Gobiņa, I.; Rasmussen, M.; Gaspar, M.; Tynjälä, J.; Janssen, I.; Kalman, M.; Villeruša, A.; Husarova, D.; et al. How Are Adolescents Sleeping? Adolescent Sleep Patterns and Sociodemographic Differences in 24 European and North American Countries. J. Adolesc. Health. 2020, 66, S81–S88. [Google Scholar] [CrossRef]
- Tapia-Serrano, M.A.; Sevil-Serrano, J.; Sánchez-Miguel, P.A.; López-Gil, J.F.; Tremblay, M.S.; García-Hermoso, A. Prevalence of meeting 24-Hour Movement Guidelines from pre-school to adolescence: A systematic review and meta-analysis including 387,437 participants and 23 countries. J. Sport Health Sci. 2022, 11, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Chaput, J.P.; Dutil, C.; Sampasa-Kanyinga, H. Sleeping hours: What is the ideal number and how does age impact this? Nat. Sci. Sleep 2018, 27, 421–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, J.O.; Powell, K.E. Physical activity, behavioral epidemiology, and public health. Public Health Rep. 1985, 100, 113–115. [Google Scholar] [PubMed]
- Dishman, R.K.; Heath, G.W.; Lee, I. Physical Activity Epidemiology; Human Kinetics: Champaign, IL, USA, 2013. [Google Scholar]
- National Statistics Institute. Government of Spain. 2022. Available online: https://www.ine.es/index.htm (accessed on 14 January 2023).
- Cale, L. Monitoring Physical Activity in Children. Ph.D. Thesis, Loughborough University, Leicestershire, UK, 1993. [Google Scholar]
- Soler, J.J.; Generelo, E.; Zaragoza, J.; Julián, J.A. Validity and Reliability Criteria for the “Four by One-Day Physical Activity Questionnaire” in Spanish Adolescents. Apunts. Phys. Educ. Sport. 2010, 101, 19–24. [Google Scholar]
- Peiró-Velert, C.; Valenciano, J.; Beltrán-Carrillo, V.; Devís-Devís, J. Variability of physical activity in 17–18 year-old Spanish adolescents by type of day and season. J. Sport Psychol. 2014, 23, 347–354. [Google Scholar]
- Peiró-Velert, C.; Devís-Devís, J.; Beltrán-Carrillo, V.J.; Fox, K.R. Variability of Spanish adolescent’s physical activity patterns by seasonality, day of the week and demographic factors. Eur. J. Sport Sci. 2008, 8, 163–171. [Google Scholar] [CrossRef]
- Beltrán-Carrillo, V.J.; Devís-Devís, J.; Peiró-Velert, C. Physical activity and sedentary behaviour in adolescents from valencian region. Rev. Int. Med. Cienc. Act. Física Deporte 2012, 12, 122–137. [Google Scholar]
- Gil, J.A. Quantitative Methodology in Education; National University of Distance Education: Madrid, Spain, 2011. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Pearson Prentice Hall: New York, NY, USA, 2010. [Google Scholar]
- Aldenderfer, M.S.; Blashfield, R.K. Cluster Analysis; Sage Publications: Beverly Hills, CA, USA, 1984. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 6th ed.; Allyn and Bacon: Boston, MA, USA, 2013. [Google Scholar]
- Ferrer-Santos, P.; Iglesia, I.; Muñiz-Pardos, B.; Miguel-Berges, M.L.; Flores-Barrantes, P.; Moreno, L.A.; Rodríguez-Martínez, G. Moderate-to-Vigorous Physical Activity and Body Composition in Children from the Spanish Region of Aragon. Children 2021, 8, 341. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Li, H.J.; Slapsinskaite, A.; Zhang, T.; Zhang, L.; Gui, C.Y. Accelerometer-measured physical activity and sedentary behavior in Chinese children and adolescents: A systematic review and meta-analysis. Public Health 2020, 186, 71–77. [Google Scholar] [CrossRef]
- Wang, W.-Y.; Hsieh, Y.-L.; Hsueh, M.-C.; Liu, Y.; Liao, Y. Accelerometer-Measured Physical Activity and Sedentary Behavior Patterns in Taiwanese Adolescents. Int. J. Environ. Res. Public Health 2019, 16, 4392. [Google Scholar] [CrossRef] [Green Version]
- Llorente-Cantarero, F.J.; Aguilar-Gómez, F.J.; Anguita-Ruiz, A.; Rupérez, A.I.; Vázquez-Cobela, R.; Flores-Rojas, K.; Aguilera, C.M.; Gonzalez-Gil, E.M.; Gil-Campos, M.; Bueno-Lozano, G.; et al. Changes in Physical Activity Patterns from Childhood to Adolescence: Genobox Longitudinal Study. Int. J. Environ. Res. Public Health 2020, 17, 7227. [Google Scholar] [CrossRef] [PubMed]
- Grant, V.M.; Tomayko, E.J.; Kingfisher, R.D. Sleep and Physical Activity Patterns in Urban American Indian Children. Am. J. Health Behav. 2020, 44, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Vitiello, M.V.; Gooneratne, N.S. Sleep in Normal Aging. Sleep Med. Clin. 2018, 13, 1–11. [Google Scholar] [CrossRef]
- Lee, P.H.; Tse, A.C.Y.; Wu, C.S.T.; Mak, Y.W.; Lee, U. Temporal association between objectively measured smartphone usage, sleep quality and physical activity among Chinese adolescents and young adults. J. Sleep Res. 2021, 30, e13213. [Google Scholar] [CrossRef] [PubMed]
- Perrault, A.A.; Bayer, L.; Peuvrier, M.; Afyouni, A.; Ghisletta, P.; Brockmann, C.; Spiridon, M.; Hulo, S.; Haller, D.M.; Pichon, S.; et al. Reducing the use of screen electronic devices in the evening is associated with improved sleep and daytime vigilance in adolescents. Sleep 2019, 42, zsz125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chattu, V.K.; Sakhamuri, S.M.; Kumar, R.; Spence, D.W.; BaHammam, A.S.; Pandi-Perumal, S.R. Insufficient Sleep Syndrome: Is it time to classify it as a major noncommunicable disease? Sleep Sci. 2018, 11, 56–64. [Google Scholar] [CrossRef]
- Master, L.; Nye, R.T.; Lee, S.; Nahmod, N.G.; Mariani, S.; Hale, L.; Buxton, O.M. Bidirectional, Daily Temporal Associations between Sleep and Physical Activity in Adolescents. Sci. Rep. 2019, 9, 7732. [Google Scholar] [CrossRef]
- Redeker, N.S.; Caruso, C.C.; Hashmi, S.D.; Mullington, J.M.; Grandner, M.; Morgenthaler, T.I. Workplace Interventions to Promote Sleep Health and an Alert, Healthy Workforce. J. Clin. Sleep Med. 2019, 15, 649–657. [Google Scholar] [CrossRef] [Green Version]
- Fernández, E.; Blández, J.; Camacho, M.J.; Sierra, M.A.; Vázquez, B.; Rodríguez, I.; Mendizábel, S.; Sánchez, F.; Sánchez, M. Estudio de los Estereotipos de Género Vinculados con la Actividad Física y el Deporte en los Centros Docentes de Educación Primaria y Secundaria: Evolución y Vigencia. Diseño de un Programa Integral de Acción Educativa; Instituto de la Mujer: Madrid, Spain, 2008. [Google Scholar]
- Alemany, I.; Aguilar, N.; Granda, L.; Granda, J. Estereotipos de género y práctica de actividad física. Mov. Rev. Esc. Educ. Física 2019, 25, 1–16. [Google Scholar] [CrossRef]
- Serra, J.R.; Generelo, E.; Zaragoza, J. Barreras para la realización de actividad física en adolescentes en la provincia de Huesca. Rev. Int. Med. Cienc. Act. Física Deporte 2010, 10, 470–482. [Google Scholar]
- Salas, M.I.; Vidal, J. Interventions during school recess to increase physical activity. Systematic review. SPORT TK Rev. EuroAm. Cienc. Deporte 2022, 11, 1–32. [Google Scholar]
n (Percentage) | ||
---|---|---|
Sex | Male | 345 (52) |
Female | 318 (48) | |
Grade | 1st | 161 (24.3) |
2nd | 177 (26.7) | |
3rd | 154 (23.2) | |
4th | 171 (25.8) | |
Total | 694 (100%) |
Variable | Total | Sex | Grade | ||||
---|---|---|---|---|---|---|---|
Male | Female | 1st | 2nd | 3rd | 4th | ||
MVPA | 67.99 ± 43.51 | 79.31 ± 45.30 | 55.71 ± 37.88 | 77.92 ± 47.06 | 75.61 ± 47.13 | 59.83 ± 35.58 | 58.11 ± 39.18 |
ScT | 112.56 ± 65.80 | 129.46 ± 67.39 | 94.22 ± 58.92 | 103.82 ± 62.41 | 117.76 ± 65.61 | 105.22 ± 57.99 | 122 ± 73.96 |
SlT | 548.63 ± 50.21 | 552.82 ± 48.58 | 554.09 ± 51.61 | 567.82 ± 46.64 | 556.03 ± 46.81 | 541.71 ± 48.38 | 529 ± 50.61 |
M (SD) | CI 95% | Kolmogorov–Smirnov | Skewness | Kurtosis | 2 | 3 | |
---|---|---|---|---|---|---|---|
1. MVPA | −0.028 ± 0.934 | −0.099/0.043 | 0.082 * | 0.823 | 0.227 | −0.145 ** | −0.050 |
2. Screen Time | −0.067 ± 0.858 | −0.132/−0.001 | 0.082 * | 0.851 | 0.533 | - | 0.008 |
3. Sleep Time | 0.056 ± 0.881 | −0.011/0.123 | 0.021 | −0.112 | −0.011 | - | - |
Grade (I) | Grade (J) | Mean Difference (I-J) | Error Deviation | Sig. | CI (95%) | ||
---|---|---|---|---|---|---|---|
Lower Limit | Upper Limit | ||||||
MVPA | 1 | 2 | 2.31 | 4.65 | 0.96 | −9.65 | 14.28 |
1 | 3 | 18.09 | 4.81 | * | 5.71 | 30.48 | |
1 | 4 | 19.81 | 4.69 | * | 7.74 | 31.88 | |
2 | 3 | 15.78 | 4.70 | 0.01 | 3.67 | 27.89 | |
2 | 4 | 17.49 | 4.58 | * | 5.71 | 29.28 | |
3 | 4 | 1.72 | 4.74 | 0.98 | −10.49 | 13.93 | |
ScT | 1 | 2 | −13.94 | 7.13 | 0.21 | −32.31 | 4.43 |
1 | 3 | −1.40 | 7.38 | 1 | −20.40 | 17.61 | |
1 | 4 | −18.18 | 7.19 | 0.06 | −36.70 | 0.38 | |
2 | 3 | 12.54 | 7.22 | 0.30 | −6.04 | 31.13 | |
2 | 4 | −4.24 | 7.02 | 0.93 | −22.32 | 13.84 | |
3 | 4 | −16.79 | 7.27 | 0.10 | −35.52 | 1.95 |
N (%) | Sex (%) | Grade (%) | Cluster Center (Z-Cores) | M ± SD (Minutes/Day) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Male | Female | 1st | 2nd | 3rd | 4th | MVPA | ScT | SlT | MVPA | ScT | SlT | ||
Cluster 1 | 258 (38.91) | 45 | 55 | 28.7 | 27.1 | 25.6 | 18.6 | 1.33 | −0.13 | 2.80 | 48.52 ± 26.43 | 65.26 ± 57.69 | 583.73 ± 37.00 |
Cluster 2 | 187 (28.21) | 61 | 39 | 30.5 | 29.4 | 17.6 | 22.5 | 2.89 | −1.49 | −1.52 | 119.41 ± 34.56 | 80.49 ±43.48 | 532.28 ± 45.73 |
Cluster 3 | 218 (32.88) | 52.8 | 47.2 | 13.8 | 23.9 | 25.2 | 37.2 | −1.06 | 2.95 | −0.36 | 46.93 ± 27.36 | 169.39 ± 67.37 | 521.13 ± 42.67 |
Grade (I) | Grade (J) | Mean Difference (I-J) | Error Deviation | Sig. | CI (95%) | ||
---|---|---|---|---|---|---|---|
Lower Limit | Lower Limit | ||||||
MVPA | 1 | 2 | −1.52 | 0.06 | * | −1.66 | −1.38 |
1 | 3 | 0.03 | 0.06 | 0.83 | −0.10 | 0.17 | |
2 | 3 | 1.56 | 0.06 | * | 1.41 | 1.70 | |
ScT | 1 | 2 | 0.10 | 0.07 | 0.32 | −0.06 | 0.25 |
1 | 3 | −1.06 | 0.06 | * | −1.21 | −0.92 | |
2 | 3 | −1.16 | 0.07 | * | −1.32 | −0.99 | |
SlT | 1 | 2 | 0.90 | 0.07 | * | 0.74 | 1.07 |
1 | 3 | 1.10 | 0.07 | * | 0.94 | 1.26 | |
2 | 3 | 0.20 | 0.07 | 0.02 | 0.03 | 0.37 |
Kolmogorov–Smirnov | Skewness | Kurtosis | 2 | 3 | ||
---|---|---|---|---|---|---|
Cluster 1 | MVPA | 0.091 * | 0.463 | −0.530 | 0.123 * | 0.214 ** |
ScT | 0.072 * | 0.348 | −0.432 | - | 0.288 ** | |
SlT | 0.029 | 0.263 | 0.302 | - | - | |
Cluster 2 | MVPA | 0.084 * | 0.546 | −0.208 | 0.172 * | 0.324 ** |
ScT | 0.064 | 0.435 | −0.545 | - | 0.166 * | |
SlT | 0.033 | 0.013 | 0.200 | - | - | |
Cluster 3 | MVPA | 0.074 * | 0.781 | 0.641 | 0.168 ** | 0.005 |
ScT | 0.050 | 0.267 | −0.354 | - | 0.470 ** | |
SlT | 0.052 | −0.211 | −0.049 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanz-Martín, D.; Zurita-Ortega, F.; Ruiz-Tendero, G.; Ubago-Jiménez, J.L. Moderate–Vigorous Physical Activity, Screen Time and Sleep Time Profiles: A Cluster Analysis in Spanish Adolescents. Int. J. Environ. Res. Public Health 2023, 20, 2004. https://doi.org/10.3390/ijerph20032004
Sanz-Martín D, Zurita-Ortega F, Ruiz-Tendero G, Ubago-Jiménez JL. Moderate–Vigorous Physical Activity, Screen Time and Sleep Time Profiles: A Cluster Analysis in Spanish Adolescents. International Journal of Environmental Research and Public Health. 2023; 20(3):2004. https://doi.org/10.3390/ijerph20032004
Chicago/Turabian StyleSanz-Martín, Daniel, Félix Zurita-Ortega, Germán Ruiz-Tendero, and José Luis Ubago-Jiménez. 2023. "Moderate–Vigorous Physical Activity, Screen Time and Sleep Time Profiles: A Cluster Analysis in Spanish Adolescents" International Journal of Environmental Research and Public Health 20, no. 3: 2004. https://doi.org/10.3390/ijerph20032004
APA StyleSanz-Martín, D., Zurita-Ortega, F., Ruiz-Tendero, G., & Ubago-Jiménez, J. L. (2023). Moderate–Vigorous Physical Activity, Screen Time and Sleep Time Profiles: A Cluster Analysis in Spanish Adolescents. International Journal of Environmental Research and Public Health, 20(3), 2004. https://doi.org/10.3390/ijerph20032004