Temporal Characteristics of Stress Signals Using GRU Algorithm for Heavy Metal Detection in Rice Based on Sentinel-2 Images
Abstract
:1. Introduction
2. Study Area and Data Processing
2.1. Study Area
2.2. Data Collection
2.2.1. Sentinel-2 Satellite Images
2.2.2. DEM Data
2.2.3. Verification Data
3. Methods
3.1. Extraction of Paddy Distribution
3.2. Detection of Heavy Metal Stress in Rice
3.2.1. Selection of Parameters Sensitive to Heavy Metal Stress
3.2.2. Analysis of Temporal Characteristics of Stress Signal
3.2.3. Establishment of Model for Detecting Heavy Metal Stress in Rice
3.3. Detection of Heavy Metal Stress in Rice
4. Results
4.1. Spatial Distribution of Rice
4.2. Distribution of Heavy Metal Stress in Rice
4.3. Validation of Classification Results
4.3.1. Accuracy Assessment of GRU Model
4.3.2. Relationship between Heavy Metal Pollution and Mining
5. Discussion
6. Conclusions
- (1)
- Heavy metal stress could be distinguished by extracting the time-series features of the red edge index of rice. This is because the red edge can reflect the health information of the crop, and the heavy metal stress signal is stable throughout the growth stage.
- (2)
- The GRU model based on the characteristic index time series could achieve good classification results in identifying rice under heavy metal stress: Over 90% in 2019 and over 80% in 2020 and 2021.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Wu, C.; Liu, M.; Liu, X.; Wang, T.; Wang, L. Developing a New Spectral Index for Detecting Cadmium-Induced Stress in Rice on a Regional Scale. Int. J. Env. Res. Public Health 2019, 16, 4811. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Liu, X.; Zhang, B.; Liu, M.; Wu, L. Extraction of Rice Heavy Metal Stress Signal Features Based on Long Time Series Leaf Area Index Data Using Ensemble Empirical Mode Decomposition. Int. J. Environ. Res. Public Health 2017, 14, 1018. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Wang, T.; Skidmore, A.K.; Liu, X.; Li, M. Identifying rice stress on a regional scale from multi-temporal satellite images using a Bayesian method. Environ. Pollut. 2019, 247, 488–498. [Google Scholar] [CrossRef]
- Liu, M.; Wang, T.; Skidmore, A.K.; Liu, X. Heavy metal-induced stress in rice crops detected using multi-temporal Sentinel-2 satellite images. Sci. Total Environ. 2018, 637, 18–29. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Zhang, B.; Ding, C. Regional heavy metal pollution in crops by integrating physiological function variability with spatio-temporal stability using multi-temporal thermal remote sensing. Int. J. Appl. Earth Obs. 2016, 51, 91–102. [Google Scholar] [CrossRef]
- Zhang, C.; Ren, H.; Qin, Q.; K Ersoy, O. A new narrow band vegetation index for characterizing the degree of vegetation stress due to copper: The copper stress vegetation index (CSVI). Remote Sens. Lett. 2017, 8, 576–585. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, A.; Wang, T.; Qu, G.; Shao, J.; Yuan, B.; Wang, Y.; Jiang, G. Influence of e-waste dismantling and its regulations: Temporal trend, spatial distribution of heavy metals in rice grains, and its potential health risk. Environ. Sci. Technol. 2013, 47, 7437–7445. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, M.; Liu, X.; Wu, L.; Zhang, B.; Wu, C. Spatio-temporal index based on time series of leaf area index for identifying heavy metal stress in rice under complex stressors. Int. J. Environ. Res. Public Health 2020, 17, 2265. [Google Scholar] [CrossRef] [Green Version]
- Chen, X. Research on Algorithm and Application of Deep Learning Based on Convolutional Neural Network. Master’s Thesis, Zhejiang Gongshang University, Hangzhou, China, 2014. [Google Scholar]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Sonawani, S.; Patil, K.; Chumchu, P. NO2 pollutant concentration forecasting for air quality monitoring by using an optimised deep learning bidirectional GRU model. Int. J. Comput. Sci. Eng. 2021, 24, 64–73. [Google Scholar]
- Zhou, X.; Xu, J.; Zeng, P.; Meng, X. Air pollutant concentration prediction based on GRU method. J. Phys. Conf. Ser. 2019, 1168, 032058. [Google Scholar] [CrossRef]
- Pan, E.; Mei, X.; Wang, Q.; Ma, Y.; Ma, J. Spectral-spatial classification for hyperspectral image based on a single GRU. Neurocomputing 2020, 387, 150–160. [Google Scholar] [CrossRef]
- Hao, S.; Wang, W.; Salzmann, M. Geometry-Aware Deep Recurrent Neural Networks for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. 2020, 59, 2448–2460. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, Z.; Jiang, H.; Jing, W.; Sun, L.; Feng, M. Evaluation of three deep learning models for early crop classification using sentinel-1A imagery time series—A case study in Zhanjiang, China. Remote Sens. 2019, 11, 2673. [Google Scholar] [CrossRef] [Green Version]
- Pan, E.; Ma, Y.; Dai, X.; Fan, F.; Huang, J.; Mei, X.; Ma, J. GRU with spatial prior for hyperspectral image classification. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019. [Google Scholar]
- Chen, J.; Guo, H.; Hu, W.; He, J.; Wang, Y.; Wen, Y. Research on Plant Disease Recognition Based on Deep Complementary Feature Classification Network. In Proceedings of the 2020 IEEE International Conference on Systems, Man and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020. [Google Scholar]
- Jiang, T.; Liu, X.; Wu, L. Method for mapping rice fields in complex landscape areas based on pre-trained convolutional neural network from HJ-1 A/B data. ISPRS Int. J. Geoinf. 2018, 7, 418. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Liu, P.; Qiao, B.; Wu, K. The Spatial Distribution and Prediction of Soil Heavy Metals Based on Measured Samples and Multi-Spectral Images in Tai Lake of China. Land 2021, 10, 1227. [Google Scholar] [CrossRef]
- Caballero, I.; Ruiz, J.; Navarro, G. Sentinel-2 Satellites Provide Near-Real Time Evaluation of Catastrophic Floods in the West Mediterranean. Water 2019, 11, 2499. [Google Scholar] [CrossRef] [Green Version]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.; Zhang, J.; Tao, F.; Chen, Y.; Ding, H. The effect of terrain factors on rice production: A case study in Hunan Province. J. Geogr. Sci. 2019, 29, 287–305. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, W.L.; Norvell, W.A. Development of DTPA Soil Test for Zinc, Iron, Manganese and Copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Dang, H.; Li, J. The integration of urban streetscapes provides the possibility to fully quantify the ecological landscape of urban green spaces: A case study of Xi’an city. Ecol. Indic. 2021, 133, 108–388. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Li, M.; Fang, M.; Chi, W. Neural-network model for estimating leaf chlorophyll concentration in rice under stress from heavy metals using four spectral indices. Biosyst. Eng. 2010, 106, 223–233. [Google Scholar] [CrossRef]
- Ren, H.; Zhuang, D.; Pan, J.; Shi, X.; Wang, H. Hyper-spectral remote sensing to monitor vegetation stress. J. Soil Sediment. 2008, 8, 323. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Liu, X.; Hou, J.; Liu, S.; Chi, G.; Cui, B.; Yang, Z. Study on the spectrum response of Brassica Campestris L leaf to the zinc pollution. Guang Pu Xue Yu Guang Pu Fen XI 2007, 27, 1797–1801. [Google Scholar]
- Zhang, Z.; Liu, M.; Liu, X.; Zhou, G. A new vegetation index based on multitemporal Sentinel-2 images for discriminating heavy metal stress levels in rice. Sensors 2018, 18, 2172. [Google Scholar] [CrossRef] [Green Version]
- Pratap Banerjee, B.; Raval, S.; Zhai, H.; Joseph Cullen, P. Health condition assessment for vegetation exposed to heavy metal pollution through airborne hyperspectral data. Environ. Monit. Assess 2017, 189, 604. [Google Scholar] [CrossRef]
- Hede, A.N.H.; Kashiwaya, K.; Koike, K.; Sakurai, S. A new vegetation index for detecting vegetation anomalies due to mineral deposits with application to a tropical forest area. Remote Sens. Environ. 2015, 171, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Martinez, N.E.; Sharp, J.L.; Kuhne, W.W.; Johnson, T.E.; Stafford, C.T.; Duff, M.C. Assessing the use of reflectance spectroscopy in determining CsCl stress in the model species Arabidopsis thaliana. Int. J. Remote Sens. 2015, 36, 5887–5915. [Google Scholar] [CrossRef]
- Kopačková, V.; Mišurec, J.; Lhotáková, Z.; Oulehle, F.; Albrechtová. Using multi-date high spectral resolution data to assess the physiological status of macroscopically undamaged foliage on a regional scale. Int. J. Appl. Earth Obs. 2014, 27, 169–186. [Google Scholar] [CrossRef]
- Wang, X.; Han, Q.; Li, J.; Jin, Y. Research on Prediction Model of Epileptic EEG Signal Based on GRU. In Proceedings of the 2021 International Conference on Electronic Information Engineering and Computer Science (EIECS), Changchun, China, 23–26 September 2021. [Google Scholar]
- Singh Chandel, N.; Kumar Chakraborty, S.; Anand Rajwade, Y.; Kumkum, D.; Tiwari, M.K. Identifying crop water stress using deep learning models. Neural Comput. Appl. 2021, 33, 5353–5367. [Google Scholar] [CrossRef]
- Sithu Maung, W.; Sasaki, J. Assessing the Natural Recovery of Mangroves after Human Disturbance Using Neural Network Classification and Sentinel-2 Imagery in Wunbaik Mangrove Forest, Myanmar. Remote Sens. 2020, 13, 52. [Google Scholar] [CrossRef]
- Rwanga, S.S.; Ndambuki, J.M. Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS. Int. J. Geosci. 2017, 8, 611–622. [Google Scholar] [CrossRef] [Green Version]
Bands | Formula | Description |
---|---|---|
REP | 700 + 40 * (((B7 − B4)/2 − B5)/(B6 − B5)) | Red-edge position |
(B7/B5) − 1 | Red-edge chlorophyll index | |
MSR | (B6 − B1)/(B5 − B1) | Modified simple ratio |
MCARI | ((B5 − B4) − 0.2 * (B5 − B3)) * (B5/B4) | Modified chlorophyll Absorption ratio index |
NDVI | (B8 − B4)/(B8 + B4) | Normalized difference Vegetation index |
RDVI | ) | Renormalized difference Vegetation index |
NDRE1 | (B6 − B5)/(B6 + B5) | Normalized difference red-edge index 1 |
NDRE2 | (B7 − B5)/(B7 + B5) | Normalized difference red-edge index 2 |
Parameter | Value |
---|---|
Input_size | 8 |
Hidden_size | 256 |
Batch_size | 8 |
Learning_rate | 0.0001 |
Classified | Reference | Total | User’s Accuracy | |
---|---|---|---|---|
Nonheavy Metal | Heavy Metal | |||
Nonheavy metal | 291 | 31 | 322 | 90.37% |
Heavy metal | 44 | 629 | 673 | 93.46% |
Total | 335 | 660 | 995 | — |
Producer’s Accuracy | 86.87% | 95.30% | — | — |
Overall Accuracy 92.46% | Kappa 82.96% |
Classified | Reference | Total | User’s Accuracy | |
---|---|---|---|---|
Nonheavy Metal | Heavy Metal | |||
Nonheavy metal | 182 | 43 | 225 | 80.89% |
Heavy metal | 32 | 597 | 629 | 94.91% |
Total | 214 | 640 | 854 | — |
Producer’s accuracy | 85.05% | 93.28% | — | — |
Overall accuracy 91.22% | Kappa 77.01% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, M.; Kong, L.; Peng, T.; Xie, D.; Zhang, L.; Tian, L.; Zou, X. Temporal Characteristics of Stress Signals Using GRU Algorithm for Heavy Metal Detection in Rice Based on Sentinel-2 Images. Int. J. Environ. Res. Public Health 2022, 19, 2567. https://doi.org/10.3390/ijerph19052567
Zhang Y, Liu M, Kong L, Peng T, Xie D, Zhang L, Tian L, Zou X. Temporal Characteristics of Stress Signals Using GRU Algorithm for Heavy Metal Detection in Rice Based on Sentinel-2 Images. International Journal of Environmental Research and Public Health. 2022; 19(5):2567. https://doi.org/10.3390/ijerph19052567
Chicago/Turabian StyleZhang, Yu, Meiling Liu, Li Kong, Tao Peng, Dong Xie, Li Zhang, Lingwen Tian, and Xinyu Zou. 2022. "Temporal Characteristics of Stress Signals Using GRU Algorithm for Heavy Metal Detection in Rice Based on Sentinel-2 Images" International Journal of Environmental Research and Public Health 19, no. 5: 2567. https://doi.org/10.3390/ijerph19052567