Effect of Antioxidant Supplementation on Markers of Oxidative Stress and Muscle Damage after Strength Exercise: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Search
2.2. Eligibility Criteria
2.3. Study Selection
2.4. Data Extraction
2.5. Assessment of Methodological Quality
2.6. Stadistical Analysis
3. Results
3.1. Article Selection
3.2. Included Studies and Study Characteristics
3.3. Methodological Quality and Risk of Bias
3.4. Presentation of Results
3.4.1. Dietary Intake
3.4.2. Blood Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gomez, M.C.; Carretero, A.; Millan-Domingo, F.; Garcia, E.; Correas, A.; Olaso, G.; Viña, J. Redox-related biomarkers in physical exercise. Redox Biol. 2021, 42, 101956. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Castro, J.; Moreno-Fernandez, J.; Chirosa, I.; Chirosa, L.J.; Guisado, R.; Ochoa, J.J. Beneficial effect of ubiquinol on hematological and inflammatory signaling during exercise. Nutrients 2020, 12, 424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The physical activity guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef] [PubMed]
- Simon, H.B. Exercise and health: Dose and response, considering both ends of the curve. Am. J. Med 2015, 128, 1171–1177. [Google Scholar] [CrossRef]
- Hernández, M.C.; Pascual, A.L.C. Benefits of physical exercise in healthy population and impact on the appearance of disease. Endocrinol. Nutr. 2013, 60, 283–286. [Google Scholar]
- Thirupathi, A.; Pinho, R.A.; Ugbolue, U.C.; He, Y.; Meng, Y.; Gu, Y. Effect of running exercise on oxidative stress biomarkers: A systematic review. Front. Physiol. 2020, 11, 1789. [Google Scholar]
- Pappas, A.; Tsiokanos, A.; Fatouros, I.G.; Poulios, A.; Kouretas, D.; Goutzourelas, N.; Giakas, G.; Jamurtas, A.Z. The effects of spirulina supplementation on redox status and performance following a muscle damaging protocol. Int. J. Mol. Sci. 2021, 22, 3559. [Google Scholar] [CrossRef]
- Torre, M.F.; Martinez-Ferran, M.; Vallecillo, N.; Jiménez, S.L.; Romero-Morales, C.; Pareja-Galeano, H. Supplementation with vitamins C and E and exercise-induced delayed-onset muscle soreness: A systematic review. Antioxidants 2021, 10, 279. [Google Scholar] [CrossRef]
- Fang, W.; Nasir, Y. The effect of curcumin supplementation on recovery following exercise-induced muscle damage and delayed-onset muscle soreness: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2021, 35, 1768–1781. [Google Scholar] [CrossRef]
- Thirupathi, A.; Wang, M.; Lin, J.K.; Fekete, G.; István, B.; Baker, J.S.; Gu, Y. Effect of different exercise modalities on oxidative stress: A systematic review. BioMed Res. Int. 2021, 2021, 1947928. [Google Scholar] [CrossRef]
- Thirupathi, A.; Pinho, R.A. Effects of reactive oxygen species and interplay of antioxidants during physical exercise in skeletal muscles. J. Physiol. Biochem. 2018, 74, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Calle, M.C.; Fernandez, M.L. Effects of resistance training on the inflammatory response. Nutr. Res. Pract. 2010, 4, 259–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruhee, R.T.; Suzuki, K. Protective effects of sulforaphane on exercise-induced organ damage via inducing antioxidant defense responses. Antioxidant 2020, 9, 136. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Zhao, T.; Zhang, Y.; Liu, T.; Gagnon, G.; Ebrahim, J.; Ji, L.L. Avenanthramide supplementation reduces eccentric exercise-induced inflammation in young men and women. J. Int. Soc. Sports Nutr. 2020, 17, 41. [Google Scholar] [CrossRef] [PubMed]
- Popovic, L.M.; Mitic, N.R.; Miric, D.; Bisevac, B.; Miric, M.; Popovic, B. Influence of vitamin C supplementation on oxidative stress and neutrophil inflammatory response in acute and regular exercise. Oxid. Med. Cell. Longev. 2015, 2015, 295497. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento, A.; Diaz-Castro, J.; Pulido-Moran, M.; Moreno-Fernandez, J.; Kajarabille, N.; Chirosa, I.; Guisado, I.M.; Chirosa, L.J.; Guisado, R.; Ochoa, J.J. Short-term ubiquinol supplementation reduces oxidative stress associated with strenuous exercise in healthy adults: A randomized trial. BioFactors 2016, 42, 612–622. [Google Scholar] [CrossRef]
- Ortiz-Franco, M.; Planells, E.; Quintero, B.; Acuña-Castroviejo, D.; Rusanova, I.; Escames, G.; Molina-López, J. Effect of melatonin supplementation on antioxidant status and DNA damage in high intensity trained athletes. Int. J. Sports Med. 2017, 38, 1117–1125. [Google Scholar] [CrossRef]
- Song, S.; Lee, Y.M.; Lee, Y.Y.; Yeum, K.J. Oat (Avena sativa) Extract against Oxidative Stress-Induced Apoptosis in Human Keratinocytes. Molecules 2021, 26, 5564. [Google Scholar] [CrossRef]
- Talar, K.; Hernández-Belmonte, A.; Vetrovsky, T.; Steffl, M.; Kałamacka, E.; Courel-Ibáñez, J. Benefits of resistance training in early and late stages of frailty and sarcopenia: A systematic review and meta-analysis of randomized controlled studies. J. Clin. Med. 2021, 10, 1630. [Google Scholar] [CrossRef]
- Iván, C.V.; Lily, B.C.; Stephanie, S.F.; Hunter-Echeverría, K.; Nasri, M.N.G. Effects of resistance exercise training on redox homeostasis in older adults. A systematic review and meta-analysis. Exp. Gerontol. 2020, 138, 111012. [Google Scholar]
- Ammar, A.; Turki, M.; Hammouda, O.; Chtourou, H.; Trabelsi, K.; Bouaziz, M.; Abdelkarim, O.; Hoekelmann, A.; Ayadi, F.; Souissi, N.; et al. Effects of pomegranate juice supplementation on oxidative stress biomarkers following weightlifting exercise. Nutrients 2017, 9, 819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, L.A.; Tromm, C.B.; Bom, K.F.; Mariano, I.; Pozzi, B.; da Rosa, G.L.; Tuon, T.; da Luz, G.; Vuolo, F.; Petronilho, F.; et al. Effects of taurine supplementation following eccentric exercise in young adults. Appl. Physiol. Nutr. Metab. 2014, 39, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Leonardo-Mendonça, R.C.; Ocaña-Wilhelmi, J.; de Haro, T.; de Teresa-Galván, C.; Guerra-Hernández, E.; Rusanova, I.; Fernández-Ortiz, M.; Sayed, R.; Escames, G.; Acuña-Castroviejo, D. The benefit of a supplement with the antioxidant melatonin on redox status and muscle damage in resistance-trained athletes. Appl. Physiol. Nutr. Metab. 2017, 42, 700–707. [Google Scholar] [CrossRef] [PubMed]
- McLeay, Y.; Barnes, M.; Mundel, T.; Hurst, S.; Hurst, R.; Stannard, S. Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage. J. Int. Soc. Sports Nutr. 2012, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y.; Nagato, S.; Sakuraba, K.; Morio, K.; Sawaki, K. Short-term Ubiquinol-10 supplementation alleviates tissue damage in muscle and fatigue caused by strenuous exercise in male distance runners. Int. J. Vitam. Nutr. Res. 2020, 91, 261–270. [Google Scholar] [CrossRef]
- Pérez, F.; Pascual, V.; Meco, J.F.; Pérez, P.; Delgado, J.; Domenech, M.; Estruch, R.; León, A.; López, J.; Sánchez, A.; et al. Document of recommendations of the SEA 2018. Lifestyle in cardiovascular prevention. Clin. Investig. Arterioscler. 2018, 30, 280–310. [Google Scholar]
- Carrera-Quintanar, L.; Funes, L.; Vicente-Salar, N.; Blasco-Lafarga, C.; Pons, A.; Micol, V.; Roche, E. Effect of polyphenol supplements on redox status of blood cells: A randomized controlled exercise training trial. Eur. J. Nutr. 2015, 54, 1081–1093. [Google Scholar] [CrossRef]
- Vinson, J.A.; Bose, P.; Proch, J.; Al Kharrat, H.; Samman, N. Cranberries and cranberry products: Powerful in vitro, ex vivo, and in vivo sources of antioxidants. J. Agric. Food Chem. 2008, 56, 5884–5891. [Google Scholar] [CrossRef]
- Bowtell, J.; Sumners, D.; Dyer, A.; Fox, P.; Katya, M. Montmorency cherry juice reduces muscle damage caused by intensive strength exercise. Med. Sci. Sports Exerc. 2011, 43, 1544–1551. [Google Scholar] [CrossRef] [Green Version]
- Morehen, J.C.; Clarke, J.; Batsford, J.; Barrow, S.; Brown, A.D.; Stewart, C.E.; Close, G.L. Montmorency tart cherry juice does not reduce markers of muscle soreness, function and inflammation following professional male rugby League match-play. Eur. J. Sport Sci. 2020, 21, 1003–1012. [Google Scholar] [CrossRef]
- Leduc, C.; Jones, B.; Robineau, J.; Piscione, J.; Lacome, M. Sleep quality and quantity of international rugby sevens players during pre-season. J. Strength Cond. Res. 2019, 33, 1878–1886. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Centner, C.; Golhofer, A.; König, D. Effects of Dietary Strategies on Exercise-Induced Oxidative Stress: A Narrative Review of Human Studies. Antioxidants. 2021, 10, 542. [Google Scholar] [CrossRef]
- Bongiovanni, T.; Genovesi, F.; Nemmer, M.; Carling, C.; Alberti, G.; Howatson, G. Nutritional interventions for reducing the signs and symptoms of exercise-induced muscle damage and accelerate recovery in athletes: Current knowledge, practical application and future perspectives. Eur. J. Appl. Physiol. 2020, 120, 1965–1996. [Google Scholar] [CrossRef]
- Ochoa, J.J.; Diaz-Castro, J.; Kajarabille, N.; García, C.; Guisado, I.M.; de Teresa, C.; Guisado, R. Melatonin supplementation ameliorates oxidative stress and inflammatory signaling induced by strenuous exercise in adult human males. J. Pineal Res. 2011, 51, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Cardona, D.M.G.; Landázuri, P.; Zuluaga, C.F.A.; Cortés, B. Biochemical markers of oxidative stress in female volleyball players. Effect of consumption of Passiflora edulis. Retos 2021, 43, 603–612. [Google Scholar]
- Furlong, J.; Rynders, C.; Sutherlin, M.; Patrie, P.; Katch, F.; Hertel, J.; Weltman, A. Effect of an herbal/botanical supplement on strength, balance, and muscle function following12-weeks of resistance training: A placebo controlled study. J. Int. Soc. Sports Nutr. 2014, 11, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ackerman, J.; Clifford, T.; McNaughton, L.R.; Bentley, D.J. The effect of an acute antioxidant supplementation compared with placebo on performance and hormonal response during a high volume resistance training session. J. Int. Soc. Sports Nutr. 2014, 11, 10. [Google Scholar] [CrossRef] [Green Version]
- Çakır-Atabek, H.; Özdemir, F.; Çolak, R. Oxidative stress and antioxidant responses to progressive resistance exercise intensity in trained and untrained males. Biol. Sport 2015, 32, 321–328. [Google Scholar] [CrossRef]
- Gelabert-Rebato, M.; Wiebe, J.C.; Martin-Rincon, M.; Galvan-Alvarez, V.; Curtelin, D.; Perez-Valera, M.; Habib, J.; Pérez-López, A.; Vega, T.; Morales-Alamo, D.; et al. Enhancement of exercise performance by 48 hours, and 15-day supplementation with mangiferin and luteolin in men. Nutrients 2019, 11, 344. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Hockemeyer, J.A.; Sedlock, D. Does combined antioxidant vitamin supplementation blunt repeated bout effect. Int. J. Sports Med. 2015, 36, 407–413. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Ratamess, N.A.; Kang, J.; Gonzalez, A.M.; Beller, N.A.; Craig, S.A. Effect of 15 days of betaine ingestion on concentric and eccentric force outputs during isokinetic exercise. J. Strength Cond. Res. 2011, 25, 2235–2241. [Google Scholar] [CrossRef]
- Salazar Serrano, D.; Atehortúa Villada, D.; Álvarez Quintero, R.M. Importance of the Addition of Antioxidants in the Diet of the High-Performance. Ces University, Final Degree Project, Founding Library 2019. Available online: https://repository.ces.edu.co/handle/10946/4923 (accessed on 8 December 2021).
- Taherkhani, S.; Suzuki, K.; Castell, L. A short overview of changes in inflammatory cytokines and oxidative stress in response to physical activity and antioxidant supplementation. Antioxidants 2020, 9, 886. [Google Scholar] [CrossRef]
- Sugita, M.; Kapoor, M.P.; Nishimura, A.; Okubo, T. Influence of green tea catechins on oxidative stress metabolites at rest and during exercise in healthy humans. Nutrition 2016, 32, 321–331. [Google Scholar] [CrossRef]
- Tsuchiya, Y.; Yanagimoto, K.; Ueda, H.; Ochi, E. Supplementation of eicosapentaenoic acid-rich fish oil attenuates muscle stiffness after eccentric contractions of human elbow flexors. J. Int. Soc. Sports Nutr. 2019, 16, 19. [Google Scholar] [CrossRef] [Green Version]
- DiLorenzo, F.; Drager, C.; Rankin, J. Docosahexaenoic acid affects markers of inflammation and muscle damage after eccentric exercise. J. Strength Cond. Res. 2014, 28, 2768–2774. [Google Scholar] [CrossRef]
- Finan, P.H.; Goodin, B.R.; Smith, M.T. The association of sleep and pain: An update and a way forward. J. Pain 2013, 14, 1539–1552. [Google Scholar] [CrossRef] [Green Version]
- Mazani, M.; Fard, A.S.; Baghi, A.N.; Nemati, A.; Mogadam, R.A. Effect of pomegranate juice supplementation on matrix metalloproteinases 2 and 9 following exhaustive exercise in young healthy males. J. Pak. Med. Assoc. 2014, 64, 785–790. [Google Scholar]
- Fernández, D.; Mielgo, J.; Seco, J.; Córdova, A.; Caballero, A.; Fernández, C.I. Modulation of exercise-induced muscle damage, inflammation, and oxidative markers by curcumin supplementation in a physically active population: A systematic review. Nutrients 2020, 12, 501. [Google Scholar] [CrossRef] [Green Version]
- Shang, H.; Bhagavathula, A.S.; Aldhaleei, W.A.; Rahmani, J.; Karam, G.; Rinaldi, G.; Yuan, Q. Effect of propolis supplementation on C-reactive protein levels and other inflammatory factors: A systematic review and meta-analysis of randomized controlled trials. J. King Saud Univ.—Sci. 2020, 32, 1694–1701. [Google Scholar] [CrossRef]
- McAnulty, L.S.; Nieman, D.C.; Dumke, C.L.; Shooter, L.A.; Henson, D.A.; Utter, A.C.; Milne, G.; McAnulty, S.R. Effect of blueberry ingestión on natural killer cell counts, oxidative stress, and inflammation prior to and after 2.5 h of running. Appl. Physiol. Nutr. Metab. 2011, 36, 976–984. [Google Scholar] [CrossRef]
Kappa Statistic | Strength of Agreement |
---|---|
<0.00 | Poor |
0.00–0.20 | Slight |
0.21–0.40 | Fair |
0.41–0.60 | Moderate |
0.61–0.80 | Substantial |
0.81–1.00 | Almost Perfect |
Author (N) | Sample Size and Sex (Male/Female) | Age (Mean ± SD) | Weight (kg) | Height (cm) | Level of Condition of Physical Activity or Health |
---|---|---|---|---|---|
Ammar et al., 2017 (9) | 9/0 | 21 ± 1 | 80 ± 10 | 175 ± 0.08 | Physically active |
Da Silva et al., 2014 (21) | 21/0 | 21 ± 6 | 78.2 ± 5 | 176 ± 7 | Healthy |
Leonardo-Mendoça et al., 2017 (24) | 24/0 | 20.3 ± 0.71 | 74.7 ± 3.22 | 176 ± 1.83 | Physically active |
McLeay et al., 2012 (10) | 0/10 | 22 ± 1 | 62 ± 8 | 167 ± 5 | Physically active |
Ortiz-Franco et al., 2017 (14) | 14/0 | Placebo Group 28.43 ± 4.39 | 78.39 ± 6.68 | 176 ± 3.98 | Physically active |
Melatonin Group 26 ± 6.03 | 79.96 ± 7.29 | 179 ± 6.04 | |||
Sarmiento et al., 2016 (100) | 100/NA | Placebo Group 38.2 ± 7.7 | 74.8 ± 9.8 | 174 ± 7.6 | Physically active |
Ubiquinol Group 38.9 ± 8.7 | 76.8 ± 8.9 | 175 ± 5.0 | |||
Thang et al., 2020 (24) | 11/13 | 23 ± 1.2 | NA | NA | Healthy |
Study | Participants | Training Methodology | Strength Exercises | Supplementation | Method | Administered Doses | Measurements | Biochemical Data | Results |
---|---|---|---|---|---|---|---|---|---|
Ammar et al., 2017 | Trained at least 5 sessions per week, 3 years of weightlifting experience, no injuries, no anti-inflammatory | 2 sets of 3 reps at 85% weightlifting and 3 sets of 2 reps at 90% | 3 Olympic Weightlifting exercises | Pomegranate juice | 3 tablets per day (48 h before each of the sessions) | 250 mL or 3 tablets | At rest and 3 minutes and 48 hours after each session | MDA, CAT, GPX, UA, Tbil | Improved recovery of acute and delayed responses to oxidative stress |
Da Silva et al., 2014 | No smoking, no antioxidants or taurine, no resistance training for at least 6 months, no injury or illness | Eccentric exercise, weight lifting for 14 days | The subject´s one repetition maximum by elbow flexors and extensors | Taurine | Once daily for 21 days | 50 mg per kg mass per day for 21 days | Days 16, 18 and 21 during training | Xylenol orange, protein carbonylation, total thiol content, superoxide dismutase, CAT, GPX, TNF-α, IL-1 β, IL-10 | Improves performance, reduces muscle damage and oxidative stress but does not decrease inflammatory response |
Leonardo-Mendoça et al., 2017 | Healthy, non-smokers, no medication or supplementation | 8 one-hour sessions per week (resistance, weights and aerobic running). Total of 10 h per week | 2 sessions weight training | Melatonin | For 4 weeks, 30–60 min before bedtime | 100 mg per day | Before starting the study and at the end of the supplementation | Glucose, total cholesterol, HDL and LDL cholesterol, triglycerides, urea, creatinine, uric acid, AST, ALT, CK, LDH | Prevents extracellular and intracellular oxidation, protection of skeletal muscle against oxidative damage |
McLeay et al., 2012 | Physically active, resistance and aerobic exercise twice weekly, at least 1 year’s experience, health questionnaire | 300 eccentric, isometric and concentric quadricep contractions | 300 contractions of the quadriceps | Blueberries | Morning, noon and afternoon | Each smoothie blended 200 g blueberries (total: 1 kg of blueberries) | 12, 36 and 60 h after exercise | CK, plasma protin carbonyls, plasma radical oxygen species, IL-6, plasma antioxidant capacity | Accelerates the recovery of maximum muscle isometric strength and regulation of antioxidant adaptation processes |
Ortiz-Franco et al., 2017 | Medical interview, non-smoker, no lactose intolerance, no medication, regular sleep schedule | 6 sessions per week of 60–75 min per day (HIIT and strength exercises) | 3 sets of 10 repetitions at 70–80% of 1RM | Melatonin | 1 daily dose before exercise | 20 mg daily | Before the start of the study, immediately after and 24 h after the physical exercise | Glucose, urea, creatine, uric acid, total cholesterol, HDL, LDL, Triglycerides, total bilirubin, iron, albumin, prealbumin, transferrin, ferritin, red blood cells, haemoglobin, haematocrit | Improves antioxidant status and beneficial effects on damage produced by high intensity training |
Sarmiento et al., 2016 | Firefighters, medical interview and physical exam | Circuit of 10 bodybuilding exercises (sports press, chest press, seated row, shoulder press, hamstring curl, chest press, chest step, chest surveyor, push with weight and quadriceps extension | Chest press, shoulders press, femoral biceps flexion, quadriceps extension | Coenzyme Q10 | For 2 weeks prior to the exercise protocol | 200 mg daily | 5 samples in total (before supplementation, after supplementation, after exercise, after 24 h of rest and after the second exercise test | 8OHdG, lipid peroxides, LDL oxidized, carbonyl | Decreases oxidation and does not increase oxidative stress |
Thang et al., 2020 | Non-obese, no gastrointestinal problems or pathologies, non-consumer of tobacco or alcohol, not allergic to oatmeal products or AINEs | 5-minute warmup, then 4 series of 15 min downhill running at a gradient of −10%, intensity equivalent to 75% of max.HR. | Treadmill at 75% of max.HR. | Oatmeal | 12 units daily for 8 weeks | 30 g of oatmeal | 6 samples total (at rest, post test, after 4, 24, 48 and 72 h) | IL-6, IL-1RA, sVCAM-1 cell adhesion molecule, G-CSF, MCP-1, CK | Improved plasma inflammatory response to exercise stress and mitigated muscle damage |
Authors | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ammar A et al. | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 6/10 |
Da Silva LA et al. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 7/10 |
Leonardo-Mendonςa R et al. | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 7/10 |
McLeay Y et al. | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 8/10 |
Ortiz-Franco M et al. | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 8/10 |
Sarmiento A et al. | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 8/10 |
Zhang T et al. | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 7/10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canals-Garzón, C.; Guisado-Barrilao, R.; Martínez-García, D.; Chirosa-Ríos, I.J.; Jerez-Mayorga, D.; Guisado-Requena, I.M. Effect of Antioxidant Supplementation on Markers of Oxidative Stress and Muscle Damage after Strength Exercise: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 1803. https://doi.org/10.3390/ijerph19031803
Canals-Garzón C, Guisado-Barrilao R, Martínez-García D, Chirosa-Ríos IJ, Jerez-Mayorga D, Guisado-Requena IM. Effect of Antioxidant Supplementation on Markers of Oxidative Stress and Muscle Damage after Strength Exercise: A Systematic Review. International Journal of Environmental Research and Public Health. 2022; 19(3):1803. https://doi.org/10.3390/ijerph19031803
Chicago/Turabian StyleCanals-Garzón, Cristina, Rafael Guisado-Barrilao, Darío Martínez-García, Ignacio Jesús Chirosa-Ríos, Daniel Jerez-Mayorga, and Isabel María Guisado-Requena. 2022. "Effect of Antioxidant Supplementation on Markers of Oxidative Stress and Muscle Damage after Strength Exercise: A Systematic Review" International Journal of Environmental Research and Public Health 19, no. 3: 1803. https://doi.org/10.3390/ijerph19031803