Criterion-Related Validation of a Music-Based Attention Assessment for Individuals with Traumatic Brain Injury
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Measures
2.3. Procedures
2.4. Statistical Analysis
3. Results
3.1. Correlation Analysis
3.2. Multiple Regression Analysis
4. Discussion
4.1. MAA as a Measure of Attention and Working Memory
4.2. MAA as a Measure of Different Types of Attention
4.3. MAA and the Distractibility Assessment
4.4. The MAA as a Predictor of Cognitive Capacity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kashluba, S.; Hanks, R.A.; Casey, J.E.; Millis, S.R. Neuropsychologic and functional outcome after complicated mild traumatic brain injury. Arch. Phys. Med. Rehabil. 2008, 89, 904–911. [Google Scholar] [CrossRef] [PubMed]
- Arciniegas, D.B.; Held, K.; Wagner, P. Cognitive impairment following TBI. Curr. Treat. Options Neurol. 2002, 4, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Ashby, F.G.; Isen, A.M.; Turken, A.U. A neuropsychological theory of positive affect and its influence on cognition. Psychol. Rev. 1999, 106, 529–550. [Google Scholar] [CrossRef] [PubMed]
- Barrow, I.M.; Collins, J.N.; Britt, L.D. The influence of an auditory distraction on rapid naming after a mild traumatic brain injury: A longitudinal study. J. Trauma Acute Care Surg. 2006, 61, 1142–1149. [Google Scholar] [CrossRef] [PubMed]
- Holmqvist, K.; Kamwendo, K.; Ivarsson, A.B. Occupational therapists’ descriptions of their work with persons suffering from cognitive impairment following acquired brain injury. Scand. J. Occup. Ther. 2009, 16, 13–24. [Google Scholar] [CrossRef]
- Satoh, M.; Takeda, K.; Nagata, K.; Hatazawa, J.; Kuzuhara, S. Activated brain regions in musicians during an ensemble: A PET study. Cogn. Brain Res. 2001, 12, 101–108. [Google Scholar] [CrossRef]
- Tsaousides, T.; Gordon, W.A. Cognitive rehabilitation following traumatic brain injury: Assessment to treatment. Mt. Sinai J. Med. 2009, 76, 173–181. [Google Scholar] [CrossRef]
- Hattiangadi, N.; Pillion, J.P.; Slomine, B.; Christensen, J.; Trovato, M.K.; Speedie, L.J. Characteristics of auditory agnosia in a child with severe traumatic brain injury: A case report. Brain Lang. 2005, 92, 12–25. [Google Scholar] [CrossRef]
- Loetscher, T.; Lincoln, N.B. Cognitive rehabilitation for attention deficits following stroke. Cochrane Database Syst. Rev. 2013, 2013, CD002842. [Google Scholar] [CrossRef]
- Murakami, T.; Hama, S.; Yamashita, H.; Onoda, K.; Hibino, S.; Sato, H.; Ogawa, S.; Yamawaki, S.; Kurisu, K. Neuroanatomic pathway associated with attentional deficits after stroke. Brain Res. 2014, 1544, 25–32. [Google Scholar] [CrossRef]
- Scheibel, R.S.; Newsome, M.R.; Steinberg, J.L.; Pearson, D.A.; Rauch, R.A.; Mao, H.; Troyanskaya, M.; Sharma, R.G.; Levin, H.S. Altered brain activation during cognitive control in patients with moderate to severe traumatic brain injury. Neurorehabilit. Neural Repair 2007, 21, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Barker-Collo, S.; Feigin, V.; Lawes, C.; Parag, V.; Senior, H. Attention deficits after incident stroke in the acute period: Frequency across types of attention and relationships to patient characteristics and functional outcomes. Top. Stroke Rehabil. 2010, 17, 463–476. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, K.L.; Ponsford, J.L.; Rajaratnam, S.M.W.; Anderson, C. Sustained attention following traumatic brain injury: Use of the Psychomotor Vigilance Task. J. Clin. Exp. Neuropsychol. 2013, 35, 210–224. [Google Scholar] [CrossRef] [PubMed]
- Snow, J.C.; Mattingley, J.B. Goal-driven selective attention in patients with right hemisphere lesions: How intact is the ipsilesional field? Brain 2006, 129, 168–181. [Google Scholar] [CrossRef] [PubMed]
- Ziino, C.; Ponsford, J. Vigilance and fatigue following traumatic brain injury. J. Int. Neuropsychol. Soc. 2006, 12, 100–110. [Google Scholar] [CrossRef]
- Ben-David, B.M.; Nguyen, L.L.; Van Lieshout, P.H. Stroop effects in persons with traumatic brain injury: Selective attention, speed of processing, or color-naming? A meta-analysis. J. Int. Neuropsychol. Soc. 2011, 17, 354–363. [Google Scholar] [CrossRef]
- Mayer, A.R.; Yang, Z.; Yeo, R.A.; Pena, A.; Ling, J.M.; Mannell, M.V.; Stippler, M.; Mojtahed, K. A functional MRI study of multimodal selective attention following mild traumatic brain injury. Brain Imaging Behav. 2012, 6, 343–354. [Google Scholar] [CrossRef]
- Stapleton, T.; Ashburn, A.; Stack, E. A pilot study of attention deficits, balance control and falls in the subacute stage following stroke. Clin. Rehabil. 2001, 15, 437–444. [Google Scholar] [CrossRef]
- Azouvi, P.; Couillet, J.; Leclercq, M.; Martin, Y.; Asloun, S.; Rousseaux, M. Divided attention and mental effort after severe traumatic brain injury. Neuropsychologia 2004, 42, 1260–1268. [Google Scholar] [CrossRef]
- Blanchet, S.; Paradis-Giroux, A.-A.; Pépin, M.; McKerral, M. Impact of divided attention during verbal learning in young adults following mild traumatic brain injury. Brain Inj. 2009, 23, 111–122. [Google Scholar] [CrossRef]
- Chung, C.S.Y.; Pollock, A.; Campbell, T.; Durward, B.R.; Hagen, S. Cognitive rehabilitation for executive dysfunction in adults with stroke or other adult non-progressive acquired brain damage. Cochrane Database Syst. Rev. 2013, 2013, CD008391. [Google Scholar] [CrossRef] [PubMed]
- Mathias, J.L.; Wheaton, P. Changes in attention and information-processing speed following severe traumatic brain injury: A meta-analytic review. Neuropsychology 2007, 21, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Paré, N.; Rabin, L.A.; Fogel, J.; Pépin, M. Mild traumatic brain injury and its sequelae: Characterisation of divided attention deficits. Neuropsychol. Rehabil. 2009, 19, 110–137. [Google Scholar] [CrossRef] [PubMed]
- Poulin, V.; Korner-Bitensky, N.; Dawson, D.R.; Bherer, L. Efficacy of executive function interventions after stroke: A systematic review. Top. Stroke Rehabil. 2012, 19, 158–171. [Google Scholar] [CrossRef]
- Kaipio, M.L.; Cheour, M.; Ceponiene, R.; Ohman, J.; Alku, P.; Näätänen, R. Increased distractibility in closed head injury as revealed by event-related potentials. Neuroreport 2000, 11, 1463–1468. [Google Scholar] [CrossRef]
- Marsh, J.E.; Vachon, F.; Jones, D.M. When does between-sequence phonological similarity promote irrelevant sound disruption? J. Exp. Psychol. Learn. Mem. Cogn. 2008, 34, 243–248. [Google Scholar] [CrossRef]
- Rinne, T.; Särkkä, A.; Degerman, A.; Schröger, E.; Alho, K. Two separate mechanisms underlie auditory change detection and involuntary control of attention. Brain Res. 2006, 1077, 135–143. [Google Scholar] [CrossRef]
- Sarno, S.; Erasmus, L.P.; Frey, M.; Lippert, G.; Lipp, B. Electrophysiological correlates of active and passive attentional states after severe traumatic brain injury. Funct. Neurol. 2006, 21, 21–29. [Google Scholar]
- Botvinick, M.M.; Braver, T.S.; Barch, D.M.; Carter, C.S.; Cohen, J.D. Conflict monitoring and cognitive control. Psychol Rev. 2001, 108, 624–652. [Google Scholar] [CrossRef]
- Ponsford, J.; Olver, J.H.; Curran, C. A profile of outcome: 2 Years after traumatic brain injury. Brain Inj. 1995, 9, 1–10. [Google Scholar] [CrossRef]
- Sarno, S.; Erasmus, I.P.; Lipp, B.; Schlaegel, W. Multisensory integration after traumatic brain injury: A reaction time study between pairings of vision, touch, and audition. Brain Inj. 2003, 17, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Kaipio, M.L.; Cheour, M.; Öhman, J.; Salonen, O.; Näätänen, R. Mismatch negativity abnormality in traumatic brain injury without macroscopic lesions on conventional MRI. NeuroReport 2013, 24, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Kewman, D.G.; Yanus, B.; Kirsch, N. Assessment of distractibility in auditory comprehension after traumatic brain injury. Brain Inj. 1988, 2, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Lew, H.; Lee, E.; Pan, S.; Date, E. Electrophysiologic abnormalities of auditory and visual information processing in patients with traumatic brain injury. Arch. Phys. Med. Rehabil. 2004, 83, 5. [Google Scholar] [CrossRef]
- Schaefer, M.; Tewes, U.; Münte, T.F.; Johannes, S. Lateralized irrelevant speech alters visuospatial selective attention mechanisms. Biol. Psychol. 2006, 72, 51–58. [Google Scholar] [CrossRef]
- Solbakk, A.K.; Reinvang, I.; Andersson, S. Assessment of P3a and P3b after moderate to severe brain injury. Clin. Electroencephalogr. 2002, 33, 102–110. [Google Scholar] [CrossRef]
- Wilson, M.J.; Harkrider, A.W.; King, K.A. Effects of complexity of visual distracters on attention and information processing speed reflected in auditory p300. Ear Hear. 2012, 33, 480–488. [Google Scholar] [CrossRef]
- Escera, C.; Alho, K.; Schröger, E.; Winkler, I. Involuntary attention and distractibility as evaluated with event-related brain potentials. Audiol. Neuro-Otol. 2000, 5, 151–166. [Google Scholar] [CrossRef]
- Schweizer, T.A.; Kan, K.; Hung, Y.; Tam, F.; Naglie, G.; Graham, S. Brain activity during driving with distraction: An immersive fMRI study. Front. Hum. Neurosci. 2013, 7, 53. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Adult Intelligence Scale, 4th ed.; Pearson Assessment: San Antonio, TX, USA, 2008. [Google Scholar]
- Gronwall, D.M.A. Paced auditory serial-addition task: A measure of recovery from concussion. Percept. Mot. Ski. 1977, 44, 367–373. [Google Scholar] [CrossRef]
- Calabrò, R.S.; Naro, A.; Filoni, S.; Pullia, M.; Billeri, L.; Tomasello, P. Walking to your right music: A randomized controlled trial on the novel use of treadmill plus music in Parkinson’s disease. J. NeuroEng. Rehabil. 2019, 16, 68. [Google Scholar] [CrossRef] [PubMed]
- Speranza, L.; Pulcrano, S.; Perrone-Capano, C.; di Porzio, U.; Volpicelli, F. Music affects functional brain connectivity and is effective in the treatment of neurological disorders. Rev. Neurosci. 2022. [Google Scholar] [CrossRef] [PubMed]
- Snyder, J.S.; Alain, C. Toward a neurophysiological theory of auditory stream segregation. Psychol. Bull. 2007, 133, 780–799. [Google Scholar] [CrossRef] [PubMed]
- Bigand, E.; McAdams, S.; Forêt, S. Divided attention in music. Int. J. Psychol. 2000, 35, 270–278. [Google Scholar] [CrossRef]
- Crawley, E.J.; Acker-Mills, B.E.; Pastore, R.E.; Weil, S. Change detection in multi-voice music: The role of musical structure, musical training, and task demands. J. Exp. Psychol. Hum. Percept. Perform. 2002, 28, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Davison, L.L.; Banks, W.P. Selective attention in two-part counterpoint. Music Percept. 2003, 21, 3–20. [Google Scholar] [CrossRef]
- Gallun, F.J.; Mason, C.R.; Kidd, G., Jr. Task-dependent costs in processing two simultaneous auditory stimuli. Percept. Psychophys. 2007, 69, 757–771. [Google Scholar] [CrossRef]
- Shinn-Cunningham, B.; Ihlefeld, A. Selective and divided attention: Extracting information from simultaneous sound sources. In Proceedings of the ICAD’04: Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, 6–9 July 2004. [Google Scholar]
- Slovarp, L.; Azuma, T.; Lapointe, L. The effect of traumatic brain injury on sustained attention and working memory. Brain Injury. 2012, 26, 48–57. [Google Scholar] [CrossRef]
- Janata, P. Brain networks that track musical structure. Ann. N. Y. Acad. Sci. 2005, 1060, 111–124. [Google Scholar] [CrossRef]
- Janata, P.; Tillmann, B.; Bharucha, J.J. Listening to polyphonic music recruits domain-general attention and working memory circuits. Cogn. Affect. Behav. Neurosci. 2002, 2, 121–140. [Google Scholar] [CrossRef]
- Trainor, L.J.; McDonald, K.L.; Alain, C. Automatic and controlled processing of melodic contour and interval information measured by electrical brain activity. J. Cogn. Neurosci. 2002, 14, 430–442. [Google Scholar] [CrossRef]
- Bengtsson, S.L.; Ullen, F.; Ehrsson, H.H.; Hashimoto, T.; Kito, T.; Naito, E.; Forssberg, H.; Sadato, N. Listening to rhythms activates motor and premotor cortices. Cortex 2009, 45, 62–71. [Google Scholar] [CrossRef]
- Macaluso, E.; Frith, C.D.; Driver, J. Directing attention to locations and to sensory modalities: Multiple levels of selective processing revealed with PET. Cereb. Cortex 2002, 12, 357–368. [Google Scholar] [CrossRef]
- Mirsky, A.F.; Anthony, B.J.; Duncan, C.C.; Aheam, M.B.; Kellam, S.G. Analysis of the elements of attention: A neurophysiological approach. Neuropsychol. Rev. 1991, 2, 109–145. [Google Scholar] [CrossRef]
- Ponsford, J. Rehabilitation of attention following traumatic brain injury. In Cognitive Neurorehabilitation, 2nd ed.; Stuss, D.T., Winocur, G., Roberston, I.H., Eds.; Cambridge University Press: New York, NY, USA, 2008; pp. 507–521. [Google Scholar]
- Serences, J.T.; Yantis, S. Spatially selective representations of voluntary and stimulus-driven attentional priority in human occipital, parietal, and frontal cortex. Cereb. Cortex 2007, 17, 284–293. [Google Scholar] [CrossRef]
- Talsma, D.; Kok, A. Nonspatial intermodal selective attention is mediated by sensory brain areas: Evidence from event-related potentials. Psychophysiology 2001, 38, 736–751. [Google Scholar] [CrossRef]
- Jeong, E.; Lesiuk, T. Development and preliminary evaluation of a music-based attention assessment for patients with traumatic brain injury. J. Music Ther. 2011, 48, 551–572. [Google Scholar] [CrossRef]
- Jeong, E. Psychometric validation of a music-based attention assessment: Revised for patients with traumatic brain injury. J. Music Ther. 2013, 50, 66–92. [Google Scholar] [CrossRef] [PubMed]
- Jeong, E.; Ryu, H. Melodic contour identification reflects the cognitive threshold of aging. Front. Aging Neurosci. 2016, 8, 134. [Google Scholar] [CrossRef] [PubMed]
- Jeong, E.; Ryu, H.; Jo, G.; Kim, J. Cognitive load changes during music listening and its implication in earcon design in public environments: An fNIRS study. Int. J. Environ. Res. Public Health 2018, 15, 2075. [Google Scholar] [CrossRef] [PubMed]
- Jeong, E.; Ryu, H.; Shin, J.-H.; Kwon, G.H.; Jo, G.; Lee, J.-Y. High oxygen exchange to music indicates auditory distractibility in acquired brain injury: An fNIRS study with a vector-based phase analysis. Sci. Rep. 2018, 8, 16737. [Google Scholar] [CrossRef]
- Jo, G.; Kim, Y.-M.; Jun, D.W.; Jeong, E. Pitch processing can indicate cognitive alterations in chronic liver disease: An fNIRS study. Front. Hum. Neurosci. 2020, 14, 535775. [Google Scholar] [CrossRef]
- Franzen, M.D. Neuropsychological assessment in traumatic brain injury. Crit. Care Nurs. Q. 2000, 23, 58–64. [Google Scholar] [CrossRef]
- Léon-Carrión, J.; von Wild, K.R.H.; Zitnay, G.A. Neuropsychological assessment of persons with acquired brain injury. In Brain Injury Treatment: Theories and Practices; Léon-Carrión, J., Taaffe, P.J., Martín, J.M., Eds.; Taylor & Francis: Abingdon, UK, 2006; pp. 401–440. [Google Scholar]
- Delis, D.C.; Kaplan, E.; Kramer, J.H. Delis-Kaplan Executive Function System; The Psychological Corporation: San Antonio, TX, USA, 2001. [Google Scholar]
- Keifer, E.; Tranel, D. A neuropsychological investigation of the Delis-Kaplan Executive Function System. J. Clin. Exp. Neuropsychol. 2013, 35, 1048–1059. [Google Scholar] [CrossRef] [PubMed]
- Conners, C.K.; Staff, M.H.S. Conners’ Continuous Performance Test II: Computer Program for Windows Technical Guide and Softwqre Manual; Multi-Health Systems, Inc.: Toronto, ON, Canada, 2000. [Google Scholar]
- Stewart, L.; Von Kriegstein, K.; Warren, J.D.; Griffiths, T.D. Music and the brain: Disorders of musical listening. Brain 2006, 12 Pt 10, 2533–2553. [Google Scholar] [CrossRef] [PubMed]
- Zatorre, R.J.; Evans, A.C.; Meyer, E. Neural mechanisms underlying melodic perception and memory for pitch. J. Neurosci. 1994, 14, 1908–1919. [Google Scholar] [CrossRef] [PubMed]
- Legrain, V.; Van Damme, S.; Eccleston, C.; Davis, K.D.; Seminowicz, D.A.; Crombez, G. A neurocognitive model of attention to pain: Behavioral and neuroimaging evidence. Pain 2009, 144, 230–232. [Google Scholar] [CrossRef]
- Buschman, T.J.; Miller, E.K. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 2007, 315, 1860–1862. [Google Scholar] [CrossRef]
- Fritz, J.B.; Elhilali, M.; David, S.V.; Shamma, S.A. Auditory attention—Focusing the searchlight on sound. Curr. Opin. Neurobiol. 2007, 17, 437–455. [Google Scholar] [CrossRef]
- Uhlig, M.; Fairhurst, M.T.; Keller, P.E. The importance of integration and top-down salience when listening to complex multi-part musical stimuli. Neuroimage 2013, 77, 52–61. [Google Scholar] [CrossRef]
- Draper, K.; Ponsford, J. Cognitive functioning ten years following traumatic brain injury and rehabilitation. Neuropsychology 2008, 22, 618–625. [Google Scholar] [CrossRef]
- Willmott, C.; Ponsford, J.; Hocking, C.; Schönberger, M. Factors contributing to attentional impairments after traumatic brain injury. Neuropsychology 2009, 23, 424–432. [Google Scholar] [CrossRef]
- Stulemeijer, M.; Andriessen, T.M.J.C.; Brauer, J.M.P.; Vos, P.E.; Van Der Werf, S. Cognitive performance after Mild Traumatic Brain Injury: The impact of poor effort on test results and its relation to distress, personality and litigation. Brain Inj. 2007, 21, 309–318. [Google Scholar] [CrossRef]
- Coronado, R.A.; Gay, C.W.; Bialosky, J.E.; Carnaby, G.D.; Bishop, M.D.; George, S.Z. Changes in pain sensitivity following spinal manipulation: A systematic review and meta-analysis. J. Electromyogr. Kinesiol. 2012, 22, 752–767. [Google Scholar] [CrossRef] [PubMed]
- Coronado, V.G.; McGuire, L.C.; Sarmiento, K.; Bell, J.; Lionbarger, M.R.; Jones, C.D.; Geller, A.I.; Khoury, N.; Xu, L. Trends in traumatic brain injury in the U.S. and the public health response: 1995–2009. J. Saf. Res. 2012, 43, 299–307. [Google Scholar] [CrossRef]
- Faul, M.; Coronado, V. Epidemiology of traumatic brain injury. Handb. Clin. Neurol. 2015, 127, 3–13. [Google Scholar] [PubMed]
- Stratton, S.J. Population research: Convenience sampling strategies. Prehospital Disaster Med. 2021, 36, 373–374. [Google Scholar] [CrossRef] [PubMed]
n | % | ||
---|---|---|---|
Gender | Male | 30 | 75 |
Female | 10 | 25 | |
Ethnicity | Caucasian | 5 | 12.5 |
African American | 12 | 30 | |
Hispanic | 23 | 75 | |
Data since brain injury | Less than a year | 10 | 25 |
1 to 2 years | 12 | 30 | |
More than 2 years | 18 | 45 |
Subtests | Item# | Stimuli | Contexts | Tasks | |
---|---|---|---|---|---|
Sustained Attention | Basic | 4 | A set of five tones | A single auditory stream | To identify the direction(s) of the melodic contour |
Advanced | 13 | Two to three sets of five tones | |||
Selective Attention | 6 | One to three set(s) of five tones and environmental sounds | Two auditory streams: One conveying task-relevant information and the other delivering distracting sounds | To identify the direction(s) of the melodic contour in the presence of distraction | |
Divided Attention | Basic | 16 | One to two set(s) of five tones | Two auditory streams: both conveying task-relevant information | To identify the direction(s) of the melodic contour in the presence of more competing sounds |
Advanced | 6 | Three sets of five tones | To identify two direction(s) of melodic contours |
M | SD | Minimum | Maximum | ||
---|---|---|---|---|---|
MAA | Sustained Attention-Basic | 3.35 | 1.21 | 0 | 4 |
Sustained Attention-Advanced | 8.18 | 4.09 | 0 | 14 | |
Selective Attention | 3.40 | 1.88 | 0 | 6 | |
Divided Attention-Basic | 5.48 | 3.99 | 0 | 16 | |
Divided Attention-Advanced | 0.08 | 0.27 | 0 | 1 | |
Total | 20.48 | 9.76 | 2 | 41 | |
DST | Forward | 7.74 | 3.49 | 2 | 17 |
Backward | 7.87 | 2.30 | 3 | 15 | |
Sequencing | 6.47 | 2.68 | 2 | 14 | |
Total | 5.32 | 2.16 | 1 | 11 | |
CWIT | Color naming | 6.24 | 4.26 | 1 | 13 |
Word reading | 6.49 | 4.51 | 1 | 14 | |
Inhibition | 7.08 | 4.94 | 1 | 15 | |
Inhibition/Switching | 6.24 | 4.83 | 1 | 15 | |
CCPT | Omissions | 82.02 | 78.08 | 40.86 | 321.03 |
Commissions | 48.72 | 11.18 | 33.38 | 73.90 | |
Hit RT | 56.05 | 16.75 | 16.79 | 86.44 | |
Hit RT SE | 57.00 | 17.61 | 33.15 | 94.71 | |
Variability | 55.62 | 14.67 | 30.11 | 89.78 | |
Detectability | 47.60 | 11.16 | 21.43 | 66.40 | |
Hit RT ISI Change | 51.01 | 12.47 | 24.48 | 90.18 | |
Hit SE ISI Change | 50.17 | 9.65 | 35.92 | 72.54 |
MAA | Sustained Attention-Basic | Sustained Attention- Advanced | Selective Attention | Divided Attention-Basic | Divided Attention- Advanced | Total | |
---|---|---|---|---|---|---|---|
Subtests | |||||||
DST | Forward | 0.17 | 0.31 | 0.39 * | 0.36 * | 0.39 * | 0.40 * |
Backward | 0.03 | 0.54 *** | 0.52 ** | 0.41 * | 0.45 ** | 0.51 ** | |
Sequencing | 0.17 | 0.35 * | 0.46 ** | 0.32 * | 0.39 * | 0.40 * | |
CWIT | Color naming | −0.00 | 0.50 ** | 0.50 ** | 0.41 * | 0.15 | 0.48 ** |
Word reading | 0.01 | 0.51 ** | 0.47 ** | 0.39 * | 0.15 | 0.47 ** | |
Inhibition | −0.15 | 0.46 ** | 0.43 ** | 0.43 ** | 0.24 | 0.44 ** | |
Inhibition/Switching | −0.07 | 0.36 * | 0.36 * | 0.44 ** | 0.38 * | 0.40 * | |
CCPT | Hit RT SE | 0.08 | −0.36 | −0.43 * | −0.20 | −0.38 * | −0.39 * |
Variability | 0.02 | −0.44 * | −0.54 ** | −0.34 | −0.49 ** | −0.48 ** | |
Detectability | 0.01 | 0.17 | 0.25 | −0.01 | 0.17 | 0.23 | |
Hit RT ISI Change | 0.13 | 0.24 | 0.25 | 0.45 * | 0.32 | 0.21 | |
Hit SE ISI Change | 0.21 | 0.32 | 0.38 * | 0.51 ** | 0.42 * | 0.28 |
Age | Date | Education | Music Education | MAA | DST | |
---|---|---|---|---|---|---|
Age | - | |||||
Date | 0.13 | - | ||||
Education | 0.16 | 0.14 | - | |||
Music education | 0.29 | 0.29 | 0.50 ** | - | ||
MAA | −0.64 | 0.65 | 0.37 * | 0.16 | - | |
DST | 0.23 | 0.03 | 0.32 * | 0.13 | 0.40 * | - |
Model | Variables | R2 | R2 Change | F | β |
---|---|---|---|---|---|
1 | MAA performance | 0.47 | 0.23 | 10.13 ** | 0.47 ** |
2 | MAA performance | 0.52 | 0.05 | 6.31 ** | 0.39 * |
Education | 0.23 | ||||
3 | MAA performance | 0.54 | 0.02 | 4.50 ** | 0.38 * |
Education | 0.31 | ||||
Music education | −0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, E.; Ireland, S.J. Criterion-Related Validation of a Music-Based Attention Assessment for Individuals with Traumatic Brain Injury. Int. J. Environ. Res. Public Health 2022, 19, 16285. https://doi.org/10.3390/ijerph192316285
Jeong E, Ireland SJ. Criterion-Related Validation of a Music-Based Attention Assessment for Individuals with Traumatic Brain Injury. International Journal of Environmental Research and Public Health. 2022; 19(23):16285. https://doi.org/10.3390/ijerph192316285
Chicago/Turabian StyleJeong, Eunju, and Susan J. Ireland. 2022. "Criterion-Related Validation of a Music-Based Attention Assessment for Individuals with Traumatic Brain Injury" International Journal of Environmental Research and Public Health 19, no. 23: 16285. https://doi.org/10.3390/ijerph192316285
APA StyleJeong, E., & Ireland, S. J. (2022). Criterion-Related Validation of a Music-Based Attention Assessment for Individuals with Traumatic Brain Injury. International Journal of Environmental Research and Public Health, 19(23), 16285. https://doi.org/10.3390/ijerph192316285