Relationships of Physical Activity, Depression, and Sleep with Cognitive Function in Community-Dwelling Older Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Assessments and Measurements
2.2.1. Physical Activity
2.2.2. Depressive Symptoms
2.2.3. Sleep
2.2.4. Cognitive Function
2.3. Covariates
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mariani, E.; Monastero, R.; Mecocci, P. Mild cognitive impairment: A systematic review. J. Alzheimers Dis. 2007, 12, 23–35. [Google Scholar] [CrossRef] [PubMed]
 - Beydoun, M.A.; Beydoun, H.A.; Gamaldo, A.A.; Teel, A.; Zonderman, A.B.; Wang, Y. Epidemiologic studies of modifiable factors associated with cognition and dementia: Systematic review and meta-analysis. BMC Public Health 2014, 14, 643. [Google Scholar] [CrossRef]
 - Norton, S.; Matthews, F.E.; Barnes, D.E.; Yaffe, K.; Brayne, C. Potential for primary prevention of Alzheimer’s disease: An analysis of population-based data. Lancet Neurol. 2014, 13, 788–794. [Google Scholar] [CrossRef] [PubMed]
 - Kouloutbani, K.; Karteroliotis, K.; Politis, A. The effect of physical activity on dementia. Psychiatriki 2019, 30, 142–155. [Google Scholar] [CrossRef] [PubMed]
 - Ahlskog, J.E.; Geda, Y.E.; Graff-Radford, N.R.; Petersen, R.C. Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clin. Proc. 2011, 86, 876–884. [Google Scholar] [CrossRef] [PubMed]
 - Saraulli, D.; Costanzi, M.; Mastrorilli, V.; Farioli-Vecchioli, S. The Long Run: Neuroprotective Effects of Physical Exercise on Adult Neurogenesis from Youth to Old Age. Curr. Neuropharmacol. 2017, 15, 519–533. [Google Scholar] [CrossRef]
 - Northey, J.M.; Cherbuin, N.; Pumpa, K.L.; Smee, D.J.; Rattray, B. Exercise interventions for cognitive function in adults older than 50: A systematic review with meta-analysis. Br. J. Sports Med. 2018, 52, 154–160. [Google Scholar] [CrossRef]
 - Bherer, L. Cognitive plasticity in older adults: Effects of cognitive training and physical exercise. Ann. N. Y. Acad. Sci. 2015, 1337, 1–6. [Google Scholar] [CrossRef] [PubMed]
 - Angevaren, M.; Aufdemkampe, G.; Verhaar, H.J.; Aleman, A.; Vanhees, L. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst. Rev. 2008, CD005381.pub3. [Google Scholar] [CrossRef]
 - Lautenschlager, N.T.; Anstey, K.J.; Kurz, A.F. Non-pharmacological strategies to delay cognitive decline. Maturitas 2014, 79, 170–173. [Google Scholar] [CrossRef]
 - Liu, W.; Ge, T.; Leng, Y.; Pan, Z.; Fan, J.; Yang, W.; Cui, R. The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex. Neural Plast. 2017, 2017, 6871089. [Google Scholar] [CrossRef]
 - Muzur, A.; Pace-Schott, E.F.; Hobson, J.A. The prefrontal cortex in sleep. Trends Cogn. Sci. 2002, 6, 475–481. [Google Scholar] [CrossRef]
 - Frith, C.; Dolan, R. The role of the prefrontal cortex in higher cognitive functions. Cogn. Brain Res. 1996, 5, 175–181. [Google Scholar] [CrossRef] [PubMed]
 - Moriarty, T.; Bourbeau, K.; Bellovary, B.; Zuhl, M.N. Exercise Intensity Influences Prefrontal Cortex Oxygenation during Cognitive Testing. Behav. Sci. 2019, 9, 83. [Google Scholar] [CrossRef] [PubMed]
 - Chang, C.H.; Chen, M.C.; Qiu, M.H.; Lu, J. Ventromedial prefrontal cortex regulates depressive-like behavior and rapid eye movement sleep in the rat. Neuropharmacology 2014, 86, 125–132. [Google Scholar] [CrossRef] [PubMed]
 - Wu, J.; Buchsbaum, M.S.; Gillin, J.C.; Tang, C.; Cadwell, S.; Wiegand, M.; Najafi, A.; Klein, E.; Hazen, K.; Bunney, W.E., Jr.; et al. Prediction of antidepressant effects of sleep deprivation by metabolic rates in the ventral anterior cingulate and medial prefrontal cortex. Am. J. Psychiatry 1999, 156, 1149–1158. [Google Scholar] [CrossRef] [PubMed]
 - Pizzagalli, D.A.; Roberts, A.C. Prefrontal cortex and depression. Neuropsychopharmacology 2022, 47, 225–246. [Google Scholar] [CrossRef]
 - Verweij, I.M.; Romeijn, N.; Smit, D.J.; Piantoni, G.; Van Someren, E.J.; van der Werf, Y.D. Sleep deprivation leads to a loss of functional connectivity in frontal brain regions. BMC Neurosci. 2014, 15, 88. [Google Scholar] [CrossRef]
 - Arnsten, A.F. Stress signalling pathways that impair prefrontal cortex structure and function. Nat. Rev. Neurosci. 2009, 10, 410–422. [Google Scholar] [CrossRef]
 - da Silva, W.Q.A.; Fontes, E.B.; Forti, R.M.; Lima, Z.L.; Machado, D.; Deslandes, A.C.; Hussey, E.; Ward, N.; Mesquita, R.C.; Okano, A.H.; et al. Affect during incremental exercise: The role of inhibitory cognition, autonomic cardiac function, and cerebral oxygenation. PLoS ONE 2017, 12, e0186926. [Google Scholar] [CrossRef] [PubMed]
 - Harris, K.D.; Thiele, A. Cortical state and attention. Nat. Rev. Neurosci. 2011, 12, 509–523. [Google Scholar] [CrossRef] [PubMed]
 - Pedroso, R.V.; Lima-Silva, A.E.; Tarachuque, P.E.; Fraga, F.J.; Stein, A.M. Efficacy of Physical Exercise on Cortical Activity Modulation in Mild Cognitive Impairment: A Systematic Review. Arch. Phys. Med. Rehabil. 2021, 102, 2393–2401. [Google Scholar] [CrossRef] [PubMed]
 - Yang, X.; Qi, S.; Wang, M.; Calhoun, V.D.; Sui, J.; Li, T.; Ma, X. Subtypes of depression characterized by different cognitive decline and brain activity alterations. J. Psychiatr. Res. 2021, 138, 413–419. [Google Scholar] [CrossRef] [PubMed]
 - Perini, G.; Cotta Ramusino, M.; Sinforiani, E.; Bernini, S.; Petrachi, R.; Costa, A. Cognitive impairment in depression: Recent advances and novel treatments. Neuropsychiatr. Dis. Treat. 2019, 15, 1249–1258. [Google Scholar] [CrossRef] [PubMed]
 - Korczyn, A.D.; Halperin, I. Depression and dementia. J. Neurol. Sci. 2009, 283, 139–142. [Google Scholar] [CrossRef]
 - Hammar, A.; Ardal, G. Cognitive functioning in major depression–A summary. Front. Hum. Neurosci. 2009, 3, 26. [Google Scholar] [CrossRef]
 - Gonda, X.; Pompili, M.; Serafini, G.; Carvalho, A.F.; Rihmer, Z.; Dome, P. The role of cognitive dysfunction in the symptoms and remission from depression. Ann. Gen. Psychiatry 2015, 14, 27. [Google Scholar] [CrossRef]
 - Diekelmann, S. Sleep for cognitive enhancement. Front. Syst. Neurosci. 2014, 8, 46. [Google Scholar] [CrossRef]
 - Deak, M.C.; Stickgold, R. Sleep and cognition. Wiley Interdiscip. Rev. Cogn. Sci. 2010, 1, 491–500. [Google Scholar] [CrossRef]
 - Lim, A.S.; Kowgier, M.; Yu, L.; Buchman, A.S.; Bennett, D.A. Sleep Fragmentation and the Risk of Incident Alzheimer’s Disease and Cognitive Decline in Older Persons. Sleep 2013, 36, 1027–1032. [Google Scholar] [CrossRef] [PubMed]
 - Chiu, H.Y.; Lai, F.C.; Chen, P.Y.; Tsai, P.S. Differences Between Men and Women Aged 65 and Older in the Relationship Between Self-Reported Sleep and Cognitive Impairment: A Nationwide Survey in Taiwan. J. Am. Geriatr. Soc. 2016, 64, 2051–2058. [Google Scholar] [CrossRef] [PubMed]
 - Lo, J.C.; Groeger, J.A.; Cheng, G.H.; Dijk, D.J.; Chee, M.W. Self-reported sleep duration and cognitive performance in older adults: A systematic review and meta-analysis. Sleep Med. 2016, 17, 87–98. [Google Scholar] [CrossRef]
 - Diem, S.J.; Blackwell, T.L.; Stone, K.L.; Yaffe, K.; Tranah, G.; Cauley, J.A.; Ancoli-Israel, S.; Redline, S.; Spira, A.P.; Hillier, T.A.; et al. Measures of Sleep-Wake Patterns and Risk of Mild Cognitive Impairment or Dementia in Older Women. Am. J. Geriatr. Psychiatry 2016, 24, 248–258. [Google Scholar] [CrossRef] [PubMed]
 - Yu, J.; Rawtaer, I.; Fam, J.; Jiang, M.J.; Feng, L.; Kua, E.H.; Mahendran, R. Sleep correlates of depression and anxiety in an elderly Asian population. Psychogeriatrics 2016, 16, 191–195. [Google Scholar] [CrossRef] [PubMed]
 - Roberts, R.E.; Duong, H.T. The prospective association between sleep deprivation and depression among adolescents. Sleep 2014, 37, 239–244. [Google Scholar] [CrossRef] [PubMed]
 - IPAQ. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire. 2005. Available online: https://www.researchgate.net/publication/267932370_Guidelines_for_data_processing_and_analysis_of_the_International_Physical_Activity_Questionnaire_IPAQ2005_URL_httpwwwIPAQkise (accessed on 10 November 2005).
 - Tomioka, K.; Iwamoto, J.; Saeki, K.; Okamoto, N. Reliability and validity of the International Physical Activity Questionnaire (IPAQ) in elderly adults: The Fujiwara-kyo Study. J. Epidemiol. 2011, 21, 459–465. [Google Scholar] [CrossRef]
 - Ahn, Y.M.; Lee, K.Y.; Yi, J.S.; Kang, M.H.; Kim, D.H.; Kim, J.L.; Shin, J.; Shin, H.K.; Yeon, B.K.; Lee, J.H.; et al. A validation study of the Korean-version of the Montgomery-Asberg Depression Rating Scale. J. Korean Neuropsychiatr. Assoc. 2003, 44, 466–476. [Google Scholar] [CrossRef]
 - Sohn, S.I.; Kim, D.H.; Lee, M.Y.; Cho, Y.W. The reliability and validity of the Korean version of the Pittsburgh Sleep Quality Index. Sleep Breath. 2012, 16, 803–812. [Google Scholar] [CrossRef]
 - Smyth, C.A. Evaluating sleep quality in older adults: The Pittsburgh Sleep Quality Index can be used to detect sleep disturbances or deficits. Am. J. Nurs. 2008, 108, 42–50; quiz 41–50. [Google Scholar] [CrossRef][Green Version]
 - Kim, T.H.; Jhoo, J.H.; Park, J.H.; Kim, J.L.; Ryu, S.H.; Moon, S.W.; Choo, I.H.; Lee, D.W.; Yoon, J.C.; Do, Y.J.; et al. Korean version of mini mental status examination for dementia screening and its’ short form. Psychiatry Investig. 2010, 7, 102–108. [Google Scholar] [CrossRef]
 - Kandola, A.; Ashdown-Franks, G.; Hendrikse, J.; Sabiston, C.M.; Stubbs, B. Physical activity and depression: Towards understanding the antidepressant mechanisms of physical activity. Neurosci. Biobehav. Rev. 2019, 107, 525–539. [Google Scholar] [CrossRef] [PubMed]
 - Ignacio, Z.M.; da Silva, R.S.; Plissari, M.E.; Quevedo, J.; Reus, G.Z. Physical Exercise and Neuroinflammation in Major Depressive Disorder. Mol. Neurobiol. 2019, 56, 8323–8335. [Google Scholar] [CrossRef] [PubMed]
 - Zhao, J.L.; Jiang, W.T.; Wang, X.; Cai, Z.D.; Liu, Z.H.; Liu, G.R. Exercise, brain plasticity, and depression. CNS Neurosci. Ther. 2020, 26, 885–895. [Google Scholar] [CrossRef] [PubMed]
 - Gourgouvelis, J.; Yielder, P.; Murphy, B. Exercise Promotes Neuroplasticity in Both Healthy and Depressed Brains: An fMRI Pilot Study. Neural. Plast. 2017, 2017, 8305287. [Google Scholar] [CrossRef] [PubMed]
 - Paolucci, E.M.; Loukov, D.; Bowdish, D.M.E.; Heisz, J.J. Exercise reduces depression and inflammation but intensity matters. Biol. Psychol. 2018, 133, 79–84. [Google Scholar] [CrossRef]
 - Fu, Q.; Levine, B.D. Exercise and the autonomic nervous system. Handb. Clin. Neurol. 2013, 117, 147–160. [Google Scholar] [CrossRef]
 - Michael, S.; Graham, K.S.; Davis, G.M.O. Cardiac Autonomic Responses during Exercise and Post-exercise Recovery Using Heart Rate Variability and Systolic Time Intervals-A Review. Front. Physiol. 2017, 8, 301. [Google Scholar] [CrossRef]
 - Wang, Y.; Zhao, X.; O’Neil, A.; Turner, A.; Liu, X.; Berk, M. Altered cardiac autonomic nervous function in depression. BMC Psychiatry 2013, 13, 187. [Google Scholar] [CrossRef]
 - Schwarck, S.; Busse, N.; Ziegler, G.; Glanz, W.; Becke, A.; Duzel, E. Heart Rate Variability During Physical Exercise Is Associated With Improved Cognitive Performance in Alzheimer’s Dementia Patients-A Longitudinal Feasibility Study. Front. Sports Act. Living 2021, 3, 684089. [Google Scholar] [CrossRef]
 - Dalise, A.M.; Prestano, R.; Fasano, R.; Gambardella, A.; Barbieri, M.; Rizzo, M.R. Autonomic Nervous System and Cognitive Impairment in Older Patients: Evidence From Long-Term Heart Rate Variability in Real-Life Setting. Front. Aging Neurosci. 2020, 12, 40. [Google Scholar] [CrossRef]
 - Hugdahl, K. Cognitive influences on human autonomic nervous system function. Curr. Opin. Neurobiol. 1996, 6, 252–258. [Google Scholar] [CrossRef] [PubMed]
 - Mandolesi, L.; Polverino, A.; Montuori, S.; Foti, F.; Ferraioli, G.; Sorrentino, P.; Sorrentino, G. Effects of Physical Exercise on Cognitive Functioning and Wellbeing: Biological and Psychological Benefits. Front. Psychol. 2018, 9, 509. [Google Scholar] [CrossRef] [PubMed]
 - Tanaka, M.; Szabo, A.; Spekker, E.; Polyak, H.; Toth, F.; Vecsei, L. Mitochondrial Impairment: A Common Motif in Neuropsychiatric Presentation? The Link to the Tryptophan-Kynurenine Metabolic System. Cells 2022, 11, 2607. [Google Scholar] [CrossRef] [PubMed]
 - Martos, D.; Tuka, B.; Tanaka, M.; Vecsei, L.; Telegdy, G. Memory Enhancement with Kynurenic Acid and Its Mechanisms in Neurotransmission. Biomedicines 2022, 10, 849. [Google Scholar] [CrossRef] [PubMed]
 - Di Gregorio, F.; La Porta, F.; Petrone, V.; Battaglia, S.; Orlandi, S.; Ippolito, G.; Romei, V.; Piperno, R.; Lullini, G. Accuracy of EEG Biomarkers in the Detection of Clinical Outcome in Disorders of Consciousness after Severe Acquired Brain Injury: Preliminary Results of a Pilot Study Using a Machine Learning Approach. Biomedicines 2022, 10, 1897. [Google Scholar] [CrossRef] [PubMed]
 - Battaglia, S.; Thayer, J.F. Functional interplay between central and autonomic nervous systems in human fear conditioning. Trends Neurosci. 2022, 45, 504–506. [Google Scholar] [CrossRef]
 



| Variables a | All Participants (n = 864) | 
|---|---|
| Age, years | 73.8 ± 6.9 | 
| Female (%) | 603 (69.8) | 
| Years of education | 6.6 ± 4.6 | 
| Living alone (%) | 351 (40.6) | 
| Hypertension (%) | 487 (56.4) | 
| Diabetes (%) | 216 (25.0) | 
| Cardiovascular disease (%) | 343 (39.7) | 
| Korean Mini Nutritional Assessment score | 25.2 ± 3.9 | 
| Korean Pittsburgh Sleep Quality Index | 9.7 ± 4.2 | 
| Montgomery-Asberg Depression Rating Scale score | 17.5 ± 10.7 | 
| International Physical Activity Questionnaire) b score | 2.8 ± 0.4 | 
| Dependent Variable: MMSE | |||||
|---|---|---|---|---|---|
| Independent Variables | Unstandardized Coefficient | Standardized Coefficient | |||
| β | Std. Error | β | Std. Error | p-Value | |
| Age (years) | −0.086 | 0.019 | −0.153 | 0.034 | 0.000 | 
| Sex | −0.129 | 0.278 | −0.015 | 0.032 | 0.643 | 
| Education (years) | 0.279 | 0.0.28 | 0.335 | 0.034 | 0.000 | 
| Living alone | −0.340 | 0.242 | −0.043 | 0.031 | 0.160 | 
| Hypertension | 0.106 | 0.249 | 0.014 | 0.033 | 0.672 | 
| Diabetes | −0.373 | 0.276 | −0.042 | 0.031 | 0.177 | 
| Cardiovascular disease | 0.062 | 0.247 | 0.008 | 0.032 | 0.802 | 
| PSQI | 0.052 | 0.031 | 0.057 | 0.034 | 0.093 | 
| IPAQ | 0.889 | 0.287 | 0.099 | 0.032 | 0.002 | 
| MADRS | −0.066 | 0.013 | −0.183 | 0.036 | 0.000 | 
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.  | 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Hwang, G.; Cho, Y.H.; Kim, E.J.; Woang, J.W.; Hong, C.H.; Son, S.J.; Roh, H.W. Relationships of Physical Activity, Depression, and Sleep with Cognitive Function in Community-Dwelling Older Adults. Int. J. Environ. Res. Public Health 2022, 19, 15655. https://doi.org/10.3390/ijerph192315655
Kim K, Hwang G, Cho YH, Kim EJ, Woang JW, Hong CH, Son SJ, Roh HW. Relationships of Physical Activity, Depression, and Sleep with Cognitive Function in Community-Dwelling Older Adults. International Journal of Environmental Research and Public Health. 2022; 19(23):15655. https://doi.org/10.3390/ijerph192315655
Chicago/Turabian StyleKim, Kahee, Gyubeom Hwang, Yong Hyuk Cho, Eun Jwoo Kim, Ji Won Woang, Chang Hyung Hong, Sang Joon Son, and Hyun Woong Roh. 2022. "Relationships of Physical Activity, Depression, and Sleep with Cognitive Function in Community-Dwelling Older Adults" International Journal of Environmental Research and Public Health 19, no. 23: 15655. https://doi.org/10.3390/ijerph192315655
APA StyleKim, K., Hwang, G., Cho, Y. H., Kim, E. J., Woang, J. W., Hong, C. H., Son, S. J., & Roh, H. W. (2022). Relationships of Physical Activity, Depression, and Sleep with Cognitive Function in Community-Dwelling Older Adults. International Journal of Environmental Research and Public Health, 19(23), 15655. https://doi.org/10.3390/ijerph192315655
        
