Alveolar Type II Cell Damage and Nrf2-SOD1 Pathway Downregulation Are Involved in PM2.5-Induced Lung Injury in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. PM2.5 Sample Collection and Elution
2.2. Animal Experiments
2.3. Chemical Analysis of the PM2.5 Samples
2.4. 8-Hydroxy-2′-Deoxyguanosine (8-OHdG)
2.5. Reactive Oxygen Species (ROS)
2.6. Transmission Electron Microscopy (TEM)
2.7. Haematoxylin–Eosin (HE) Staining
2.8. Masson’s Trichrome Staining
2.9. Enzyme-Linked Immunosorbent Assay (ELISA)
2.10. Immunohistochemical Assay
2.11. Western Blotting
2.12. Statistical Analysis
3. Results
3.1. Chemical Composition of Fine Particulates
3.2. PM2.5 Induced Inflammation and Fibrosis in the Lung Tissue of Rats
3.3. PM2.5 Induced Abnormal Ultrastructure in the Lung Tissue of Rats
3.4. PM2.5 Induced Oxidative Stress in the Lung Tissue of Rats
3.5. PM2.5 Decreased the Expression of Nrf2-Related Proteins in the Lung Tissue of Rats
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kendall, M. Fine airborne urban particles (PM2.5) sequester lung surfactant and amino acids from human lung lavage. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007, 293, L1053–L1058. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zhao, J.; Jiang, R.; Song, W. Rat lung response to ozone and fine particulate matter (PM2.5) exposures. Environ. Toxicol. 2015, 30, 343–356. [Google Scholar] [CrossRef]
- Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Guo, Y.; Tong, S.; Coelho, M.; Saldiva, P.H.N.; Lavigne, E.; Matus, P.; et al. Ambient particulate air pollution and daily mortality in 652 cities. N. Engl. J. Med. 2019, 381, 705–715. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Perera, F.P. Children are likely to suffer most from our fossil fuel addiction. Environ. Health Perspect. 2008, 116, 987–990. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Jia, Z.; Rajendran, R.S.; Zhu, C.; Wang, X.; Liu, K.; Cen, J. Exposure of particulate matter (PM10) induces neurodevelopmental toxicity in zebrafish embryos. Neurotoxicology 2021, 87, 208–218. [Google Scholar] [CrossRef]
- Guo, L.; Li, B.; Miao, J.J.; Yun, Y.; Li, G.K.; Sang, N. Seasonal variation in air particulate matter (PM10) exposure-induced ischemia-like injuries in the rat brain. Chem. Res. Toxicol. 2015, 28, 431–439. [Google Scholar] [CrossRef]
- Lee, F.Y.; Lee, M.S.; Wallace, C.G.; Huang, C.R.; Chu, C.H.; Wen, Z.H.; Huang, J.H.; Chen, X.S.; Wang, C.C.; Yip, H.K. Short-interval exposure to ambient fine particulate matter (PM2.5) exacerbates the susceptibility of pulmonary damage in setting of lung ischemia-reperfusion injury in rodent: Pharmacomodulation of melatonin. Biomed. Pharmacother. 2019, 113, 108737. [Google Scholar] [CrossRef]
- Pei, C.; Wang, F.; Huang, D.; Shi, S.; Wang, X.; Wang, Y.; Li, S.; Wu, Y.; Wang, Z. Astragaloside iv protects from PM2.5-induced lung injury by regulating autophagy via inhibition of pi3k/akt/mtor signaling in vivo and in vitro. J. Inflamm. Res. 2021, 14, 4707–4721. [Google Scholar] [CrossRef]
- Poursafa, P.; Kelishadi, R.; Lahijanzadeh, A.; Modaresi, M.; Javanmard, S.H.; Assari, R.; Amin, M.M.; Moattar, F.; Amini, A.; Sadeghian, B. The relationship of air pollution and surrogate markers of endothelial dysfunction in a population-based sample of children. BMC Public Health 2011, 11, 115. [Google Scholar] [CrossRef]
- Jalava, P.I.; Salonen, R.O.; Pennanen, A.S.; Sillanpää, M.; Hälinen, A.I.; Happo, M.S.; Hillamo, R.; Brunekreef, B.; Katsouyanni, K.; Sunyer, J.; et al. Heterogeneities in inflammatory and cytotoxic responses of raw 264.7 macrophage cell line to urban air coarse, fine, and ultrafine particles from six european sampling campaigns. Inhal. Toxicol. 2007, 19, 213–225. [Google Scholar] [CrossRef]
- Ho, K.F.; Lee, Y.C.; Niu, X.; Xu, H.; Zhang, R.; Cao, J.J.; Tsai, C.Y.; Hsiao, T.C.; Chuang, H.C. Organic carbon and acidic ions in PM(2.5) contributed to particle bioreactivity in chinese megacities during haze episodes. Environ. Sci. Pollut. Res. Int. 2022, 29, 11865–11873. [Google Scholar] [CrossRef]
- Qiao, L.; Cai, J.; Wang, H.; Wang, W.; Zhou, M.; Lou, S.; Chen, R.; Dai, H.; Chen, C.; Kan, H. PM2.5 constituents and hospital emergency-room visits in shanghai, china. Environ. Sci. Technol. 2014, 48, 10406–10414. [Google Scholar] [CrossRef]
- Pamplona, R.; Costantini, D. Molecular and structural antioxidant defenses against oxidative stress in animals. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 301, R843–R863. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.M.; Wang, Q.; Xing, W.W.; Long, M.H.; Fu, W.L.; Xia, W.R.; Jin, C.; Guo, N.; Xu, D.Q.; Xu, D.G. PM2.5 induces autophagy-mediated cell death via nos2 signaling in human bronchial epithelium cells. Int. J. Biol. Sci. 2018, 14, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Fu, S.; Li, E.; Sun, X.; Xu, H.; Meng, Y.; Wang, X.; Chen, Y.; Xie, C.; Geng, S.; et al. Modulation of autophagy in the protective effect of resveratrol on PM2.5-induced pulmonary oxidative injury in mice. Phytother. Res. 2018, 32, 2480–2486. [Google Scholar] [CrossRef]
- Sarnat, S.E.; Chang, H.H.; Weber, R.J. Ambient PM2.5 and health: Does PM2.5 oxidative potential play a role? Am. J. Respir. Crit. Care Med. 2016, 194, 530–531. [Google Scholar] [CrossRef]
- Walton, K.; Dorne, J.L.; Renwick, A.G. Uncertainty factors for chemical risk assessment: Interspecies differences in glucuronidation. Food Chem. Toxicol. 2001, 39, 1175–1190. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Wang, G.; Ho, K.F.; Dai, W.; Zhang, T.; Wang, Q.; Wu, C.; Li, L.; Li, L.; et al. Effects of atmospheric aging processes on in vitro induced oxidative stress and chemical composition of biomass burning aerosols. J. Hazard. Mater. 2021, 401, 123750. [Google Scholar] [CrossRef]
- Zheng, G.H.; Shan, Q.; Mu, J.J.; Wang, Y.J.; Zhang, Z.F.; Fan, S.H.; Hu, B.; Li, M.Q.; Xie, J.; Chen, P.; et al. Purple sweet potato color attenuates kidney damage by blocking vegfr2/ros/nlrp3 signaling in high-fat diet-treated mice. Oxidative Med. Cell. Longev. 2019, 2019, 5189819. [Google Scholar] [CrossRef]
- Lu, J.; Ji, W.; Zhao, M.; Wang, M.; Yan, W.; Chen, M.; Ren, S.; Yuan, B.; Wang, B.; Chen, L. Protamine zinc insulin combined with sodium selenite improves glycometabolism in the diabetic kkay mice. Sci. Rep. 2016, 6, 26563. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Li, G.; Zhao, X.; Lin, X.; Gao, Y.; Raimundo, N.; Li, G.L.; Shang, W.; Wu, H.; Song, L. Down-regulation of ampk signaling pathway rescues hearing loss in tfb1 transgenic mice and delays age-related hearing loss. Aging 2020, 12, 5590–5611. [Google Scholar] [CrossRef]
- Dong, L.; Wang, Y.; Zheng, T.; Pu, Y.; Ma, Y.; Qi, X.; Zhang, W.; Xue, F.; Shan, Z.; Liu, J.; et al. Hypoxic hucmsc-derived extracellular vesicles attenuate allergic airway inflammation and airway remodeling in chronic asthma mice. Stem Cell Res. Ther. 2021, 12, 4. [Google Scholar] [CrossRef]
- Meng, M.; Tan, J.; Chen, W.; Du, Q.; Xie, B.; Wang, N.; Zhu, H.; Wang, K. The fibrosis and immunological features of hypochlorous acid induced mouse model of systemic sclerosis. Front. Immunol. 2019, 10, 1861. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Zhang, M.; Cheng, S.; Li, F.; Zhang, B.; Sun, X.; Hu, H.; Chen, L.; Zhao, Z.; Hu, H.; et al. Low-dose alcohol ameliorated high fat diet-induced anxiety-related behavior via enhancing adiponectin expression and activating the Nrf2 pathway. Food Funct. 2021, 12, 241–251. [Google Scholar] [CrossRef]
- Ware, L.B.; Matthay, M.A. The acute respiratory distress syndrome. N. Engl. J. Med. 2000, 342, 1334–1349. [Google Scholar] [CrossRef]
- Cen, J.; Jia, Z.L.; Zhu, C.Y.; Wang, X.F.; Zhang, F.; Chen, W.Y.; Liu, K.C.; Li, S.Y.; Zhang, Y. Particulate matter (PM10) induces cardiovascular developmental toxicity in zebrafish embryos and larvae via the ers, Nrf2 and wnt pathways. Chemosphere 2020, 250, 126288. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, J.; Li, J.; Jiang, N.; Zhang, R.; Yang, W.; Yao, W.; Wu, W. Oxidative stress and endocytosis are involved in upregulation of interleukin-8 expression in airway cells exposed to PM2.5. Environ. Toxicol. 2016, 31, 1869–1878. [Google Scholar] [CrossRef]
- Deng, X.; Zhang, F.; Rui, W.; Long, F.; Wang, L.; Feng, Z.; Chen, D.; Ding, W. PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicol. In Vitro 2013, 27, 1762–1770. [Google Scholar] [CrossRef]
- Verma, V.; Fang, T.; Xu, L.; Peltier, R.E.; Russell, A.G.; Ng, N.L.; Weber, R.J. Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM2.5. Environ. Sci. Technol. 2015, 49, 4646–4656. [Google Scholar] [CrossRef]
- Meng, Z.; Zhang, Q. Damage effects of dust storm PM2.5 on DNA in alveolar macrophages and lung cells of rats. Food Chem. Toxicol. 2007, 45, 1368–1374. [Google Scholar] [CrossRef]
- Zou, Y.; Jin, C.; Su, Y.; Li, J.; Zhu, B. Water soluble and insoluble components of urban PM2.5 and their cytotoxic effects on epithelial cells (A549) in vitro. Environ. Pollut. 2016, 212, 627–635. [Google Scholar] [CrossRef]
- Ram, K.; Sarin, M.M.; Tripathi, S.N. Temporal trends in atmospheric PM2.5, PM10, elemental carbon, organic carbon, water-soluble organic carbon, and optical properties: Impact of biomass burning emissions in the indo-gangetic plain. Environ. Sci. Technol. 2012, 46, 686–695. [Google Scholar] [CrossRef]
- Mason, R.J. Biology of alveolar type ii cells. Respirology 2006, 11, S12–S15. [Google Scholar] [CrossRef]
- Qiu, Y.N.; Wang, G.H.; Zhou, F.; Hao, J.J.; Tian, L.; Guan, L.F.; Geng, X.K.; Ding, Y.C.; Wu, H.W.; Zhang, K.Z. PM2.5 induces liver fibrosis via triggering ros-mediated mitophagy. Ecotoxicol. Environ. Saf. 2019, 167, 178–187. [Google Scholar] [CrossRef]
- Risom, L.; Møller, P.; Loft, S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat. Res. 2005, 592, 119–137. [Google Scholar] [CrossRef]
- Balaban, R.S.; Nemoto, S.; Finkel, T. Mitochondria, oxidants, and aging. Cell 2005, 120, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, X.M.; Wu, L.Y.; Liu, G.J.; Xu, W.D.; Zhang, X.S.; Gao, Y.Y.; Tao, T.; Zhou, Y.; Lu, Y.; et al. Aucubin alleviates oxidative stress and inflammation via Nrf2-mediated signaling activity in experimental traumatic brain injury. J. Neuroinflamm. 2020, 17, 188. [Google Scholar] [CrossRef]
- Lignitto, L.; LeBoeuf, S.E.; Homer, H.; Jiang, S.; Askenazi, M.; Karakousi, T.R.; Pass, H.I.; Bhutkar, A.J.; Tsirigos, A.; Ueberheide, B.; et al. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of bach1. Cell 2019, 178, 316–329.e18. [Google Scholar] [CrossRef]
- Tonelli, C.; Chio, I.I.C.; Tuveson, D.A. Transcriptional regulation by Nrf2. Antioxid. Redox Signal. 2018, 29, 1727–1745. [Google Scholar] [CrossRef] [PubMed]
Contents | Range (μg/m3) | Mean ± SEM (μg/m3) | Percent PM2.5 Mass (%) |
---|---|---|---|
PM2.5 | 45.00–360.03 | 150.89 ± 9.20 | |
OC/EC | 2.74–9.24 | 5.30 ± 0.19 | |
OC | 9.96–46.49 | 25.86 ± 1.36 | 17.14 |
WSOC | 5.49–24.47 | 13.32 ± 0.78 | 8.83 |
EC | 1.73–10.48 | 5.05 ± 0.27 | 3.34 |
Ca2+ | 0.22–8.90 | 3.05 ± 0.27 | 2.02 |
K+ | 0.32–5.35 | 1.48 ± 0.13 | 0.98 |
Na+ | 0.30–4.65 | 1.10 ± 0.13 | 0.73 |
Mg2+ | 0.03–0.47 | 0.17 ± 0.01 | 0.11 |
NH4+ | 2.45–30.64 | 10.56 ± 1.03 | 7.00 |
F− | 0.01–0.27 | 0.11 ± 0.01 | 0.07 |
Cl− | 1.19–14.46 | 4.49 ± 0.38 | 2.98 |
NO3− | 4.45–62.44 | 20.69 ± 2.15 | 13.71 |
SO42− | 3.08–34.58 | 12.52 ± 1.19 | 8.30 |
PM2.5 | OC | WSOC | EC | Ca2+ | K+ | Na+ | Mg2+ | NH4+ | F− | Cl− | NO3− | SO4− | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PM2.5 | 1 | 0.82 | 0.82 | 0.55 | 0.56 | 0.68 | 0.73 | 0.77 | 0.59 | 0.62 | 0.74 | 0.65 | 0.55 |
OC | 1 | 0.81 | 0.84 | 0.38 | 0.81 | 0.58 | 0.63 | 0.50 | 0.69 | 0.88 | 0.58 | 0.27 | |
WSOC | 1 | 0.71 | 0.22 | 0.70 | 0.51 | 0.44 | 0.74 | 0.48 | 0.78 | 0.86 | 0.64 | ||
EC | 1 | 0.13 | 0.83 | 0.41 | 0.38 | 0.46 | 0.60 | 0.83 | 0.56 | 0.22 | |||
Ca2+ | 1 | 0.27 | 0.70 | 0.89 | 0.26 | 0.51 | 0.36 | −0.16 | −0.23 | ||||
K+ | 1 | 0.67 | 0.51 | 0.51 | 0.69 | 0.96 | 0.59 | 0.34 | |||||
Na+ | 1 | 0.80 | 0.14 | 0.55 | 0.70 | 0.18 | 0.14 | ||||||
Mg2+ | 1 | 0.05 | 0.73 | 0.58 | 0.16 | −0.01 | |||||||
NH4+ | 1 | 0.22 | 0.48 | 0.96 | 0.94 | ||||||||
F− | 1 | 0.74 | 0.34 | 0.03 | |||||||||
Cl− | 1 | 0.55 | 0.30 | ||||||||||
NO3− | 1 | 0.85 | |||||||||||
SO42− | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, R.; Cheng, J.; Sun, J.; Li, F.; Fang, H.; Lei, R.; Shen, Z.; Hu, H.; Li, J. Alveolar Type II Cell Damage and Nrf2-SOD1 Pathway Downregulation Are Involved in PM2.5-Induced Lung Injury in Rats. Int. J. Environ. Res. Public Health 2022, 19, 12893. https://doi.org/10.3390/ijerph191912893
Niu R, Cheng J, Sun J, Li F, Fang H, Lei R, Shen Z, Hu H, Li J. Alveolar Type II Cell Damage and Nrf2-SOD1 Pathway Downregulation Are Involved in PM2.5-Induced Lung Injury in Rats. International Journal of Environmental Research and Public Health. 2022; 19(19):12893. https://doi.org/10.3390/ijerph191912893
Chicago/Turabian StyleNiu, Rui, Jie Cheng, Jian Sun, Fan Li, Huanle Fang, Ronghui Lei, Zhenxing Shen, Hao Hu, and Jianjun Li. 2022. "Alveolar Type II Cell Damage and Nrf2-SOD1 Pathway Downregulation Are Involved in PM2.5-Induced Lung Injury in Rats" International Journal of Environmental Research and Public Health 19, no. 19: 12893. https://doi.org/10.3390/ijerph191912893
APA StyleNiu, R., Cheng, J., Sun, J., Li, F., Fang, H., Lei, R., Shen, Z., Hu, H., & Li, J. (2022). Alveolar Type II Cell Damage and Nrf2-SOD1 Pathway Downregulation Are Involved in PM2.5-Induced Lung Injury in Rats. International Journal of Environmental Research and Public Health, 19(19), 12893. https://doi.org/10.3390/ijerph191912893