Tonic Endocannabinoid Levels Modulate Retinal Signaling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tissue Preparation
2.2. Recordings
2.3. Visual Stimulation and Recording Protocols
2.4. Data Analysis
2.4.1. Area–Response Function
2.4.2. Contrast Response Function
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2-AG | 2-acylglycerol |
AEA | anandamide |
C50 | half saturation point (contrast at 50% of maximum LE-PSP amplitude) |
CB1R | cannabinoid receptor type 1 |
CB2R | cannabinoid receptor type 2 |
CBD | cannabidiol |
CNS | central nervous system |
DMSO | dimethyl sulfoxide |
DoG | difference-of-Gaussian |
eCB | endocannabinoid |
ERG | electroretinogram |
FAAH | fatty acid amide hydrolase |
IOP | intraocular pressure |
IPL | inner plexiform layer |
LE-PSP | light-evoked postsynaptic potential |
NKCC1 | Na+-K+-2Cl− co-transporter 1 |
OLED | organic light-emitting diode |
OPL | outer plexiform layer |
RGCs | retinal ganglion cells |
SI | suppression index |
THC | ∆9-tetrahydrocannabinol |
TRPV1 | transient receptor potential vanilloid type 1 |
References
- Center for Behavioral Health Statistics and Quality. Results from the 2018 National Survey on Drug Use and Health: Detailed Tables; SAMHSA: Rockville, MD, USA, 2019. Available online: https://www.samhsa.gov/data/report/2018-nsduh-detailed-tables. (accessed on 22 February 2022).
- Guzmán, M. Cannabinoids: Potential anticancer agents. Nat. Rev. Cancer 2003, 3, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Kmietowicz, Z. Cannabis based drug is licensed for spasticity in patients with MS. BMJ 2010, 340, c3363. [Google Scholar] [CrossRef] [PubMed]
- Robson, P. Therapeutic aspects of cannabis and cannabinoids. Br. J. Psychiatry 2001, 178, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Lira, M.; Heeren, T.; Buczek, M.; Blanchette, J.; Smart, R.; Pacula, R.; Naimi, T. Trends in Cannabis Involvement and Risk of Alcohol Involvement in Motor Vehicle Crash Fatalities in the United States, 2000–2018. Am. J. Public Health 2021, 111, 1976–1985. [Google Scholar] [CrossRef]
- Di Marzo, V.; Stella, N.; Zimmer, A. Endocannabinoid signalling and the deteriorating brain. Nat. Rev. Neurosci. 2015, 16, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.-C.; Mackie, K. Review of the Endocannabinoid System. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Yazulla, S. Endocannabinoids in the retina: From marijuana to neuroprotection. Prog. Retin. Eye Res. 2008, 27, 501–526. [Google Scholar] [CrossRef]
- Straiker, A.; Stella, N.; Piomelli, D.; Mackie, K.; Karten, H.J.; Maguire, G. Cannabinoid CB1 receptors and ligands in vertebrate retina: Localization and function of an endogenous signaling system. PNAS 1999, 96, 14565–14570. [Google Scholar] [CrossRef]
- Straiker, A.J.; Maguire, G.; Mackie, K.; Lindsey, J. Localization of Cannabinoid CB1 Receptors in the Human Anterior Eye and Retina. Invest. Ophthalmol. Vis. Sci. 1999, 40, 2442–2448. [Google Scholar]
- Yazulla, S.; Studholme, K.M.; McIntosh, H.H.; Deutsch, D.G. Immunocytochemical localization of cannabinoid CB1 receptor and fatty acid amide hydrolase in rat retina. J. Comp. Neurol. 1999, 415, 80–90. [Google Scholar] [CrossRef]
- Yazulla, S.; Studholme, K.M.; McIntosh, H.H.; Fan, S.F. Cannabinoid receptors on goldfish retinal bipolar cells: Electron-microscope immunocytochemistry and whole-cell recordings. Vis. Neurosci. 2000, 17, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Bouskila, J.; Burke, M.W.; Zabouri, N.; Casanova, C.; Ptito, M.; Bouchard, J.F. Expression and localization of the cannabinoid receptor type 1 and the enzyme fatty acid amide hydrolase in the retina of vervet monkeys. Neuroscience 2012, 202, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Glaser, S.T.; Deutsch, D.G.; Studholme, K.M.; Zimov, S.; Yazulla, S. Endocannabinoids in the intact retina: 3 H-anandamide uptake, fatty acid amide hydrolase immunoreactivity and hydrolysis of anandamide. Vis. Neurosci. 2005, 22, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Zabouri, N.; Bouchard, J.F.; Casanova, C. Cannabinoid receptor type 1 expression during postnatal development of the rat retina. J. Comp. Neurol. 2011, 519, 1258–1280. [Google Scholar] [CrossRef]
- Zabouri, N.; Ptito, M.; Casanova, C.; Bouchard, J.F. Fatty acid amide hydrolase expression during retinal postnatal development in rats. Neuroscience 2011, 195, 145–165. [Google Scholar] [CrossRef]
- Middleton, T.P.; Huang, J.Y.; Protti, D.A. Cannabinoids Modulate Light Signaling in ON-Sustained Retinal Ganglion Cells of the Mouse. Front. Neural Circuits 2019, 13, 37. [Google Scholar] [CrossRef]
- Huang, J.Y.; Stiefel, K.M.; Protti, D.A. Implementing dynamic clamp with synaptic and artificial conductances in mouse retinal ganglion cells. J. Vis. Exp. 2013, 75, e50400. [Google Scholar] [CrossRef]
- Naka, K.; Rushton, W. S-potentials from colour units in the retina of fish (Cyprinidae). J. Physiol. 1966, 185, 536–555. [Google Scholar] [CrossRef]
- Solomon, S.S.; Tailby, C.; Gharaei, S.; Camp, A.J.; Bourne, J.A.; Solomon, S.G. Visual motion integration by neurons in the middle temporal area of a New World monkey, the marmoset. J. Physiol. 2011, 589, 5741–5758. [Google Scholar] [CrossRef]
- Lovinger, D.M.; Mateo, Y.; Johnson, K.A.; Engi, S.A.; Antonazzo, M.; Cheer, J.F. Local modulation by presynaptic receptors controls neuronal communication and behaviour. Nat. Rev. Neurosci. 2022, 23, 191–203. [Google Scholar] [CrossRef]
- Piomelli, D. The molecular logic of endocannabinoid signalling. Nat. Rev. Neurosci. 2003, 4, 873–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enroth-Cugell, C.; Robson, J. The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. 1966, 187, 517–552. [Google Scholar] [CrossRef] [PubMed]
- Kuffler, S.W. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 1953, 16, 37–68. [Google Scholar] [CrossRef] [PubMed]
- Jo, A.O.; Noel, J.M.; Lakk, M.; Yarishkin, O.; Ryskamp, D.A.; Shibasaki, K.; McCall, M.A.; Krizaj, D. Mouse retinal ganglion cell signalling is dynamically modulated through parallel anterograde activation of cannabinoid and vanilloid pathways. J. Physiol. 2017, 595, 6499–6516. [Google Scholar] [CrossRef]
- Di Marzo, V. Anandamide serves two masters in the brain. Nat. Neurosci. 2010, 13, 1446–1448. [Google Scholar] [CrossRef]
- Murphy, B.J.; Rossie, S.; De Jongh, K.S.; Catterall, W.A. Identification of the sites of selective phosphorylation and dephosphorylation of the rat brain Na+ channel alpha subunit by cAMP-dependent protein kinase and phosphoprotein phosphatases. J. Biol. Chem. 1993, 268, 27355–27362. [Google Scholar] [CrossRef]
- Chen, T.C.; Law, B.; Kondratyuk, T.; Rossie, S. Identification of soluble protein phosphatases that dephosphorylate voltage-sensitive sodium channels in rat brain. J. Biol. Chem. 1995, 270, 7750–7756. [Google Scholar] [CrossRef]
- Dascal, N.; Lotan, I. Activation of protein kinase C alters voltage dependence of a Na+ channel. Neuron 1991, 6, 165–175. [Google Scholar] [CrossRef]
- Vielma, A.H.; Tapia, F.; Alcaino, A.; Fuenzalida, M.; Schmachtenberg, O.; Chávez, A.E. Cannabinoid Signaling Selectively Modulates GABAergic Inhibitory Input to OFF Bipolar Cells in Rat Retina. Investig. Ophthalmol. Vis. Sci. 2020, 61, 3. [Google Scholar] [CrossRef]
- Miraucourt, L.S.; Tsui, J.; Gobert, D.; Desjardins, J.-F.; Schohl, A.; Sild, M.; Spratt, P.; Castonguay, A.; De Koninck, Y.; Marsh-Armstrong, N.; et al. Endocannabinoid signaling enhances visual responses through modulation of intracellular chloride levels in retinal ganglion cells. eLife 2016, 5, e15932. [Google Scholar] [CrossRef]
- Ahluwalia, J.; Urban, L.; Bevan, S.; Nagy, I. Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1 in vitro. Eur. J. Neurosci. 2003, 17, 2611–2618. [Google Scholar] [CrossRef] [PubMed]
- Slusar, J.E.; Cairns, E.A.; Szczesniak, A.-M.; Bradshaw, H.B.; Di Polo, A.; Kelly, M.E.M. The fatty acid amide hydrolase inhibitor, URB597, promotes retinal ganglion cell neuroprotection in a rat model of optic nerve axotomy. Neuropharmacology 2013, 72, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Ryskamp, D.; Redmon, S.; Jo, A.; Križaj, D. TRPV1 and Endocannabinoids: Emerging Molecular Signals that Modulate Mammalian Vision. Cells 2014, 3, 914–938. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Fileta, J.B.; Dobberfuhl, A.; Filippopolous, T.; Guo, Y.; Kwon, G.; Grosskreutz, C.L. Calcineurin cleavage is triggered by elevated intraocular pressure, and calcineurin inhibition blocks retinal ganglion cell death in experimental glaucoma. Proc. Natl. Acad. Sci. USA 2005, 102, 12242–12247. [Google Scholar] [CrossRef]
- Qu, J.; Matsouaka, R.; Betensky, R.A.; Hyman, B.T.; Grosskreutz, C.L. Calcineurin activation causes retinal ganglion cell degeneration. Mol. Vis. 2012, 18, 2828–2838. [Google Scholar] [PubMed]
- Cecyre, B.; Zabouri, N.; Huppe-Gourgues, F.; Bouchard, J.-F.; Casanova, C. Roles of Cannabinoid Receptors Type 1 and 2 on the Retinal Function of Adult Mice. Investig. Ophthalmol. Vis. Sci. 2013, 54, 8079–8090. [Google Scholar] [CrossRef]
- Bouskila, J.; Bleau, M.; Micaelo-Fernandes, C.; Bouchard, J.-F.; Ptito, M. The Vertical and Horizontal Pathways in the Monkey Retina Are Modulated by Typical and Atypical Cannabinoid Receptors. Cells 2021, 10, 3160. [Google Scholar] [CrossRef]
- Bouskila, J.; Palmour, R.; Bouchard, J.-F.; Ptito, M. The Endocannabinoid System in the Vervet Monkey Retina; IntechOpen: London, UK, 2017. [Google Scholar]
- Rapino, C.; Tortolani, D.; Scipioni, L.; Maccarrone, M. Neuroprotection by (endo)Cannabinoids in Glaucoma and Retinal Neurodegenerative Diseases. Curr. Neuropharmacol. 2018, 16, 959–970. [Google Scholar] [CrossRef]
- Aebersold, A.; Duff, M.; Sloan, L.; Song, Z.H. Cannabidiol Signaling in the Eye and Its Potential as an Ocular Therapeutic Agent. Cell. Physiol. Biochem. 2021, 55, 1–14. [Google Scholar] [CrossRef]
- Dowie, M.J.; Howard, M.L.; Nicholson, L.F.; Faull, R.L.; Hannan, A.J.; Glass, M. Behavioural and molecular consequences of chronic cannabinoid treatment in Huntington’s disease transgenic mice. Neuroscience 2010, 170, 324–336. [Google Scholar] [CrossRef]
- Celorrio, M.; Fernandez-Suarez, D.; Rojo-Bustamante, E.; Echeverry-Alzate, V.; Ramirez, M.J.; Hillard, C.J.; Lopez-Moreno, J.A.; Maldonado, R.; Oyarzabal, J.; Franco, R.; et al. Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinson’s disease. Brain Behav. Immun. 2016, 57, 94–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paredes-Ruiz, K.J.; Chavira-Ramos, K.; Orozco-Morales, M.; Karasu, C.; Tinkov, A.A.; Aschner, M.; Santamaría, A.; Colín-González, A.L. On the Biomedical Properties of Endocannabinoid Degradation and Reuptake Inhibitors: Pre-clinical and Clinical Evidence. Neurotox. Res. 2021, 39, 2072–2097. [Google Scholar] [CrossRef] [PubMed]
- Crandall, J.; Matragoon, S.; Khalifa, Y.M.; Borlongan, C.; Tsai, N.T.; Caldwell, R.B.; Liou, G.I. Neuroprotective and intraocular pressure-lowering effects of (-)Delta9-tetrahydrocannabinol in a rat model of glaucoma. Ophthalmic Res. 2007, 39, 69–75. [Google Scholar] [CrossRef]
- El-Remessy, A.B.; Khalil, I.E.; Matragoon, S.; Abou-Mohamed, G.; Tsai, N.-J.; Roon, P.; Caldwell, R.B.; Caldwell, R.W.; Green, K.; Liou, G.I. Neuroprotective Effect of(−)Δ9-Tetrahydrocannabinol and Cannabidiol in N-Methyl-d-Aspartate-Induced Retinal Neurotoxicity: Involvement of Peroxynitrite. Am. J. Pathol. 2003, 163, 1997–2008. [Google Scholar] [CrossRef]
- El-Remessy, A.B.; Al-Shabrawey, M.; Khalifa, Y.; Tsai, N.-T.; Caldwell, R.B.; Liou, G.I. Neuroprotective and Blood-Retinal Barrier-Preserving Effects of Cannabidiol in Experimental Diabetes. Am. J. Pathol. 2006, 168, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Imamura, T.; Tsuruma, K.; Inoue, Y.; Otsuka, T.; Ohno, Y.; Ogami, S.; Yamane, S.; Shimazawa, M.; Hara, H. Rimonabant, a selective cannabinoid1 receptor antagonist, protects against light-induced retinal degeneration in vitro and in vivo. Eur. J. Pharmacol. 2017, 803, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Nucci, C.; Gasperi, V.; Tartaglione, R.; Cerulli, A.; Terrinoni, A.; Bari, M.; De Simone, C.; Agrò, A.F.; Morrone, L.A.; Corasaniti, M.T.; et al. Involvement of the Endocannabinoid System in Retinal Damage after High Intraocular Pressure–Induced Ischemia in Rats. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2997–3004. [Google Scholar] [CrossRef] [PubMed]
- Tomida, I.; Azuara-Blanco, A.; House, H.; Flint, M.; Pertwee, R.G.; Robson, P.J. Effect of Sublingual Application of Cannabinoids on Intraocular Pressure: A Pilot Study. J. Glaucoma 2006, 15, 349–353. [Google Scholar] [CrossRef]
- Porcella, A.; Maxia, C.; Gessa, G.L.; Pani, L. The synthetic cannabinoid WIN55212-2 decreases the intraocular pressure in human glaucoma resistant to conventional therapies. Eur. J. Neurosci. 2001, 13, 409–412. [Google Scholar] [CrossRef]
- Cairns, E.A.; Baldridge, W.H.; Kelly, M.E.M. The Endocannabinoid System as a Therapeutic Target in Glaucoma. Neural Plast. 2016, 2016, 9364091. [Google Scholar] [CrossRef]
- Oltmanns, M.H.; Samudre, S.S.; Castillo, I.G.; Hosseini, A.; Lichtman, A.H.; Allen, R.C.; Lattanzio, F.A.; Williams, P.B. Topical WIN55212-2 alleviates intraocular hypertension in rats through a CB1 receptor mediated mechanism of action. J. Ocul. Pharmacol. Ther. 2008, 24, 104–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colasanti, B.K.; Powell, S.R.; Craig, C.R. Intraocular pressure, ocular toxicity and neurotoxicity after administration of delta 9-tetrahydrocannabinol or cannabichromene. Exp. Eye Res. 1984, 38, 63–71. [Google Scholar] [CrossRef]
- Schwitzer, T.; Schwan, R.; Angioi-Duprez, K.; Giersch, A.; Lalanne, L.; Albuisson, E.; Laprevote, V. Delayed bipolar and ganglion cells neuroretinal processing in regular cannabis users: The retina as a relevant site to investigate brain synaptic transmission dysfunctions. J. Psychiatr. Res. 2018, 103, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Schwitzer, T.; Schwan, R.; Albuisson, E.; Giersch, A.; Lalanne, L.; Angioi-Duprez, K.; Laprevote, V. Association Between Regular Cannabis Use and Ganglion Cell Dysfunction. JAMA Ophthalmol. 2017, 135, 54–60. [Google Scholar] [CrossRef]
- Skosnik, P.D.; Krishnan, G.P.; Vohs, J.L.; O’Donnell, B.F. The effect of cannabis use and gender on the visual steady state evoked potential. Clin. Neurophysiol. 2006, 117, 144–156. [Google Scholar] [CrossRef]
- Remy, I.; Schwitzer, T.; Albuisson, É.; Schwan, R.; Krieg, J.; Bernardin, F.; Ligier, F.; Lalanne, L.; Maillard, L.; Laprevote, V. Impaired P100 among regular cannabis users in response to magnocellular biased visual stimuli. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2022, 113, 110437. [Google Scholar] [CrossRef]
- Ortiz-Peregrina, S.; Ortiz, C.; Casares-López, M.; Jiménez, J.R.; Anera, R.G. Effects of cannabis on visual function and self-perceived visual quality. Sci. Rep. (Nat. Publ. Group) 2021, 11, 1655. [Google Scholar] [CrossRef]
- Ortiz-Peregrina, S.; Ortiz, C.; Castro-Torres, J.J.; Jimenez, J.R.; Anera, R.G. Effects of Smoking Cannabis on Visual Function and Driving Performance. A Driving-Simulator Based Study. Int. J. Environ. Res. Public Health 2020, 17, 9033. [Google Scholar] [CrossRef]
- Brooks-Russell, A.; Brown, T.; Friedman, K.; Wrobel, J.; Schwarz, J.; Dooley, G.; Ryall, K.A.; Steinhart, B.; Amioka, E.; Milavetz, G.; et al. Simulated driving performance among daily and occasional cannabis users. Accid. Anal. Prev. 2021, 160, 106326. [Google Scholar] [CrossRef]
- Ramaekers, J.G.; Robbe, H.W.J.; O’Hanlon, J.F. Marijuana, alcohol and actual driving performance. Hum. Psychopharmacol. Clin. Exp. 2000, 15, 551–558. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yates, C.F.; Huang, J.Y.; Protti, D.A. Tonic Endocannabinoid Levels Modulate Retinal Signaling. Int. J. Environ. Res. Public Health 2022, 19, 12460. https://doi.org/10.3390/ijerph191912460
Yates CF, Huang JY, Protti DA. Tonic Endocannabinoid Levels Modulate Retinal Signaling. International Journal of Environmental Research and Public Health. 2022; 19(19):12460. https://doi.org/10.3390/ijerph191912460
Chicago/Turabian StyleYates, Charles F., Jin Y. Huang, and Dario A. Protti. 2022. "Tonic Endocannabinoid Levels Modulate Retinal Signaling" International Journal of Environmental Research and Public Health 19, no. 19: 12460. https://doi.org/10.3390/ijerph191912460
APA StyleYates, C. F., Huang, J. Y., & Protti, D. A. (2022). Tonic Endocannabinoid Levels Modulate Retinal Signaling. International Journal of Environmental Research and Public Health, 19(19), 12460. https://doi.org/10.3390/ijerph191912460