Associations between Mixture of Perfluoroalkyl Substances and Lipid Profile in a Highly Exposed Adult Community in the Veneto Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. PFAS Quantification
2.3. Outcome Assessment
2.4. Covariates
2.5. Statistical Analysis
PFAS Mixtures
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD. OECD 2018. Toward a New Comprehensive Global Database of Per- and Polyfluoroalkyl Substances (PFASs): Summary Report on Updating the OECD 2007 List of Per and Polyfluoroalkyl Substances (PFASs). 2018. Available online: https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV-JM-MONO(2018)7&doclanguage=en (accessed on 23 September 2022).
- Fujii, Y.; Niisoe, T.; Harada, K.H.; Uemoto, S.; Ogura, Y.; Takenaka, K.; Koizumi, A. Toxicokinetics of Perfluoroalkyl Carboxylic Acids with Different Carbon Chain Lengths in Mice and Humans. J. Occup. Health 2015, 57, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.H.; Hashida, S.; Kaneko, T.; Takenaka, K.; Minata, M.; Inoue, K.; Saito, N.; Koizumi, A. Biliary Excretion and Cerebrospinal FLuid Partition of Perfluorooctanoate and Perfluorooctane Sulfonate in Humans. Environ. Toxicol. Pharmacol. 2007, 24, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Fourth National Report on Human Exposure to Environmental Chemicals Update. 2021. Volume 534. Available online: https://ecologycenter.org/wp-content/uploads/2021/04/FourthReport_UpdatedTables_Volume2_Mar2021-508.pdf (accessed on 1 September 2022).
- ATSDR Toxicological Profile for Perfluoroalkyls. 2021; Volume 993. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp200.pdf (accessed on 1 August 2022).
- EFSA Panel on Contaminants in the Food Chain (EFSA CONTAM Panel); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.; et al. Risk to Human Health Related to the Presence of Perfluoroalkyl Substances in Food. EFS2 2020, 18, e06223. [Google Scholar] [CrossRef]
- Canova, C.; Barbieri, G.; Zare Jeddi, M.; Gion, M.; Fabricio, A.; Daprà, F.; Russo, F.; Fletcher, T.; Pitter, G. Associations between Perfluoroalkyl Substances and Lipid Profile in a Highly Exposed Young Adult Population in the Veneto Region. Environ. Int. 2020, 145, 106117. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yang, T.; Walker, D.I.; Thomas, D.C.; Qiu, C.; Chatzi, L.; Alderete, T.L.; Kim, J.S.; Conti, D.V.; Breton, C.V.; et al. Dysregulated Lipid and Fatty Acid Metabolism Link Perfluoroalkyl Substances Exposure and Impaired Glucose Metabolism in Young Adults. Environ. Int. 2020, 145, 106091. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Li, X.; Xu, Q.; Zhang, Y.; Yang, X.; Han, X.; Du, G.; Xia, Y.; Wang, X.; Lu, C. Serum Albumin Mediates the Effect of Multiple Per- and Polyfluoroalkyl Substances on Serum Lipid Levels. Environ. Pollut. 2020, 266, 115138. [Google Scholar] [CrossRef]
- Starling, A.P.; Engel, S.M.; Whitworth, K.W.; Richardson, D.B.; Stuebe, A.M.; Daniels, J.L.; Haug, L.S.; Eggesbø, M.; Becher, G.; Sabaredzovic, A.; et al. Perfluoroalkyl Substances and Lipid Concentrations in Plasma during Pregnancy among Women in the Norwegian Mother and Child Cohort Study. Environ. Int. 2014, 62, 104–112. [Google Scholar] [CrossRef]
- Tian, Y. Prenatal Exposure to Perfluoroalkyl Substances and Cord Plasma Lipid Concentrations. Environ. Pollut. 2021, 9, 115426. [Google Scholar] [CrossRef]
- Lazarevic, N.; Barnett, A.G.; Sly, P.D.; Knibbs, L.D. Statistical Methodology in Studies of Prenatal Exposure to Mixtures of Endocrine-Disrupting Chemicals: A Review of Existing Approaches and New Alternatives. Environ. Health Perspect. 2019, 127, 026001. [Google Scholar] [CrossRef]
- Pitter, G.; Da Re, F.; Canova, C.; Barbieri, G.; Zare Jeddi, M.; Daprà, F.; Manea, F.; Zolin, R.; Bettega, A.M.; Stopazzolo, G.; et al. Serum Levels of Perfluoroalkyl Substances (PFAS) in Adolescents and Young Adults Exposed to Contaminated Drinking Water in the Veneto Region, Italy: A Cross-Sectional Study Based on a Health Surveillance Program. Environ. Health Perspect. 2020, 128, 027007. [Google Scholar] [CrossRef] [Green Version]
- Canova, C.; Di Nisio, A.; Barbieri, G.; Russo, F.; Fletcher, T.; Batzella, E.; Dalla Zuanna, T.; Pitter, G. PFAS Concentrations and Cardiometabolic Traits in Highly Exposed Children and Adolescents. IJERPH 2021, 18, 12881. [Google Scholar] [CrossRef]
- Gallo, E.; Barbiellini Amidei, C.; Barbieri, G.; Fabricio, A.S.C.; Gion, M.; Pitter, G.; Daprà, F.; Russo, F.; Gregori, D.; Fletcher, T.; et al. Perfluoroalkyl Substances and Thyroid Stimulating Hormone Levels in a Highly Exposed Population in the Veneto Region. Environ. Res. 2022, 203, 111794. [Google Scholar] [CrossRef]
- Pitter, G.; Zare Jeddi, M.; Barbieri, G.; Gion, M.; Fabricio, A.S.C.; Daprà, F.; Russo, F.; Fletcher, T.; Canova, C. Perfluoroalkyl Substances Are Associated with Elevated Blood Pressure and Hypertension in Highly Exposed Young Adults. Environ. Health 2020, 19, 102. [Google Scholar] [CrossRef]
- Rosato, I.; Zare Jeddi, M.; Ledda, C.; Gallo, E.; Fletcher, T.; Pitter, G.; Batzella, E.; Canova, C. How to Investigate Human Health Effects Related to Exposure to Mixtures of Per- and Polyfluoroalkyl Substances: A Systematic Review of Statistical Methods. Environ. Res. 2022, 205, 112565. [Google Scholar] [CrossRef]
- Carrico, C.; Gennings, C.; Wheeler, D.C.; Factor-Litvak, P. Characterization of Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting. JABES 2015, 20, 100–120. [Google Scholar] [CrossRef]
- Keil, A.P.; Buckley, J.P.; O’Brien, K.M.; Ferguson, K.K.; Zhao, S.; White, A.J. A Quantile-Based g-Computation Approach to Addressing the Effects of Exposure Mixtures. Environ. Health Perspect. 2020, 128, 47004. [Google Scholar] [CrossRef]
- Bobb, J.F.; Valeri, L.; Claus Henn, B.; Christiani, D.C.; Wright, R.O.; Mazumdar, M.; Godleski, J.J.; Coull, B.A. Bayesian Kernel Machine Regression for Estimating the Health Effects of Multi-Pollutant Mixtures. Biostatistics 2015, 16, 493–508. [Google Scholar] [CrossRef]
- Chiu, Y.-H.; Bellavia, A.; James-Todd, T.; Correia, K.F.; Valeri, L.; Messerlian, C.; Ford, J.B.; Mínguez-Alarcón, L.; Calafat, A.M.; Hauser, R.; et al. Evaluating Effects of Prenatal Exposure to Phthalate Mixtures on Birth Weight: A Comparison of Three Statistical Approaches. Environ. Int. 2018, 113, 231–239. [Google Scholar] [CrossRef]
- Valeri, L.; Mazumdar, M.M.; Bobb, J.F.; Claus Henn, B.; Rodrigues, E.; Sharif, O.I.A.; Kile, M.L.; Quamruzzaman, Q.; Afroz, S.; Golam, M.; et al. The Joint Effect of Prenatal Exposure to Metal Mixtures on Neurodevelopmental Outcomes at 20–40 Months of Age: Evidence from Rural Bangladesh. Environ. Health Perspect. 2017, 125, 067015. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, T.; Hu, W.; Wang, X.; Xu, B.; Lin, Z.; Hofer, T.; Stefanoff, P.; Chen, Y.; Wang, X.; et al. Association between Exposure to a Mixture of Phenols, Pesticides, and Phthalates and Obesity: Comparison of Three Statistical Models. Environ. Int. 2019, 123, 325–336. [Google Scholar] [CrossRef]
- R Development Core Team. R Foundation for Statistical Computing; R Development Core Team: Vienna, Austria, 2010; ISBN 3-900051-07-0. Available online: http://www.R-Project.Org/ (accessed on 1 August 2022).
- Renzetti, S.; Gennings, C.; Curtin, P.C. GWQS: An R Package for Linear and Generalized Weighted Quantile Sum (WQS) Regression. Available online: https://mran.revolutionanalytics.com/snapshot/2020-04-25/web/packages/gWQS/vignettes/gwqs-vignette.pdf (accessed on 1 August 2022).
- Han, X.; Meng, L.; Zhang, G.; Li, Y.; Shi, Y.; Zhang, Q.; Jiang, G. Exposure to Novel and Legacy Per- and Polyfluoroalkyl Substances (PFASs) and Associations with Type 2 Diabetes: A Case-Control Study in East China. Environ. Int. 2021, 156, 106637. [Google Scholar] [CrossRef]
- Ingelido, A.M.; Abballe, A.; Gemma, S.; Dellatte, E.; Iacovella, N.; De Angelis, G.; Zampaglioni, F.; Marra, V.; Miniero, R.; Valentini, S.; et al. Biomonitoring of Perfluorinated Compounds in Adults Exposed to Contaminated Drinking Water in the Veneto Region, Italy. Environ. Int. 2018, 110, 149–159. [Google Scholar] [CrossRef]
- Steenland, K.; Tinker, S.; Frisbee, S.; Ducatman, A.; Vaccarino, V. Association of Perfluorooctanoic Acid and Perfluorooctane Sulfonate With Serum Lipids Among Adults Living Near a Chemical Plant. Am. J. Epidemiol. 2009, 170, 1268–1278. [Google Scholar] [CrossRef]
- Frisbee, S.J.; Shankar, A.; Knox, S.S.; Steenland, K.; Savitz, D.A.; Fletcher, T.; Ducatman, A.M. Perfluorooctanoic Acid, Perfluorooctanesulfonate, and Serum Lipids in Children and Adolescents: Results From the C8 Health Project. Arch. Pediatr. Adolesc. Med. 2010, 164, 860–869. [Google Scholar] [CrossRef]
- Jain, R.B.; Ducatman, A. Roles of Gender and Obesity in Defining Correlations between Perfluoroalkyl Substances and Lipid/Lipoproteins. Sci. Total Environ. 2019, 653, 74–81. [Google Scholar] [CrossRef]
- Anagnostis, P.; Stevenson, J.C.; Crook, D.; Johnston, D.G.; Godsland, I.F. Effects of Menopause, Gender and Age on Lipids and High-Density Lipoprotein Cholesterol Subfractions. Maturitas 2015, 81, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, J.C.; Crook, D.; Godsland, I.F. Influence of Age and Menopause on Serum Lipids and Lipoproteins in Healthy Women. Atherosclerosis 1993, 98, 83–90. [Google Scholar] [CrossRef]
- Fragki, S.; Dirven, H.; Fletcher, T.; Grasl-Kraupp, B.; Bjerve Gützkow, K.; Hoogenboom, R.; Kersten, S.; Lindeman, B.; Louisse, J.; Peijnenburg, A.; et al. Systemic PFOS and PFOA Exposure and Disturbed Lipid Homeostasis in Humans: What Do We Know and What Not? Crit. Rev. Toxicol. 2021, 51, 141–164. [Google Scholar] [CrossRef] [PubMed]
- Roth, K.; Yang, Z.; Agarwal, M.; Liu, W.; Peng, Z.; Long, Z.; Birbeck, J.; Westrick, J.; Liu, W.; Petriello, M.C. Exposure to a Mixture of Legacy, Alternative, and Replacement per- and Polyfluoroalkyl Substances (PFAS) Results in Sex-Dependent Modulation of Cholesterol Metabolism and Liver Injury. Environ. Int. 2021, 157, 106843. [Google Scholar] [CrossRef]
- Bil, W.; Zeilmaker, M.; Fragki, S.; Lijzen, J.; Verbruggen, E.; Bokkers, B. Risk Assessment of Per- and Polyfluoroalkyl Substances (PFASs) Mixtures: A Relative Potency Factor Approach. Environ. Toxicol. Chem. 2020, 40, 859–870. [Google Scholar] [CrossRef]
- Louisse, J.; Rijkers, D.; Stoopen, G.; Janssen, A.; Staats, M.; Hoogenboom, R.; Kersten, S.; Peijnenburg, A. Perfluorooctanoic Acid (PFOA), Perfluorooctane Sulfonic Acid (PFOS), and Perfluorononanoic Acid (PFNA) Increase Triglyceride Levels and Decrease Cholesterogenic Gene Expression in Human HepaRG Liver Cells. Arch. Toxicol. 2020, 94, 3137–3155. [Google Scholar] [CrossRef]
- Gleason, J.A.; Cooper, K.R.; Klotz, J.B.; Post, G.B. New Jersey Drinking Water Quality Institute Health Effects Subcommittee 22 June 2015. 2015; p. 61. Available online: https://www.nj.gov/dep/watersupply/pdf/pfna-health-effects.pdf (accessed on 1 August 2022).
Males | Females | Total | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean (SD) | GM | Min–Max | Median (Q1–Q3) | <LOQ | Mean (SD) | GM | Min–Max | Median (Q1–Q3) | <LOQ | Mean (SD) | GM | Min–Max | Median (Q1–Q3) | <LOQ | |
PFAS | |||||||||||||||
PFOA | 90.5 (100.4) | 52.7 | 0.4–2723.3 | 60.7 (26.0–120.7) | 0.05% | 39.2 (47.05) | 21.5 | 0.4–1090.0 | 24.1 (9.7–51.5) | 0.22% | 63.7 (81.1) | 32.8 | 0.4–2723.3 | 37.0 (14.6–82.3) | 0.14% |
PFOS | 6.2 (4.7) | 5.1 | 0.4–142.0 | 5.10 (3.4–7.5) | 0.13% | 4.0 (3.49) | 3.2 | 0.4–124.0 | 3.2 (2.2–4.9) | 0.37% | 5.0 (4.2) | 4.0 | 0.4–142.0 | 4.0 (2.6–6.2) | 0.26% |
PFHxS | 10.2 (9.8) | 6.6 | 0.4–162.0 | 7.40 (3.4–13.8) | 0.64% | 3.7 (3.88) | 2.4 | 0.4–71.0 | 2.5 (1.2–4.8) | 5.31% | 6.7 (7.9) | 3.9 | 0.4–162.0 | 4.0 (1.8–8.8) | 3.11% |
PFNA | 0.6 (0.6) | 0.6 | 0.4–59.8 | 0.50 (0.4–0.7) | 33.03% | 0.5 (0.32) | 0.5 | 0.4–12.3 | 0.4 (0.4–0.6) | 59.57% | 0.6 (0.5) | 0.5 | 0.4–59.8 | 0.5 (0.4–0.7) | 47.07% |
Outcome | |||||||||||||||
TC | 191.0 (38.3) | 70–487 | 188 (164–215) | 188.3 (36.2) | 83–450 | 185 (163–211) | 189.6 (37.2) | 70–487 | 187 (163–213) | ||||||
HDL-C | 52.8 (12.4) | 15–138 | 52 (44–60) | 64.6 (14.5) | 22–144 | 63 (55–73) | 59.1 (14.7) | 15–144 | 58 (48–68) | ||||||
LDL-C | 114.4 (34.5) | 0–420 | 112 (91–136) | 106.2 (31.5) | 0–342 | 103 (84–125) | 110.0 (33.2) | 0–420 | 107 (87–131) |
Outcome | β [95% CI] | Weights | ||||
---|---|---|---|---|---|---|
PFOA | PFOS | PFHxS | PFNA | |||
Males | TC | 3.63 [2.88; 4.39] | 0 | 0.67 | 0 | 0.33 |
HDL-C | 0.7 [0.46; 0.95] | 0 | 0.75 | 0 | 0.25 | |
LDL-C | 3.46 [2.70; 4.22] | 0 | 0.39 | 0 | 0.61 | |
Females | TC | 4.61 [3.54; 5.67] | 0.18 | 0.31 | 0 | 0.52 |
HDL-C | 1.61 [1.25; 1.97] | 0.29 | 0.37 | 0.03 | 0.31 | |
LDL-C | 2.57 [1.89; 3.24] | 0.03 | 0.63 | 0.01 | 0.33 | |
Total | TC | 4.09 [3.47; 4.71] | 0.14 | 0.43 | 0 | 0.43 |
HDL-C | 1.13 [0.92; 1.33] | 0.12 | 0.65 | 0 | 0.23 | |
LDL-C | 3.14 [2.65; 3.63] | 0.02 | 0.61 | 0 | 0.37 |
Outcome | ψ [95% CI] | Weights | ||||||
---|---|---|---|---|---|---|---|---|
Direction | Effect | PFOA | PFOS | PFHxS | PFNA | |||
Males | TC | 3.14 [2.39; 3.9] | pos | 4.56 | 0.01 | 0.59 | 0.40 | |
neg | −1.42 | 1.00 | ||||||
HDL-C | 0.56 [0.30; 0.81] | pos | 0.84 | 0.60 | 0.40 | |||
neg | −0.28 | 0.26 | 0.74 | |||||
LDL-C | 2.35 [1.67; 3.03] | pos | 4.00 | 0.63 | 0.37 | |||
neg | −1.65 | 0.49 | 0.51 | |||||
Females | TC | 4.82 [3.56; 6.08] | pos | 5.29 | 0.28 | 0.35 | 0.37 | |
neg | −0.46 | 1.00 | ||||||
HDL-C | 1.58 [1.05; 2.12] | pos | 1.94 | 0.35 | 0.39 | 0.26 | ||
neg | −0.35 | 1.00 | ||||||
LDL-C | 2.59 [1.51; 3.68] | pos | 2.83 | 0.12 | 0.57 | 0.31 | ||
neg | −0.23 | 1.00 | ||||||
Total | TC | 4.04 [3.50; 4.58] | pos | 4.74 | 0.16 | 0.44 | 0.40 | |
neg | −0.70 | 1.00 | ||||||
HDL-C | 1.07 [0.87; 1.27] | pos | 1.29 | 0.28 | 0.45 | 0.26 | ||
neg | −0.22 | 1.00 | ||||||
LDL-C | 2.71 [2.23; 3.19] | pos | 3.29 | 0.57 | 0.43 | |||
neg | −0.58 | 0.48 | 0.52 |
Outcome | δ50–75 (95% CI) | |
---|---|---|
Males | TC | 2.34 [1.61; 3.07] |
HDL-C | 0.49 [0.33; 0.66] | |
LDL-C | 1.35 [0.75; 1.95] | |
Females | TC | 4.25 [3.30; 5.20] |
HDL-C | 1.36 [0.88; 1.84] | |
LDL-C | 1.82 [0.85; 2.79] | |
Total | TC | 2.77 [1.80; 3.74] |
HDL-C | 0.57 [0.42; 0.72] | |
LDL-C | 2.08 [1.15; 3.02] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batzella, E.; Zare Jeddi, M.; Pitter, G.; Russo, F.; Fletcher, T.; Canova, C. Associations between Mixture of Perfluoroalkyl Substances and Lipid Profile in a Highly Exposed Adult Community in the Veneto Region. Int. J. Environ. Res. Public Health 2022, 19, 12421. https://doi.org/10.3390/ijerph191912421
Batzella E, Zare Jeddi M, Pitter G, Russo F, Fletcher T, Canova C. Associations between Mixture of Perfluoroalkyl Substances and Lipid Profile in a Highly Exposed Adult Community in the Veneto Region. International Journal of Environmental Research and Public Health. 2022; 19(19):12421. https://doi.org/10.3390/ijerph191912421
Chicago/Turabian StyleBatzella, Erich, Maryam Zare Jeddi, Gisella Pitter, Francesca Russo, Tony Fletcher, and Cristina Canova. 2022. "Associations between Mixture of Perfluoroalkyl Substances and Lipid Profile in a Highly Exposed Adult Community in the Veneto Region" International Journal of Environmental Research and Public Health 19, no. 19: 12421. https://doi.org/10.3390/ijerph191912421
APA StyleBatzella, E., Zare Jeddi, M., Pitter, G., Russo, F., Fletcher, T., & Canova, C. (2022). Associations between Mixture of Perfluoroalkyl Substances and Lipid Profile in a Highly Exposed Adult Community in the Veneto Region. International Journal of Environmental Research and Public Health, 19(19), 12421. https://doi.org/10.3390/ijerph191912421