The Impact of Foreign Direct Investment on Urban Green Total Factor Productivity and the Mechanism Test
Abstract
:1. Introduction
2. Literature Review and Influencing Mechanism Analysis
3. Research Methods and Data Description
3.1. Research Methods
3.1.1. Measurement of Green Total Factor Productivity
3.1.2. Model Specification
3.2. Description of Variables and Data Sources
3.2.1. Variable Description
3.2.2. Data Sources
4. Analysis of Research Results
4.1. Correlation Analysis
4.2. Robustness Analysis
4.2.1. Replace Explanatory Variables
4.2.2. Replace Control Variables
4.2.3. Eliminate Outliers
4.3. Influence Mechanism Analysis
4.3.1. Mediating Effect
4.3.2. Moderating Effect
4.4. Analysis of Differences among Different Cities
5. Conclusions and Suggestions
5.1. Conclusions
5.2. Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, F.R.; Shang, Y.Z.; Xue, Z.Y. The impact of foreign direct investment on China’s green development -Based on the data of 260 prefecture level cities in China. Econ. Prob. 2022, 4, 75–84. [Google Scholar]
- Abonazel, M.R.; Shalaby, O.A. Using dynamic panel data modeling to study net FDI inflows in MENA countries. Stud. Econ. Econ. 2020, 44, 1–28. [Google Scholar] [CrossRef]
- Zeng, S.; Zhou, Y. Foreign direct investment’s impact on China’s economic growth, technological innovation and pollution. Int. J. Environ. Res. Public Health 2021, 18, 2839. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.S.; Tong, Y.; Wei, Z. The evolution and a temporal-spatial difference analysis of green development in China. Sustain. Cities Soc. 2018, 41, 52–61. [Google Scholar]
- Central Committee of the Communist Party of China. The State Council National Strategy of Innovation-Driven Development [EB/OL]. 2016. Available online: http://www.gov.cn/zhengce/2016-05/19/content_5074812.htm (accessed on 19 May 2016).
- Wu, X.; Si, Y. China’s Belt and Road Initiative and Corporate Innovation. Finance Res. Lett. 2022, 48, 103052. [Google Scholar] [CrossRef]
- Chai, Z. Utilizing Foreign Investment, Environmental Constraint and TFP Growth of China’s Industry:Comparative Research Based on Malmquist Index and Malmquist-Luenberger Index. Technol. Econ. 2013, 32, 64–70. [Google Scholar]
- Yu, D.; Li, X.; Yu, J.; Li, H. The impact of the spatial agglomeration of FDI on green total factor productivity of Chinese cities. J. Environ. Manag. 2021, 290, 112666. [Google Scholar] [CrossRef]
- Letchumanan, R.; Kodama, F. Reconciling the conflict between the ‘pollution-haven’ hypothesis and an emerging trajectory of international technology transfer. Res. Policy 2000, 29, 59–79. [Google Scholar] [CrossRef]
- Ning, L.; Wang, F. Does FDI Bring Environmental Knowledge Spillovers to Developing Countries? The Role of the Local Industrial Structure. Environ. Resour. Econ. 2018, 71, 381–405. [Google Scholar] [CrossRef]
- You, J.; Xiao, H. Can FDI facilitate green total factor productivity in China? Evidence from regional diversity. Environ. Sci. Pollut. Res. Int. 2022, 29, 49309–49321. [Google Scholar] [CrossRef]
- Eskeland, G.S.; Harrison, A.E. Moving to greener pastures? Multinationals and the pollution haven hypothesis. J. Dev. Econ. 2003, 70, 1–23. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.J.; Chen, Y.Q.; Huang, Q.b. The influence of FDI and trade opening on green total factor productivity in the equipment manufacturing industry. Appl. Econs. 2021, 53, 6641–6654. [Google Scholar] [CrossRef]
- Chen, Q.; Maung, M.; Shi, Y.; Wilson, C. FDI concessions and environmental levies in China. Int. Rev. Financ. Anal. 2014, 36, 241–250. [Google Scholar] [CrossRef]
- D’Agostino, L.M. How MNEs respond to environmental regulation: Integrating the Porter hypothesis and the pollution haven hypothesis. Econ. Politica J. Int. Econ. 2015, 32, 245–269. [Google Scholar] [CrossRef]
- Wang, D.T.; Gu, F.F.; Tse, D.K.; Yim, C.K. When does FDI matter? The roles of local institutions and ethnic origins of FDI. Int. Bus. Rev. 2013, 22, 450–465. [Google Scholar] [CrossRef]
- Wang, H.; Sun, H.; Xiao, H.; Xin, L. Relationship between Environmental Policy Uncertainty, Two-way FDI and Low-carbon TFP. China Popul. Resour. Environ. 2020, 30, 75–86. [Google Scholar]
- Hang, H.; Ren, Y. Relationship Between FDI, Industrial Structure Optimization, and Green Full-Factor Productivity: Empirical Evidence From Changjiang Economic Area. Front. Environ. Sci. 2022, 10, 920412. [Google Scholar]
- Wu, J.; Xia, Q.; Li, Z.Y. Green innovation and enterprise green total factor productivity at a micro level: A perspective of technical distance. J. Clean. Prod. 2022, 344, 131070. [Google Scholar] [CrossRef]
- Sun, L.; Miao, C.; Yang, L. Ecological-economic efficiency evaluation of green technology innovation in strategic emerging industries based on entropy weighted TOPSIS method. Ecol. Indic. 2017, 73, 554–558. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, M.; Wang, W. Does Eco-innovation Improve Green Total Factor Productivity of China’s Industry? E3S Web of Conf. 2021, 236, 04003. [Google Scholar] [CrossRef]
- Yang, J.; Li, L.; Liang, Y.; Wu, J.; Wang, Z. Sustainability performance of global chemical industry based on green total factor productivity. Sci. Total Environ. 2022, 830, 154787. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Yang, P.; Li, Q. Impact of environmental regulation on green total factor productivity: A new perspective of green technological innovation. Environ. Sci. Pollut. R. 2022, 29, 53785–53800. [Google Scholar] [CrossRef] [PubMed]
- Ghisetti, C.; Quatraro, F. Green technologies and environmental productivity: A cross-sectoral analysis of direct and indirect effects in Italian regions. Ecol. Econ. 2017, 132, 1–13. [Google Scholar] [CrossRef]
- Mao, J.; Wu, Q.; Zhu, M.; Lu, C. Effects of Environmental Regulation on Green Total Factor Productivity: An Evidence from the Yellow River Basin, China. Sustainability 2022, 14, 2015. [Google Scholar] [CrossRef]
- Chen, N.; Xu, L.; Chen, Z. Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models. Energy 2017, 134, 659–671. [Google Scholar] [CrossRef]
- Huang, D.; Chen, G. Can the Carbon Emissions Trading System Improve the Green Total Factor Productivity of the Pilot Cities?—A Spatial Difference-in-Differences Econometric Analysis in China. Int. J. Environ. Res. Public Health 2022, 19, 1209. [Google Scholar] [CrossRef]
- Ji, L.L. Study on the Temporal and Spatial Heterogeneity of Industrial Structure Change and Green Total Factor Productivity from the Perspective of “Double Circulation”. World Sci. Res. 2022, 8, 116–127. [Google Scholar]
- Sun, J.; Tang, D.; Kong, H.; Boamah, V. Impact of Industrial Structure Upgrading on Green Total Factor Productivity in the Yangtze River Economic Belt. Int. J. Environ. Res. Public Health 2022, 19, 3718. [Google Scholar] [CrossRef]
- Yang, Y.Z.; Wei, X.; Wei, J.; Gao, X. Industrial Structure Upgrading, Green Total Factor Productivity and Carbon Emissions. Sustainability 2022, 14, 1009. [Google Scholar] [CrossRef]
- Liang, G.F.; Yu, D.J.; Ke, L.F. An Empirical Study on Dynamic Evolution of Industrial Structure and Green Economic Growth—Based on Data from China’s Underdeveloped Areas. Sustainability 2021, 13, 8154. [Google Scholar] [CrossRef]
- Caves, D.W.; Christensen, L.R.; Diewert, W.E. Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers. Econ. J. 1982, 92, 73–86. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S. Directional distance functions and slacks-based measures of effiffifficiency. Eur. J. Oper. Res. 2010, 200, 320–322. [Google Scholar] [CrossRef]
- Chung, Y.H. Fare and S. Grosskopf. Productivity and Undesirable Outputs: A Directional Distance Function Approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Cai, W.G.; Zhou, X.L. Dual effects of China’s environmental regulation on green total factor productivity. Ecology 2017, 9, 27–35. [Google Scholar]
- Zhang, J.; Wu, G.Y.; Zhang, J.P. The Estimation of China’s provincial capital stock: 1952& 2000. Eco. Res. J. 2004, 10, 35–44. [Google Scholar]
- Hulten, C.R.; Bennathan, S.S. Infrastructure, externalities, and economic development: A study of the Indian manufacturing industry. World Bank Econ. Rev. 2006, 20, 291–308. [Google Scholar] [CrossRef]
- Yang, S.D.; Hang, X.F.; Song, W.F. Does FDI affect China’s green total factor productivity. JSXUFE 2017, 39, 14–26. [Google Scholar]
- Hu, A.G.Z.; Jefferson, G.H.; Qian, J.C. R&D and technology transfer: Firm-level evidence from Chinese industry. Rev. Econ. Stat. 2005, 87, 780–786. [Google Scholar]
- Zhao, M.L.; Liu, F.Y.; Wang, H.; Sun, W. FDI, environmental regulation and green total factor productivity of cities in the Yellow River Basin. Econ. Geogr. 2020, 40, 38–47. [Google Scholar]
- Yue, L.; Cao, Y.X.; Ren, Y.X. FDI, heterogeneous innovation and green development efficiency. Int. Econ. Tra. Res. 2022, 38, 68–81. [Google Scholar]
- Li, J.; Ming, Y.; Wang, X. Research on the impact of the opening of China Europe trains on Urban Innovation: Also on the innovation effect of China Europe trains under the policy dilemma. World Econ. Stud. 2020, 11, 57–74+136. [Google Scholar]
Variable | Indicators | Measure | Data Source |
---|---|---|---|
Input | Labor | Number of employed persons over the years (ten thousand) | |
Capital | Physical capital stock calculated by the perpetual inventory method (CNY ten thousand) | China City Statistical Yearbook | |
Energy | Total annual electricity consumption (10,000 KWH) | ||
Expect Output | Economic output | Real GDP (CNY billion) | China City Statistical Yearbook |
Undesired Output | Environmental pollution | Industrial wastewater discharge (ten thousand tons) | China Environmental Statistics Yearbook |
Sulfur dioxide emissions (ten thousand tons) | |||
Industrial dust emission (ten thousand tons) |
Variable | Variable Name | Indicator Description | Data Source |
---|---|---|---|
Explained Variable | Green total factor productivity (ML) | Green total factor productivity | The authors calculated |
Explanatory Variables | Stock of foreign direct investment (FDI) | Actual utilization of foreign capital stock | China City Statistical Yearbook |
Control Variables | Resource abundance (RES) | The number of mining employees accounts for the total number of people employed | China City Statistical Yearbook |
Environmental regulation (ER) | Three wastes emission | China Environmental Statistics Yearbook | |
Infrastructure construction (INF) | Urban road area per capita | China City Statistical Yearbook | |
Degree of government intervention (GOV) | Government fiscal spending accounts for the regional GDP | China City Statistical Yearbook |
B-P Test | Hausman Test | Conclusion | |
---|---|---|---|
Statistical value | 6364.34 | 58.21 | Panel fixed effects model |
p value | 0.0000 | 0.0000 |
Variable | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
lnML | lnML | lnML | lnML | lnML | |
lnFDIit | −0.00771 ** | −0.00691 ** | −0.00931 *** | −0.00806 ** | −0.00792 ** |
(0.00340) | (0.00339) | (0.00343) | (0.00342) | (0.00341) | |
lnRESit | −0.0113 *** | −0.0115 *** | −0.0115 *** | −0.0115 *** | |
(0.00232) | (0.00231) | (0.00230) | (0.00230) | ||
lnERit | 0.0103 *** | 0.0108 *** | 0.0106 *** | ||
(0.00234) | (0.00233) | (0.00233) | |||
lnINFit | −0.0514 *** | −0.0514 *** | |||
(0.00777) | (0.00777) | ||||
lnGOVit | −0.0149 * | ||||
(0.00857) | |||||
CONS | 0.946 *** | 0.925 *** | 0.927 *** | 0.959 *** | 0.928 *** |
(0.0451) | (0.0451) | (0.0450) | (0.0451) | (0.0483) | |
Urban Fixed Effect | Control | Control | Control | Control | Control |
Time Fixed Effect | Control | Control | Control | Control | Control |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
lnMEC | lnMEC | lnMTC | lnMTC | |
lnFDIit | 0.00147 | 0.00260 | −0.00664 * | −0.00656 * |
(0.00315) | (0.00320) | (0.00355) | (0.00361) | |
CONS | 0.666 *** | 0.672 *** | 0.955 *** | 0.931 *** |
(0.0417) | (0.0452) | (0.0471) | (0.0511) | |
Control variable | Uncontrolled | Control | Uncontrolled | Control |
Urban Fixed Effect | Control | Control | Control | Control |
Time Fixed Effect | Control | Control | Control | Control |
Variable | (1) | (2) | (3) |
---|---|---|---|
Replace Explanatory Variables | Replace Control Variable | Tailing Test | |
FDI/GDP | −0.439 * | ||
(0.240) | |||
lnFDIit | −0.00618 * | −0.00627 * | |
(0.00342) | (0.00342) | ||
CONS | 1.347 *** | 1.219 *** | 0.921 *** |
(0.242) | (0.126) | (0.0512) | |
Control variable | Control | Control | Control |
Urban Fixed Effect | Control | Control | Control |
Time Fixed Effect | Control | Control | Control |
Variable | (1) | (2) | (3) |
---|---|---|---|
lnML | lnRD | lnML | |
lnFDIit | −0.00792 ** | 0.00241 *** | −0.00845 ** |
(0.00341) | (0.000708) | (0.00342) | |
lnRDit | 0.218 *** | ||
(0.0754) | |||
CONS | 0.928 *** | 0.0345 *** | 0.921 *** |
(0.0483) | (0.0100) | (0.0483) | |
Control variable | Control | Control | Control |
Urban Fixed Effect | Control | Control | Control |
Time Fixed Effect | Control | Control | Control |
Sobel test | Sobel|Z| = 4.625 p = 0.00 | ||
bootstrap test | Direct effect interval: [−0.326, −0.149] Indirect effect interval: [−0.069, −0.011] |
Variable | (1) | (2) |
---|---|---|
lnML | lnML | |
lnFDIit | −0.00792 ** | −0.0558 *** |
(0.00341) | (0.00733) | |
ISit | −1.760 *** | |
(0.300) | ||
lnFDIit * lnISit | 0.165 *** | |
(0.0223) | ||
CONS | 0.928 *** | 1.419 *** |
(0.0483) | (0.101) | |
Control variable | Control | Control |
Urban Fixed Effect | Control | Control |
Time Fixed Effect | Control | Control |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Non-Resource City | Resource-Based City | Non-Coastal Cities | Coastal City | Non-China-Europe Train Opening Cities | China-Europe Train Opening Cities | |
lnML | lnML | lnML | lnML | lnML | lnML | |
lnFDIit | 0.00363 | −0.0199 *** | −0.00661 * | −0.0121 | −0.00216 | −0.0453 * |
(0.00551) | (0.00347) | (0.00365) | (0.0106) | (0.00276) | (0.0256) | |
lnRESit | −0.00764 ** | −0.0239 *** | −0.0118 *** | −0.00764 * | −0.0111 *** | −0.0157 |
(0.00327) | (0.00291) | (0.00264) | (0.00423) | (0.00193) | (0.0108) | |
lnERit | 0.0172 *** | 0.000476 | 0.0129 *** | −0.00450 | 0.00709 *** | 0.0372 *** |
(0.00354) | (0.00246) | (0.00257) | (0.00554) | (0.00199) | (0.0100) | |
lnINFit | −0.0414 *** | −0.0581 *** | −0.0481 *** | −0.0757 *** | −0.0249 *** | −0.233 *** |
(0.0119) | (0.00802) | (0.00834) | (0.0222) | (0.00637) | (0.0406) | |
lnGOVit | −0.0347 *** | 0.00610 | −0.00956 | −0.0288 | −0.00355 | −0.106 * |
(0.0133) | (0.00879) | (0.00980) | (0.0183) | (0.00698) | (0.0567) | |
CONS | 0.703 *** | 1.150 *** | 0.900 *** | 1.131 *** | 0.852 *** | 1.491 *** |
(0.0805) | (0.0459) | (0.0507) | (0.162) | (0.0381) | (0.410) | |
Urban Fixed Effect | Control | Control | Control | Control | Control | Control |
Time Fixed Effect | Control | Control | Control | Control | Control | Control |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Gao, Y.; Liu, Q.; Sun, W. The Impact of Foreign Direct Investment on Urban Green Total Factor Productivity and the Mechanism Test. Int. J. Environ. Res. Public Health 2022, 19, 12183. https://doi.org/10.3390/ijerph191912183
Zhao M, Gao Y, Liu Q, Sun W. The Impact of Foreign Direct Investment on Urban Green Total Factor Productivity and the Mechanism Test. International Journal of Environmental Research and Public Health. 2022; 19(19):12183. https://doi.org/10.3390/ijerph191912183
Chicago/Turabian StyleZhao, Mingliang, Yue Gao, Qing Liu, and Wei Sun. 2022. "The Impact of Foreign Direct Investment on Urban Green Total Factor Productivity and the Mechanism Test" International Journal of Environmental Research and Public Health 19, no. 19: 12183. https://doi.org/10.3390/ijerph191912183
APA StyleZhao, M., Gao, Y., Liu, Q., & Sun, W. (2022). The Impact of Foreign Direct Investment on Urban Green Total Factor Productivity and the Mechanism Test. International Journal of Environmental Research and Public Health, 19(19), 12183. https://doi.org/10.3390/ijerph191912183