Short Communication: Enterotoxin Genes and Antibiotic Susceptibility of Bacillus cereus Isolated from Garlic Chives and Agricultural Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Detection of Enterotoxin Genes
2.3. Antibiotic Susceptibility Testing
3. Results and Discussion
3.1. Distribution of Enterotoxin Genes in B. cereus from Different Sources
3.2. Antibiotic Susceptibility of B. cereus
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Opazo-Navarrete, M.; Burgos-Díaz, C.; Soto-Cerda, B.; Barahona, T.; Anguita-Brrales, F.; Mosi-Roa, Y. Assessment of the nutritional value of traditional vegetables from southern chile as potential sources of natural ingredients. Plant Foods Hum. Nutr. 2021, 76, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Vojkovská, H.; Myšková, P.; Gelbíčová, T.; Skočková, A.; Koláčková, I. Occurrence and characterization of food-borne pathogens isolated from fruit, vegetables and sprouts retailed in the Czech Republic. Food Microbiol. 2017, 63, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Siddique, M.A.; Rahman, M.; Bari, M.L.; Ferdousi, S. A study on the prevalence of heavy metals, pesticides, and microbial contaminants and antibiotics resistance pathogens in raw salad vegetables sold in Dhaka, Bangladesh. Heliyon 2019, 5, e01205. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.S.; Kwon, M.; Park, E.J.; Seheli, K.; Huque, R.; Oh, D.H. Disinfection of Bacillus cereus biofilms on leafy green vegetables with slightly acidic electrolyzed water, ultrasound and mild heat. LWT- Food Sci. Technol. 2019, 116, 108582. [Google Scholar] [CrossRef]
- Yu, P.; Yu, S.; Wang, J.; Guo, H.; Zhang, Y.; Liao, X.; Zhang, J.; Wu, S.; Gu, Q.; Xue, L.; et al. Bacillus cereus isolated from vegetables in China: Incidence, genetic diversity, virulence genes, and antimicrobial resistance. Front. Microbiol. 2019, 10, 948. [Google Scholar] [CrossRef]
- Ministry of Food and Drug Safety. Statistics of Food-Borne Pathogens. 2021. Available online: https://www.foodsafetykorea.go.kr/portal/healthyfoodlife/foodPoisoningStat.do?menu_no=3724&menu_grp=MENU_NEW02 (accessed on 16 September 2022).
- Kotitanta, A.; Lounatmaa, K.; Haapasalo, M. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect. 2000, 2, 189–198. [Google Scholar] [CrossRef]
- Abee, T.; Groot, M.N.; Tempelaars, M.; Zwietering, M.; Moezelaar, R.; Voort, M.V.D. Germination and outgrown of spores of Bacillus cereus group members: Diversity and role of germinant receptors. Food Microbiol. 2011, 28, 199–208. [Google Scholar] [CrossRef]
- Ehling-Schulz, M.; Koehler, T.M.; Lereclus, D. The Bacllus cereus group: Bacillus species with pathogenic potential. HHS Public Access 2019, 7, 1–60. [Google Scholar]
- Chon, J.W.; Kim, J.H.; Lee, S.J.; Hyeon, J.Y.; Seo, K.H. Toxin profile, antibiotic resistance, and phenotypic and molecular characterization of Bacillus cereus in Sunik. Food Microbiol. 2012, 32, 217–222. [Google Scholar] [CrossRef]
- Park, K.M.; Kim, H.J.; Jeong, M.C.; Koo, M.S. Occurrence of toxigenic Bacillus cereus and Bacillus thuringiensis in Doenjang, a Korean fermented soybean paste. J. Food Protect. 2016, 79, 605–612. [Google Scholar] [CrossRef]
- Senesi, S.; Ghelardi, E. Production, secretion and biological activity of Bacillus cereus enterotoxins. Toxins 2010, 2, 1690–1703. [Google Scholar] [CrossRef] [PubMed]
- Park, K.M.; Kim, H.J.; Jeong, M.; Koo, M. Enterotoxin genes, antibiotic susceptibility, and biofilm formation of low-temperature-tolerant Bacillus cereus isolated from green leaf lettuce in the cold chain. Foods 2020, 9, 249. [Google Scholar] [CrossRef]
- Park, K.M.; Jeong, M.C.; Park, K.J.; Koo, M.S. Prevalence, enterotoxin genes, and antibiotic resistance of Bacillus cereus isolated from raw vegetables in Korea. J. Food Protect. 2018, 81, 1590–1597. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ji, Y.; Park, H.; Lee, J.; Park, S.; Yeo, S.; Shin, H.; Holzapfe, W.H. Selection of functional lactic acid bacteria as starter cultures for the fermentation of Korean leek (Allium tuberoxum Rottler ex Sprengel.). Int. J. Food Microbiol. 2014, 191, 164–171. [Google Scholar] [CrossRef] [PubMed]
- He, W.; He, H.; Wang, F.; Wang, S.; Lyu, R. Non-destructive detection and recognition of pesticide residues on garlic chive (Allium tuberosum) leaves based on short wave infrared hyperspectral imaging and one-dimensional convolutional neural network. J. Food Meas. Charact. 2021, 15, 4497–4507. [Google Scholar] [CrossRef]
- Yang, S.I.; Seo, S.M.; Roh, E.; Ryu, J.G.; Ryu, K.Y.; Jung, K.S. Evaluation of microbial contamination in leek and leek cultivated soil in Korea. J. Food Hyg. Saf. 2019, 34, 534–541. [Google Scholar]
- Jung, J.; Oh, K.K.; Seo, S.M.; Yang, S.I.; Jung, K.S.; Roh, E.; Ryu, J.G. Distribution of foodborne pathogens from garlic chives and its production environments in the southern part of Korea. J. Food Hyg. Saf. 2020, 35, 477–488. [Google Scholar] [CrossRef]
- Weinstein, M.P.; Patel, J.B.; Campeau, S.; Eliopoulos, G.M.; Galas, M.F.; Humphries, R.M.; Jenkins, S.G.; Lewis, J.S.; Limbago, B.; Mathers, A.J.; et al. M100 Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; pp. 54–62. [Google Scholar]
- Granum, P.E.; Lund, T. Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 1997, 157, 223–228. [Google Scholar] [CrossRef]
- Zeighami, H.; Nejad-dost, G.; Parsadanians, A.; Daneshamouz, S.; Haghi, F. Frequency of hemolysin BL and non-hemolytic enterotoxin complex genes of Bacillus cereus in raw and cooked meat samples in Zanjan, Iran. Toxicol. Rep. 2020, 7, 89–92. [Google Scholar] [CrossRef]
- Chaves, J.Q.; Pires, E.S.; Vivoni, A.M. Genetic diversity, antimicrobial resistance and toxigenic profiles of Bacillus cereus isolated from food in Brazil over three decades. Int. J. Food Microbiol. 2011, 147, 12–16. [Google Scholar] [CrossRef]
- Dietrich, R.; Jessberger, N.; Ehling-Schulz, M.; Märtlbauer, E.; Granum, P.E. The food poisoning toxins of Bacillus cereus. Toxins 2021, 13, 98. [Google Scholar] [CrossRef] [PubMed]
- Amor, M.G.B.; Jan, S.; Baron, F.; Grosset, N.; Culot, A.; Gdoura, R.; Gautier, M.; Techer, C. Toxigenic potential and antimicrobial susceptibility of Bacillus cereus group bacteria isolated from Tunisian foodstuffs. BMC Microbiol. 2019, 19, 196. [Google Scholar]
- Fiedler, G.; Schneider, C.; Igbinosa, E.O.; Kabisch, J.; Brinks, E.; Becker, B.; Stoll, D.A.; Cho, G.S.; Huch, M.; Franz, C.M.A. Antibiotics resistance and toxin profiles of Bacillus cereus-group isolates from fresh vegetables from German retail market. BMC Microbiol. 2019, 19, 250. [Google Scholar] [CrossRef] [PubMed]
- Hernández, A.G.C.; Ortiz, V.G.; Gómez, J.L.A.; López, M.Á.R.; Morales, J.A.R.; Macías, A.F.; Hidalgo, E.Á.; Ramírez, J.N.; Gallardo, F.J.F.; Gutiérrez, M.C.G.; et al. Detection of Bacillus cereus sensu lato isolates posing potential health risks in Mexican chili power. Microorganisms 2021, 9, 2226. [Google Scholar] [CrossRef]
- Kim, S.R.; Lee, J.Y.; Lee, S.H.; Ryu, K.Y.; Park, K.H.; Kim, B.S.; Yoon, Y.H.; Shim, W.B.; Kim, K.Y.; Ha, S.D.; et al. Profiles of toxin genes and antibiotic susceptibility of Bacillus cereus isolated from perilla leaf and cultivation areas. Korean J. Food Sci. Technol. 2011, 43, 134–141. [Google Scholar] [CrossRef]
- Torkar, K.G.; Bedenić, B. Antimicrobial susceptibility and characterization of metallo-β-lactamases, extended-spectrum β-lactamases, and carbapenemases of Bacillus cereus isolates. Microb. Pathog. 2018, 118, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Jensen, L.B.; Baloda, S.; Boye, M.; Aarestrup, F.M. Antimicrobial resistance among Pseudomonas spp. and the Bacillus cereus group isolated from Danish agricultural soil. Environ. Int. 2001, 26, 581–587. [Google Scholar]
- Yilmaz, M.; Soran, H.; Beyatli, Y. Antimicrobial activities of some Bacillus spp. strains isolated from the soil. Microbiol. Rev. 2006, 161, 127–131. [Google Scholar]
- Drobiewski, F.A. Bacillus cereus and related species. Clin. Microbiol. Rev. 1993, 6, 324–338. [Google Scholar] [CrossRef]
- Luna, V.A.; King, D.S.; Gulledge, J.; Cannons, A.C.; Amuso, P.T.; Cattani, J. Susceptibility of Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus pseudomycoides and Bacillus thuringiensis to 24 antimicrobials using Sensititre® automated microbroth dilution and Etest® agar gradient diffusion methods. J. Antimicrob. Chemoth. 2007, 60, 555–567. [Google Scholar] [CrossRef]
- Poole, K. Bacterial stress responses as determinants of antimicrobial resistance. J. Antimicrob. Chemoth. 2012, 67, 2069–2089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | No. of Isolates (%) | Toxin Genes | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pattern | hblA | hblC | hblD | hblACD 1 | nheA | nheB | nheC | nheABC 2 | ||
Garlic chives | 3/13 (23.1) | G1 | + | + | + | + | + | + | + | + |
8/13 (61.5) | G2 | + | + | + | + | — | + | + | — | |
1/13 (7.7) | G3 | + | — | + | — | + | + | + | + | |
1/13 (7.7) | G4 | — | + | + | — | + | + | + | + | |
Soil | 32/67 (47.8) | S1 | + | + | + | + | + | + | + | + |
7/67 (10.4) | S2 | + | + | + | + | + | — | + | — | |
3/67 (4.5) | S3 | + | + | + | + | + | — | — | — | |
12/67 (17.9) | S4 | + | + | + | + | — | + | + | — | |
5/67 (7.5) | S5 | + | — | + | — | + | + | + | + | |
1/67 (1.5) | S6 | + | — | + | — | + | + | — | — | |
2/67 (3.0) | S7 | + | — | + | — | — | + | + | — | |
1/67 (1.5) | S8 | — | + | + | — | + | + | + | + | |
2/67 (3.0) | S9 | — | + | + | — | + | — | + | — | |
1/67 (1.5) | S10 | — | + | + | — | — | — | — | — | |
1/67 (1.5) | S11 | — | — | + | — | + | — | + | — | |
Compost | 4/17 (23.5) | C1 | + | + | + | + | + | + | + | + |
8/17 (47.1) | C2 | + | + | + | + | — | + | + | — | |
1/17 (5.9) | C3 | + | — | + | — | + | — | — | — | |
1/17 (5.9) | C4 | — | + | + | — | + | — | + | — | |
2/17 (11.8) | C5 | — | — | — | — | + | — | + | — | |
1/17 (5.9) | C6 | — | — | — | — | — | — | + | — | |
Irrigation water | 6/6 (100.0) | W1 | + | + | + | + | + | + | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.; Jin, H.; Seo, S.; Jeong, M.; Kim, B.; Ryu, K.; Oh, K. Short Communication: Enterotoxin Genes and Antibiotic Susceptibility of Bacillus cereus Isolated from Garlic Chives and Agricultural Environment. Int. J. Environ. Res. Public Health 2022, 19, 12159. https://doi.org/10.3390/ijerph191912159
Jung J, Jin H, Seo S, Jeong M, Kim B, Ryu K, Oh K. Short Communication: Enterotoxin Genes and Antibiotic Susceptibility of Bacillus cereus Isolated from Garlic Chives and Agricultural Environment. International Journal of Environmental Research and Public Health. 2022; 19(19):12159. https://doi.org/10.3390/ijerph191912159
Chicago/Turabian StyleJung, Jieun, Hyeonsuk Jin, Seungmi Seo, Myeongin Jeong, Boeun Kim, Kyoungyul Ryu, and Kwangkyo Oh. 2022. "Short Communication: Enterotoxin Genes and Antibiotic Susceptibility of Bacillus cereus Isolated from Garlic Chives and Agricultural Environment" International Journal of Environmental Research and Public Health 19, no. 19: 12159. https://doi.org/10.3390/ijerph191912159
APA StyleJung, J., Jin, H., Seo, S., Jeong, M., Kim, B., Ryu, K., & Oh, K. (2022). Short Communication: Enterotoxin Genes and Antibiotic Susceptibility of Bacillus cereus Isolated from Garlic Chives and Agricultural Environment. International Journal of Environmental Research and Public Health, 19(19), 12159. https://doi.org/10.3390/ijerph191912159