The Effects of Cranberry Polyphenol Extract (CPE) Supplementation on Astringency and Flavor Perception as a Function of PROP Taster Status and Other Individual Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject Recruitment
2.2. PROP Taster Status
2.3. Test Stimuli
2.4. Taste Ratings
2.5. Experimental Procedures
2.5.1. Session I: Familiarization Task
2.5.2. Session II: Sample Evaluations
2.5.3. Session III: Sample Evaluations & Height and Weight Measurements
2.6. Data Analysis
2.6.1. ANCOVA
2.6.2. Regression Trees
2.6.3. Random Forest Modeling
3. Results
3.1. ANCOVA Results
3.2. Regression Trees
3.3. Random Forest Modeling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, C.B.; Lawless, H.T. Time-course of astringent sensations. Chem. Senses 1991, 16, 225–238. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Zhang, Y.N.; Chen, J.X.; Wang, F.; Du, Q.Z.; Yin, J.F. Quantitative analyses of the bitterness and astringency of catechins from green tea. Food Chem. 2018, 258, 16–24. [Google Scholar] [CrossRef]
- De Beer, D.; Steyn, N.; Joubert, E.; Muller, N. Enhancing the polyphenol content of a red-fleshed Japanese plum (Prunus salicina Lindl.) nectar by incorporating a polyphenol-rich extract from the skins. J. Sci. Food Agric. 2012, 92, 2741–2750. [Google Scholar] [CrossRef]
- Koppel, K.; Chambers Iv, E. Development and application of a lexicon to describe the flavor of pomegranate juice. J. Sens. Stud. 2010, 25, 819–837. [Google Scholar] [CrossRef]
- Lawless, L.J.; Threlfall, R.T.; Meullenet, J.-F.; Howard, L.R. Applying a Mixture Design for Consumer Optimization of Black Cherry, Concord Grape and Pomegranate Juice Blends. J. Sens. Stud. 2013, 28, 102–112. [Google Scholar] [CrossRef]
- Mayuoni-Kirshenbaum, L.; Bar-Ya’Akov, I.; Hatib, K.; Holland, D.; Porat, R. Genetic diversity and sensory preference in pomegranate fruits. Fruits 2013, 68, 517–524. [Google Scholar] [CrossRef]
- Childs, J.L.; Drake, M. Consumer perception of astringency in clear acidic whey protein beverages. J. Food Sci. 2010, 75, S513–S521. [Google Scholar] [CrossRef]
- Torri, L.; Piochi, M.; Marchiani, R.; Zeppa, G.; Dinnella, C.; Monteleone, E. A sensory- and consumer-based approach to optimize cheese enrichment with grape skin powders. J. Dairy Sci. 2016, 99, 194–204. [Google Scholar] [CrossRef]
- Lipan, L.; Cano-Lamadrid, M.; Vazquez-Araujo, L.; Lyczko, J.; Moriana, A.; Hernandez, F.; Garcia-Garcia, E.; Carbonell-Barrachina, A.A. Optimization of roasting conditions in hydroSOStainable almonds using volatile and descriptive sensory profiles and consumer acceptance. J. Food Sci. 2020, 85, 3969–3980. [Google Scholar] [CrossRef]
- Das Virgens, I.A.; Pires, T.C.; De Santana, L.R.R.; Soares, S.E.; Maciel, L.F.; Ferreira, A.C.R.; Biasoto, A.C.T.; Bispo, E.D.S. Relationship between bioactive compounds and sensory properties of dark chocolate produced from Brazilian hybrid cocoa. Int. J. Food Sci. Technol. 2020, 56, 1905–1917. [Google Scholar] [CrossRef]
- Niimi, J.; Danner, L.; Li, L.; Bossan, H.; Bastian, S.E.P. Wine consumers’ subjective responses to wine mouthfeel and understanding of wine body. Food Res. Int. 2017, 99, 115–122. [Google Scholar] [CrossRef]
- Sáenz-Navajas, M.-P.; Ballester, J.; Pêcher, C.; Peyron, D.; Valentin, D. Sensory drivers of intrinsic quality of red wines. Food Res. Int. 2013, 54, 1506–1518. [Google Scholar] [CrossRef]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Souto, E.; Cicala, C.; Caiazzo, E.; Izzo, A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res. 2019, 33, 2221–2243. [Google Scholar] [CrossRef]
- Saibandith, B.; Spencer, J.P.E.; Rowland, I.R.; Commane, D.M. Olive polyphenols and the metabolic syndrome. Molecules 2017, 22, 1082. [Google Scholar] [CrossRef]
- Cueva, C.; Silva, M.; Pinillos, I.; Bartolome, B.; Moreno-Arribas, M.V. Interplay between dietary polyphenols and oral and gut microbiota in the development of colorectal cancer. Nutrients 2020, 12, 625. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, S.; Li, T.; Li, N.; Han, D.; Zhang, B.; Xu, Z.Z.; Zhang, S.; Pang, J.; Wang, S.; et al. Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis. Microbiome 2021, 9, 184. [Google Scholar] [CrossRef]
- U.S.D.A. Dietary Guidelines for Americans, 2020–2025, 9th ed.; U.S. Department of Agriculture: Washington, DC, USA, 2020.
- Corsi, A.M.; Cohen, J.; Lockshin, L.; Williamson, P. Testing lexical equivalences for wine flavours in emerging markets: Do hawthorns taste like blackberries? Food Qual. Prefer. 2017, 62, 296–306. [Google Scholar] [CrossRef]
- Cravero, M.C.; Laureati, M.; Spinelli, S.; Bonello, F.; Monteleone, E.; Proserpio, C.; Lottero, M.R.; Pagliarini, E.; Dinnella, C. Profiling Individual Differences in Alcoholic Beverage Preference and Consumption: New Insights from a Large-Scale Study. Foods 2020, 9, 1131. [Google Scholar] [CrossRef]
- Dinnella, C.; Recchia, A.; Tuorila, H.; Monteleone, E. Individual astringency responsiveness affects the acceptance of phenol-rich foods. Appetite 2011, 56, 633–642. [Google Scholar] [CrossRef]
- De Toffoli, A.; Spinelli, S.; Monteleone, E.; Arena, E.; Di Monaco, R.; Endrizzi, I.; Gallina Toschi, T.; Laureati, M.; Napolitano, F.; Torri, L.; et al. Influences of psychological traits and PROP taster status on familiarity with and choice of phenol-rich foods and beverages. Nutrients 2019, 11, 1329. [Google Scholar] [CrossRef]
- Robino, A.; Mezzavilla, M.; Pirastu, N.; La Bianca, M.; Gasparini, P.; Carlino, D.; Tepper, B.J. Understanding the role of personality and alexithymia in food preferences and PROP taste perception. Physiol. Behav. 2016, 157, 72–78. [Google Scholar] [CrossRef]
- Laaksonen, O.; Makila, L.; Tahvonen, R.; Kallio, H.; Yang, B. Sensory quality and compositional characteristics of blackcurrant juices produced by different processes. Food Chem. 2013, 138, 2421–2429. [Google Scholar] [CrossRef]
- Kim, U.K.; Jorgenson, E.; Coon, H.; Leppert, M.; Risch, N.; Drayna, D. Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 2003, 299, 1221–1225. [Google Scholar] [CrossRef]
- Bufe, B.; Breslin, P.A.; Kuhn, C.; Reed, D.R.; Tharp, C.D.; Slack, J.P.; Kim, U.K.; Drayna, D.; Meyerhof, W. The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Curr. Biol. 2005, 15, 322–327. [Google Scholar] [CrossRef]
- Tepper, B.J. Nutritional implications of genetic taste variation: The role of PROP sensitivity and other taste phenotypes. Annu. Rev. Nutr. 2008, 28, 367–388. [Google Scholar] [CrossRef]
- Pickering, G.J.; Robert, G. Perception of mouthfeel sensations elicited by red wine are associated with sensitivity to 6-n-propothiouracil. J. Sens. Stud. 2006, 21, 249–265. [Google Scholar] [CrossRef]
- Pickering, G.J.; Simunkova, K.; DiBattista, D. Intensity of taste and astringency sensations elicited by red wines is associated with sensitivity to PROP (6-n-propylthiouracil). Food Qual. Prefer. 2004, 15, 147–154. [Google Scholar] [CrossRef]
- Laaksonen, O.; Ahola, J.; Sandell, M. Explaining and predicting individually experienced liking of berry fractions by the hTAS2R38 taste receptor genotype. Appetite 2013, 61, 85–96. [Google Scholar] [CrossRef]
- Melis, M.; Yousaf, N.Y.; Mattes, M.Z.; Cabras, T.; Messana, I.; Crnjar, R.; Tomassini Barbarossa, I.; Tepper, B.J. Sensory perception of and salivary protein response to astringency as a function of the 6-n-propylthioural (PROP) bitter-taste phenotype. Physiol. Behav. 2017, 173, 163–173. [Google Scholar] [CrossRef]
- Thorngate, J.H. Sensory Evaluatin of Bitterness and Astringency of 3R(-)-Epicatechin and 3S (+)-Catechin. J. Sci. Food Agric. 1995, 67, 531–535. [Google Scholar] [CrossRef]
- Smith, A.K.; June, H.; Noble, A.C. Effects of viscosity on the bitterness and astringency of grape seed tannin. Food Qual. Prefer. 1996, 7, 161–166. [Google Scholar] [CrossRef]
- Carrai, M.; Campa, D.; Vodicka, P.; Flamini, R.; Martelli, I.; Slyskova, J.; Jiraskova, K.; Rejhova, A.; Vodenkova, S.; Canzian, F.; et al. Association between taste receptor (TAS) genes and the perception of wine characteristics. Sci Rep. 2017, 7, 9239. [Google Scholar] [CrossRef]
- Duffy, V.B.; Rawal, S.; Park, J.; Brand, M.H.; Sharafi, M.; Bolling, B.W. Characterizing and improving the sensory and hedonic responses to polyphenol-rich aronia berry juice. Appetite 2016, 107, 116–125. [Google Scholar] [CrossRef]
- Fleming, E.E.; Ziegler, G.R.; Hayes, J.E. Check-All-That-Apply (CATA), sorting, and polarized sensory positioning (PSP) with astringent stimuli. Food Qual. Prefer. 2015, 45, 41–49. [Google Scholar] [CrossRef]
- Törnwall, O.; Dinnella, C.; Keskitalo-Vuokko, K.; Silventoinen, K.; Perola, M.; Monteleone, E.; Kaprio, J.; Tuorila, H. Astringency perception and heritability among young Finnish twins. Chemosens Percept. 2011, 4, 134–144. [Google Scholar] [CrossRef]
- Yang, Q.; Williamson, A.M.; Hasted, A.; Hort, J. Exploring the relationships between taste phenotypes, genotypes, ethnicity, gender and taste perception using Chi-square and regression tree analysis. Food Qual. Prefer. 2020, 83, 103928. [Google Scholar] [CrossRef]
- Yousaf, N.Y.; Melis, M.; Mastinu, M.; Contini, C.; Cabras, T.; Tomassini Barbarossa, I.; Tepper, B.J. Time Course of Salivary Protein Responses to Cranberry-Derived Polyphenol Exposure as a Function of PROP Taster Status. Nutrients 2020, 12, 2878. [Google Scholar] [CrossRef]
- Zhao, L.; Kirkmeyer, S.V.; Tepper, B.J. A paper screening test to assess genetic taste sensitivity to 6-n-propylthiouracil. Physiol. Behav. 2003, 78, 625–633. [Google Scholar] [CrossRef]
- Sollai, G.; Melis, M.; Pani, D.; Cosseddu, P.; Usai, I.; Crnjar RBonfiglio, A.; Tomassini Barbarossa, I. First objective evaluation of taste sensitivity to 6-n-propylthiouracil (PROP), a paradigm gustatory stimulus in humans. Sci. Rep. 2017, 7, 40353. [Google Scholar] [CrossRef] [Green Version]
- Burgess, B.; Melis, M.; Scoular, K.; Driver, M.; Schaich, K.M.; Keller, K.L.; Tomassini Barbarossa, I.; Tepper, B.J. Effects of CD36 Genotype on Oral Perception of Oleic Acid Supplemented Safflower Oil Emulsions in Two Ethnic Groups: A Preliminary Study. J. Food Sci. 2018, 83, 1373–1380. [Google Scholar] [CrossRef]
- Fong, S.K.; Kawash, J.; Wang, Y.; Johnson-Cicalese, J.; Polashock, J.; Vorsa, N. A low malic acid trait in cranberry fruit: Genetics, molecular mapping, and interaction with a citric acid locus. Tree Genet. Genomes 2021, 17, 4. [Google Scholar] [CrossRef]
- Carta, G.; Melis, M.; Pintus, S.; Pintus, P.; Piras, C.A.; Muredda, L.; Demurtas, D.; Di Marzo, V.; Banni, S.; Tomassini Barbarossa, I. Participants with normal weight or with obesity show different relationships of 6-n-Propylthiouracil (PROP) taster status with BMI and plasma endocannabinoids. Sci. Rep. 2017, 7, 1361. [Google Scholar] [CrossRef]
- Pani, D.; Usai, I.; Cosseddu, P.; Melis, M.; Sollai, G.; Crnjar, R.; Tomassini Barbarossa, I.; Raffo, L.; Bonfiglio, A. An automated system for the objective evaluation of human gustatory sensitivity using tongue biopotential recordings. PLoS ONE 2017, 12, e0177246. [Google Scholar] [CrossRef]
- Lewis, R.L. An introduction to classification and regression tree (CART) analysis. In Proceedings of the Annual Meeting of the Society for Academic Emergency Medicine, San Francisco, CA, USA, 22–25 May 2000. [Google Scholar]
- Kershaw, J.C.; Running, C.A. Dose-response functions and methodological insights for sensory tests with astringent stimuli. J. Sens. Stud. 2019, 34, e12480. [Google Scholar] [CrossRef]
- Hamada, T.Y.; Brown, A.; Hopfer, H.; Ziegler, G.R. Flavor and mouthfeel of pseudo-cocoa liquor: Effects of polyphenols, fat content, and training method. J. Sens. Stud. 2019, 35, e12541. [Google Scholar] [CrossRef]
- Pittari, E.; Moio, L.; Arapitsas, P.; Curioni, A.; Gerbi, V.; Parpinello, G.P.; Ugliano, M.; Piombino, P. Exploring Olfactory-Oral Cross-Modal Interactions through Sensory and Chemical Characteristics of Italian Red Wines. Foods 2020, 9, 1530. [Google Scholar] [CrossRef]
- Cliceri, D.; Aprea, E.; Menghi, L.; Endrizzi, I.; Gasperi, F. Variability in the temporal perception of polyphenol-related sensations in extra virgin olive oil and impact on flavor perception. Food Qual. Prefer. 2021, 93, 104249. [Google Scholar]
- Tepper, B.J.; White, E.A.; Koelliker, Y.; Lanzara, C.; d’Adamo, P.; Gasparini, P. Genetic variation in taste sensitivity to 6-n-propylthiouracil and its relationship to taste perception and food selection. Ann. N. Y. Acad. Sci. 2009, 1170, 126–139. [Google Scholar] [CrossRef]
- Laing, D.G.; Prescott, J.; Bell, G.A.; Gillmore, S.A.; Best, D.J. Responses of Japanese and Australians to sweetness in the context of different foods. J. Sens Stud. 1993, 9, 131–155. [Google Scholar]
- Pages, J.; Bertrand, C.; Ali, R.; Husson, F.; Le, S. Sensory analysis comaprison of eight biscuits by French and Pakistani panels. J. Sens Stud. 2007, 22, 665–686. [Google Scholar] [CrossRef]
- Ferdenzi, C.; Roberts, S.C.; Schirmer, A.; Delplanque, S.; Cekic, S.; Porcherot, C.; Cayeux, I.; Sander, D.; Grandjean, D. Variability of Affective Responses to Odors: Culture, Gender, and Olfactory Knowledge. Chem. Senses 2012, 38, 175–186. [Google Scholar] [CrossRef]
- Jin, L.; Haviland-Jones, J.; Simon, J.E.; Tepper, B.J. Influence of aroma intensity and nasal pungency on the ‘mood signature’ of common aroma compounds in a mixed ethnic population. Food Qual. Prefer. 2018, 65, 164–174. [Google Scholar] [CrossRef]
- Williams, J.A.; Bartoshuk, L.M.; Fillingim, R.B.; Dotson, C.D. Exploring ethnic differences in taste perception. Chem. Senses 2016, 41, 449–456. [Google Scholar] [CrossRef]
- Pedrotti, M.; Spaccasassi, A.; Biasioli, F.; Fogliano, V. Ethnicity, gender and physiological parameters: Their effect on in vivo flavour release and perception during chewing gum consumption. Food Res. Int. 2019, 116, 57–70. [Google Scholar] [CrossRef]
- Robino, A.; Concas, M.P.; Spinelli, S.; Pierguidi, L.; Tepper, B.J.; Gasparini, P.; Prescott, J.; Monteleone, E.; Toschi, T.G.; Torri, L.; et al. Combined influence of TAS2R38 genotype and PROP phenotype on the intensity of basic tastes, astringency and pungency in the Italian taste project. Food Qual. Prefer. 2022, 95, 104361. [Google Scholar] [CrossRef]
- Tepper, B.J.; Melis, M.; Koelliker, Y.; Gasparini, P.; Ahijevych, K.L.; Tomassini Barbarossa, I. Factors influencing the phenotypic characterization of the oral marker, PROP. Nutrients 2017, 9, 1275. [Google Scholar] [CrossRef]
- Griffin, L.E.; Diako, C.; Miller, L.E.; Neilson, A.P.; Ross, C.F.; Stewart, A.C. Preference for and sensitivity to flavanol mean degree of polymerization in model wines is correlated with body composition. Appetite 2020, 144, 104442. [Google Scholar] [CrossRef]
Sample | Details |
---|---|
CJ | Cranberry Juice, unsweetened |
CPE | 0.75 g/L Cranberry Polyphenol Extract in spring water |
CJC | Cranberry Juice Cocktail, CJ with 8.75% w/v sugar |
Low | 0.30 g/L CPE in CJC |
Med | 0.50 g/L CPE in CJC |
High | 0.75 g/L CPE in CJC |
Gender | PROP Classification | n (of 125) | Ethnicity (n) | Age | BMI | |
---|---|---|---|---|---|---|
Caucasian | Asian | (Years) | (kg/m2) | |||
Female | NT | 30 | 22 | 8 | 22.1 ± 1.0 | 25.2 ± 0.9 |
ST | 33 | 23 | 10 | 22.2 ± 0.9 | 24.5 ± 1.0 | |
Male | NT | 30 | 13 | 17 | 21.1 ± 0.4 | 24.8 ± 0.8 |
ST | 32 | 19 | 13 | 21.7 ± 0.7 | 25.0 ± 0.6 |
Sweetness | Sourness | Bitterness | Astringency | Thickness | Cranberry Flavor | Overall Flavor | Liking | |
---|---|---|---|---|---|---|---|---|
F | 22.402 | 23.778 | 4.274 | 4.494 | 4.419 | 26.048 | 15.699 | 33.643 |
Pr > F | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Age | 0.116 | 0.445 | 1.886 | 0.769 | 0.010 | 0.594 | 13.208 | 4.359 |
0.733 | 0.505 | 0.170 | 0.381 | 0.920 | 0.441 | 0.000 | 0.037 | |
BMI | 3.180 | 1.217 | 1.750 | 0.464 | 0.391 | 0.033 | 4.316 | 2.990 |
0.075 | 0.270 | 0.186 | 0.496 | 0.532 | 0.856 | 0.038 | 0.084 | |
PROP Taster Status | 0.926 | 2.947 | 1.055 | 0.392 | 0.001 | 5.640 | 1.117 | 4.546 |
0.336 | 0.086 | 0.305 | 0.531 | 0.974 | 0.018 | 0.291 | 0.033 | |
Gender | 0.145 | 2.925 | 1.593 | 0.472 | 2.966 | 0.118 | 2.536 | 1.794 |
0.703 | 0.088 | 0.207 | 0.492 | 0.085 | 0.731 | 0.112 | 0.181 | |
Sample Type | 113.424 | 112.270 | 12.617 | 18.750 | 20.823 | 128.417 | 74.343 | 167.699 |
<0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Ethnicity | 1.118 | 1.795 | 23.297 | 9.239 | 0.344 | 1.189 | 0.073 | 14.136 |
0.291 | 0.181 | <0.0001 | 0.002 | 0.558 | 0.276 | 0.787 | 0.000 | |
Taster*Gender | 0.413 | 12.183 | 0.191 | 1.955 | 0.463 | 14.980 | 3.147 | 0.335 |
0.520 | 0.001 | 0.662 | 0.162 | 0.496 | 0.000 | 0.076 | 0.563 | |
Gender*Sample | 0.486 | 2.841 | 1.123 | 0.464 | 0.228 | 0.492 | 0.327 | 0.728 |
0.787 | 0.015 | 0.346 | 0.803 | 0.950 | 0.782 | 0.897 | 0.602 |
Features | Sweetness | Sourness | Bitterness | Astringency | Thickness | Cranberry Flavor | Overall Flavor | Liking |
---|---|---|---|---|---|---|---|---|
Sample | 154.39 | 143.60 | 28.73 | 45.69 | 52.99 | 145.55 | 95.62 | 169.70 |
Taster | 10.60 | 20.22 | 0.91 | 2.55 | −0.01 | 12.26 | 8.53 | 3.05 |
Gender | 3.19 | 19.54 | 3.11 | 0.76 | −1.67 | 11.41 | 7.83 | 4.80 |
Ethnicity | 4.11 | −1.32 | 15.29 | 5.60 | 2.59 | 4.04 | −1.29 | 8.68 |
Age | 3.10 | 4.07 | 4.18 | −1.31 | 6.84 | 2.07 | 2.36 | 3.58 |
BMI | 11.30 | 6.90 | −1.13 | 1.67 | 0.19 | 6.97 | 16.2 | 2.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousaf, N.Y.; Tepper, B.J. The Effects of Cranberry Polyphenol Extract (CPE) Supplementation on Astringency and Flavor Perception as a Function of PROP Taster Status and Other Individual Factors. Int. J. Environ. Res. Public Health 2022, 19, 11995. https://doi.org/10.3390/ijerph191911995
Yousaf NY, Tepper BJ. The Effects of Cranberry Polyphenol Extract (CPE) Supplementation on Astringency and Flavor Perception as a Function of PROP Taster Status and Other Individual Factors. International Journal of Environmental Research and Public Health. 2022; 19(19):11995. https://doi.org/10.3390/ijerph191911995
Chicago/Turabian StyleYousaf, Neeta Y., and Beverly J. Tepper. 2022. "The Effects of Cranberry Polyphenol Extract (CPE) Supplementation on Astringency and Flavor Perception as a Function of PROP Taster Status and Other Individual Factors" International Journal of Environmental Research and Public Health 19, no. 19: 11995. https://doi.org/10.3390/ijerph191911995
APA StyleYousaf, N. Y., & Tepper, B. J. (2022). The Effects of Cranberry Polyphenol Extract (CPE) Supplementation on Astringency and Flavor Perception as a Function of PROP Taster Status and Other Individual Factors. International Journal of Environmental Research and Public Health, 19(19), 11995. https://doi.org/10.3390/ijerph191911995