Potential Health Risk of Aluminum in Four Camellia sinensis Cultivars and Its Content as a Function of Leaf Position
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sample Collections
2.3. Chemical Analysis
2.4. Calculation of Target Hazard Quotient (THQ) and Estimated Daily Intake (EDI) of Al
2.5. Statistical Analysis
3. Results and Discussion
3.1. Al Content in Leaves at Different Positions (Leaf Ages) in Two Seasons
3.2. Comparison of Al Content in Leaves of Four Cultivars
3.3. Potential Exposure to Al from Tea Consumption
3.4. Al Content as a Measure of “Tea Leaf Quality” in Hawaii Teas
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, K. World Tea Production and Trade: Current and Future Development; FAO: Rome, Italy, 2015. [Google Scholar]
- Schneider, C.; Segre, T. Green tea: Potential health benefits. Am. Fam. Physician 2009, 79, 591–594. [Google Scholar] [PubMed]
- FAO. Food and Agriculture Organization of the United Nations: Crops and Livestock Products. 2022. Available online: https://www.fao.org/faostat/en/#data/TCL (accessed on 27 April 2022).
- Sun, L.; Zhang, M.; Liu, X.; Mao, Q.; Shi, C.; Kochian, L.V.; Liao, H. Aluminium is essential for root growth and development of tea plants (Camellia sinensis). J. Integr. Plant Biol. 2020, 62, 984–997. [Google Scholar] [CrossRef]
- JECFA; Food and Agriculture Organization of the United Nations; World Health Organization. Summary and Conclusions of the Sixty-Seventh Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); JECFA/67/SC; Food and Agriculture Organization: Rome, Italy, 2006. [Google Scholar]
- Street, R.; Drabek, O.; Szakova, J.; Mladkova, L. Total content and speciation of aluminum in tea leaves and tea infusions. Food Chem. 2007, 104, 1662–1669. [Google Scholar] [CrossRef]
- Kandimalla, R.; Vallamkondu, J.; Corgiat, E.B.; Gill, K.D. Understanding aspects of aluminum exposure in Alzheimer’s disease development. Brain Pathol. 2016, 26, 139–154. [Google Scholar] [CrossRef]
- Klotz, K.; Weistenhöfer, W.; Neff, F.; Hartwig, A.; van Thriel, C.; Drexler, H. The health effects of aluminum exposure. Dtsch. Ärzteblatt Int. 2017, 114, 653–659. [Google Scholar] [CrossRef]
- Malik, J.; Szakova, J.; Drabek, O.; Balik, J.; Kokoska, L. Determination of certain micro and macro elements in plant stimulants and their infusions. Food Chem. 2008, 111, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Tietz, T.; Lenzner, A.; Kolbaum, A.E.; Zellmer, S.; Riebeling, C.; Gürtler, R.; Jung, C.; Kappenstein, O.; Tentschert, J.; Giulbudagian, M.; et al. Aggregated aluminium exposure: Risk assessment for the general population. Arch. Toxicol. 2019, 93, 3503–3521. [Google Scholar] [CrossRef]
- Saiyed, S.M.; Yokel, R.A. Aluminium content of some foods and food products in the USA, with aluminium food additives. Food Addit. Contam. 2005, 22, 234–244. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, R.; Chen, R.; Peng, Y.; Wen, X.; Gao, L. Accumulation of heavy metals in tea leaves and potential health risk assessment: A case study from Puan County, Guizhou Province, China. Int. J. Environ. Res. Public Health 2018, 15, 133. [Google Scholar] [CrossRef]
- Zee, F.; Sato, D.; Keith, L.; Follett, P.; Hamasaki, R.T. Small-Scale Tea Growing and Processing in Hawaii; College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa: Honolulu, HI, USA, 2003. [Google Scholar]
- Carr, H.P.; Lombi, E.; Küpper, H.; Mcgrath, S.P.; Wong, M.H. Accumulation and distribution of aluminum and other elements in tea (Camellia sinensis) leaves. Agronomie 2003, 23, 705–710. [Google Scholar] [CrossRef]
- Fung, K.F.; Carr, H.P.; Poon, B.; Wong, M.H. A comparison of aluminum levels in tea products from Hong Kong markets and in varieties of tea plants from Hong Kong and India. Chemosphere 2009, 75, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Hirasawa, E.; Morimura, S.; Takahashi, E. Localization of aluminum in tea leaves. Plant Cell Physiol. 1976, 17, 627–631. [Google Scholar]
- Hue, N.V.; Uehara, G.; Yost, R.S.; Ortiz-Escobar, M. Distribution of Soil Orders in Hawaii. Available online: https://hilo.hawaii.edu/academics/cafnrm/research/documents/hawaii_soils706.pdf (accessed on 10 July 2022).
- Ozcan, M.M.; Unver, A.; Uca, T.; Arslan, D. Mineral content of some herbs and herbal teas by infusion and decoction. Food Chem. 2008, 106, 1120–1127. [Google Scholar] [CrossRef]
- AIYA America. Matcha Green Tea. Available online: http://www.aya-america.com (accessed on 28 September 2010).
- Flaten, T.P. Aluminum in tea-concentrations, speciation and bioavailability. Coordin. Chem. Rev. 2002, 2, 385–395. [Google Scholar] [CrossRef]
- Hue, N.V.; Uchida, R.; Ho, M.C. Sampling and analysis of soils and plant tissues: How to take representative samples, how the samples are tested. In Plant Nutrient Management in Hawaii’s Soils, Approaches for Tropical and Subtropical Agriculture Honolulu; Silva, J.A., Uchida, R., Eds.; College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa: Honolulu, HI, USA, 2000. [Google Scholar]
- Isaac, R.A.; Johnson, W.C. Elemental analysis of plant tissue by plasma emission spectroscopy: Collaborative study. J. Assoc. Off Anal. Chem. 1985, 68, 499–505. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Fu, Q.L.; Liu, Y.; Li, L.; Achal, V. A survey on the heavy metal contents in Chinese traditional egg products and their potential health risk assessment. Food Addit. Contam. Part B Surveill 2014, 7, 99–105. [Google Scholar] [CrossRef]
- USEPA. Regional Screening Level (RSL) Summary Table (TR=1E-6, HQ=1). November 2021. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed on 27 April 2022).
- Chen, Y.L.; Jiang, Y.M.; Duan, J.; Shi, J.; Xue, S.; Kakuda, Y. Variation in catechin contents in relation to quality of ‘Huang Zhi Xiang’ Oolong tea (Camellia sinensis) at various growing altitudes and seasons. Food Chem. 2010, 119, 648–652. [Google Scholar] [CrossRef]
- Ercisli, S.; Orhan, E.; Ozdemir, O.; Sengul, M.; Gungor, N. Seasonal variation of total phenolic, antioxidant activity, plant nutritional elements, and fatty acids in tea leaves (Camellia sinensis var. sinensis clone Derepazari 7) grown in Turkey. Pharm. Biol. 2008, 46, 683–687. [Google Scholar] [CrossRef]
- Yao, L.H.; Caffin, N.; D’Arcy, B.; Jiang, Y.M.; Shi, J.; Singanusong, R.; Liu, X.; Datta, N.; Kakuda, Y.; Xu, Y. Seasonal variations of phenolic compounds in Australia-grown tea (Camellia sinensis). J. Agric. Food Chem. 2005, 53, 6477–6483. [Google Scholar] [CrossRef]
- Erturk, Y.; Ercisli, S.; Sengul, M.; Eser, Z.; Haznedar, A.; Turan, M. Seasonal variation of total phenolic, antioxidant activity and minerals in fresh tea shoots (Camellia sinensis var. Sinensis). Pak. J. Pharm. Sci. 2010, 23, 69–74. [Google Scholar]
- Shu, W.S.; Zhang, Z.Q.; Lan, C.Y.; Wong, M.H. Fluoride and aluminum concentrations of tea plants and tea products from Sichuan Province, PR China. Chemosphere 2003, 52, 1475–1482. [Google Scholar] [CrossRef]
- Yokel, R.A.; Florence, R.L. Aluminum bioavailability from tea infusion. Food Chem. Toxicol. 2008, 46, 3659–3663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Al Concentration (μg/g) | Al (µg) per Serving | |
---|---|---|
Food Item 1 | ||
Processed American Cheese Slices | 14–470 | 270–8900 per slice (19 g) |
Pancake Mixes | 19–1200 | 770–57,000 per 1/3 cup (40 g) |
Baking Powder | 18,000–28,000 | 72,000–112,000 per tsp. (4 g) |
Non-dairy Creamer | 110–590 | 260–1500 per individual packet (2 g) |
C. sinensis | ||
Dry Tea Leaves 2 | 22.9–3260 3,4 | |
Powdered Tea | 478–1229 5 | 1434–3687 per 240 mL 6 |
Yutaka Midori Infusion 7 | 0.13 μg/mL | 31.2 per 240 mL |
Prepared Tea Infusion 8 | 0.4–13 µg/mL | 96–3120 per 240 mL |
Leaf Position | Estimated Daily Intakes (EDI) 1 | |||||||
---|---|---|---|---|---|---|---|---|
Yabukita | Yutaka Midori | Mealani | Ohiwase | |||||
Winter | Summer | Winter | Summer | Winter | Summer | Winter | Summer | |
Shoot + 2 Leaves | 1.69 × 10−2 | 2.08 × 10−2 | 2.04 × 10−2 | 2.00 × 10−2 | 2.21 × 10−2 | 2.71 × 10−2 | 1.85 × 10−2 | 2.53 × 10−2 |
Leaf 3 | 4.23 × 10−2 | 3.57 × 10−2 | 4.17 × 10−2 | 3.45 × 10−2 | 6.43 × 10−2 | 4.96 × 10−2 | 5.84 × 10−2 | 5.77 × 10−2 |
Leaf 4 | 6.59 × 10−2 | 6.19 × 10−2 | 7.21 × 10−2 | 5.53 × 10−2 | 9.64 × 10−2 | 6.52 × 10−2 | 8.72 × 10−2 | 8.33 × 10−2 |
Leaf 5 | 9.53 × 10−2 | 8.13 × 10−2 | 1.02 × 10−1 | 7.47 × 10−2 | 1.37 × 10−1 | 8.31 × 10−2 | 1.33 × 10−1 | 1.16 × 10−1 |
Leaf 6 | 1.29 × 10−1 | 1.14 × 10−1 | 1.66 × 10−1 | 9.76 × 10−2 | 2.08 × 10−1 | 1.27 × 10−1 | 1.76 × 10−1 | 1.55 × 10−1 |
Leaf 7 | 1.69 × 10−1 | nc 2 | 2.36 × 10−1 | nc 2 | 2.19 × 10−1 | nc 2 | 2.31 × 10−1 | nc 2 |
Leaf 8 | 2.44 × 10−1 | 2.08 × 10−1 | 3.09 × 10−1 | 1.97 × 10−1 | 2.76 × 10−1 | 1.37 × 10−1 | 3.00 × 10−1 | 2.94 × 10−1 |
Leaf 9 | 2.92 × 10−1 | nc 2 | 3.89 × 10−1 | nc 2 | 3.15 × 10−1 | nc 2 | 3.72 × 10−1 | nc 2 |
Leaf 10 | 3.54 × 10−1 | 2.69 × 10−1 | 4.30 × 10−1 | 2.98 × 10−1 | 3.30 × 10−1 | 2.04 × 10−1 | 4.21 × 10−1 | 4.17 × 10−1 |
Leaf 11 | 4.15 × 10−1 | 4.23 × 10−1 | 5.06 × 10−1 | 4.69 × 10−1 | 3.60 × 10−1 | 4.26 × 10−1 | 4.91 × 10−1 | nc 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Chen, Y.; Shido, J.M.; Hamasaki, R.T.; Iwaoka, W.T.; Nakamoto, S.T.; Wang, H.; Li, Q.X. Potential Health Risk of Aluminum in Four Camellia sinensis Cultivars and Its Content as a Function of Leaf Position. Int. J. Environ. Res. Public Health 2022, 19, 11952. https://doi.org/10.3390/ijerph191911952
Yang H, Chen Y, Shido JM, Hamasaki RT, Iwaoka WT, Nakamoto ST, Wang H, Li QX. Potential Health Risk of Aluminum in Four Camellia sinensis Cultivars and Its Content as a Function of Leaf Position. International Journal of Environmental Research and Public Health. 2022; 19(19):11952. https://doi.org/10.3390/ijerph191911952
Chicago/Turabian StyleYang, Huijuan, Yan Chen, Jennifer M. Shido, Randall T. Hamasaki, Wayne T. Iwaoka, Stuart T. Nakamoto, Haiyan Wang, and Qing X. Li. 2022. "Potential Health Risk of Aluminum in Four Camellia sinensis Cultivars and Its Content as a Function of Leaf Position" International Journal of Environmental Research and Public Health 19, no. 19: 11952. https://doi.org/10.3390/ijerph191911952
APA StyleYang, H., Chen, Y., Shido, J. M., Hamasaki, R. T., Iwaoka, W. T., Nakamoto, S. T., Wang, H., & Li, Q. X. (2022). Potential Health Risk of Aluminum in Four Camellia sinensis Cultivars and Its Content as a Function of Leaf Position. International Journal of Environmental Research and Public Health, 19(19), 11952. https://doi.org/10.3390/ijerph191911952