Towards Sustainable Wastewater Treatment: Bioindication as a Technique for Supporting Treatment Efficiency Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tested Pharmaceuticals: Diclofenac and Sulfamethoxazole
2.2. Experimental CW System
2.3. Chemical Analysis of Wastewater
2.4. Activity of Antioxidant Enzymes in M. giganteus
2.5. Toxicity Tests towards Aquatic Organisms
2.6. Toxicity Classification of Wastewater
2.7. Statistical Analysis
3. Results
3.1. Chemical Analysis of Wastewater
3.2. Antioxidant Enzymes in M. giganteus
3.3. Toxicity of Wastewater
4. Discussion
4.1. Chemical Parameters of Treatment Process
4.2. Activity of M. giganteus Enzymes
4.3. Toxicity of Wastewater
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Materials and Methods
Appendix A.1.1. Tested Pharmaceuticals
Compound | DCF | SMX |
CAS number | 15307-86-5 | 723-46-6 |
Molecular formula | C14H11Cl2NO2 | C10H11N3O3S |
Molar mass, g mol−1 | 296.15 | 253.28 |
pKa 1 | 4.15 | 5.6–5.7 |
log KOW 1 (pH 8) | 4.51 | 0.89 |
Maximal concentration in surface water 2, µg L−1 | 18.74 | 11.92 |
Maximal concentration in groundwater 3, µg L−1 | 0.59 | 1.11 |
Maximal concentration in wastewater effluent 4,5, µg L−1 | 5.5 | 6.0 |
Appendix A.1.2. Experimental System of CWs
Chemical Compounds | Concentration, mg L−1 | Food Ingredients | Concentration, mg L−1 | Trace Metals | Concentration, mg L−1 |
---|---|---|---|---|---|
CH3COONa | 510.4 | yeast extract | 264 | KCr(SO4)2∙12H2O | 0.96 |
urea | 208.76 | skim milk powder | 118 | CuSO4∙5H2O | 0.781 |
KH2PO4 | 41.37 | NiSO4∙7H2O | 0.359 | ||
peptone | 40 | ZnCl2 | 0.208 | ||
FeSO4∙7H2O | 11.6 | MnSO4∙H2O | 0.108 | ||
MgSO4∙7H2O | 4.408 | PbCl2 | 0.1 |
Appendix A.1.3. Chemical Analysis of Wastewater
Appendix A.1.4. Activity of Antioxidant Enzymes in M. giganteus
Appendix A.1.5. Toxicity Tests towards Aquatic Organisms
Component | Concentration, g L−1 |
---|---|
NaCl | 22.0 |
MgCl2·6H2O | 9.7 |
Na2SO4 | 3.7 |
CaCl2 | 1.0 |
KCl | 0.65 |
NaHCO3 | 0.2 |
H3BO3 | 0.023 |
TU Value | Toxicity Classification |
---|---|
<0.4 | no toxicity |
0.4–1 | low toxicity |
1–10 | average toxicity |
10–100 | high toxicity |
>100 | extreme toxicity |
Appendix A.2. Results
Types of Columns | Activity of Antioxidant Enzymes | |
---|---|---|
CAT µmol H2O2 min−1 mgprotein−1 | SOD U min−1 mgprotein−1 | |
R1-CTRL-Planted | 136.7 ± 18.4 | 37.2 ± 4.5 |
R1-PhC-Planted | 165.3 ± 15.4 | 52.4 ± 8.2 |
R2-CTRL-Planted | 169.7 ± 13.4 | 46.1 ± 6.9 |
R2-PhC-Planted | 205.9 ± 14.5 | 59.6 ± 6.7 |
Types of Columns | The Wastewater Toxicity Reduction, % | |||
---|---|---|---|---|
A. fischeri | D. magna, 24 h | D. magna, 48 h | L. minor | |
R1-CTRL-Planted | −24.8 | 14.6 | 12.4 | 29.1 |
R1-PhC-Planted | −42.2 | 19.4 | 8.9 | 38.7 |
R1-CTRL-Unplanted | −22.5 | 48.9 | 32.9 | 54.2 |
R1-PhC-Unplanted | 0.3 | 40.8 | 42.5 | 41.5 |
R2-CTRL-Planted | 55.3 | 72.6 | 34.2 | 69.0 |
R2-PhC-Planted | 62.1 | 82.6 | 70.1 | 78.3 |
R2-CTRL-Unplanted | 14.3 | 49.2 | 41.4 | 65.4 |
R2-PhC-Unplanted | 43.3 | 77.3 | 62.4 | 82.8 |
Test Organisms | TOC Concentration, mg L−1 | |
---|---|---|
<100 mg L−1 | ≥100 mg L−1 | |
A. fischeri | TU = 0.1509 + 0.0029x + 0.01y | TU = 0.5195 + 0.0014x + 0.0015y |
D. magna, 24 h | TU = −0.5706 + 0.0216x + 0.0213y | TU = 1.6187 + 0.0037x + 0.0037y |
D. magna, 48 h | TU = −0.1875 + 0.0334x + 0.0266y | TU = 2.0676 + 0.0044x + 0.0075y |
L. minor | TU = −1.4193 + 0.045x + 0.0803y | TU = 8.9237 + 0.01x − 0.0031y |
References
- Tang, J.; Zhang, C.; Shi, X.; Sun, J.; Cunningham, J.A. Municipal wastewater treatment plants coupled with electrochemical, biological and bio-electrochemical technologies: Opportunities and challenge toward energy self-sufficiency. J. Environ. Manag. 2019, 234, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Fan, J.; Liu, H. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresour. Technol. 2015, 175, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Doble, M. Treatment of waste from organic chemical industries. In Biotreatment of Industrial Effluents; Doble, M., Kumar, A., Eds.; Butterworth-Heinemann: Oxford, UK, 2005; pp. 55–64. [Google Scholar] [CrossRef]
- Liu, L.; Fan, H.; Huang, X.; Wei, L.; Liu, C. Fate of antibiotics from swine wastewater in constructed wetlands with different flow configurations. Int. Biodeterior. Biodegrad. 2019, 140, 119–125. [Google Scholar] [CrossRef]
- Bakhshoodeh, R.; Alavi, N.; Oldham, C.; Santos, R.M.; Babaei, A.A.; Vymazal, J.; Paydary, P. Constructed wetlands for landfill leachate treatment: A review. Ecol. Eng. 2020, 146, 105725. [Google Scholar] [CrossRef]
- De Martis, G.; Mulas, B.; Malavasi, V.; Marignani, M. Can artificial ecosystems enhance local biodiversity? The case of a constructed wetland in a Mediterranean urban context. Environ. Manag. 2016, 57, 1088–1097. [Google Scholar] [CrossRef]
- Vymazal, J. Is removal of organics and suspended solids in horizontal sub-surface flow constructed wetlands sustainable for twenty and more years? Chem. Eng. J. 2019, 378, 122117. [Google Scholar] [CrossRef]
- Stanković, D. Constructed wetlands for wastewater treatment. Građevinar 2017, 69, 639–652. [Google Scholar] [CrossRef]
- Zhi, W.; Ji, G. Constructed wetlands, 1991–2011: A review of research development, current trends, and future directions. Sci. Total Environ. 2012, 441, 19–27. [Google Scholar] [CrossRef]
- Parde, D.; Patwa, A.; Shukla, A.; Vijay, R.; Killedar, D.J.; Kumar, R. A review of constructed wetland on type, technology and treatment of wastewater. Environ. Technol. Innov. 2021, 21, 101261. [Google Scholar] [CrossRef]
- Prado, M.; Borea, L.; Cesaro, A.; Liu, H.; Naddeo, V.; Belgiorno, V.; Ballesteros, F., Jr. Removal of emerging contaminant and fouling control in membrane bioreactors by combined ozonation and sonolysis. Int. Biodeterior. Biodegrad. 2017, 119, 577–586. [Google Scholar] [CrossRef]
- Chen, W.-H.; Wong, Y.-T.; Huang, T.-H.; Chen, W.-H.; Lin, J.-G. Removals of pharmaceuticals in municipal wastewater using a staged anaerobic fluidized membrane bioreactor. Int. Biodeterior. Biodegrad. 2019, 140, 29–36. [Google Scholar] [CrossRef]
- Meffe, R.; de Bustamante, I. Emerging organic contaminants in surface water and groundwater: A first overview of the situation in Italy. Sci. Total Environ. 2014, 481, 280–295. [Google Scholar] [CrossRef]
- Sousa, J.C.G.; Ribeiro, A.R.; Barbosa, M.O.; Pereira, M.F.R.; Silva, A.M.T. A review on environmental monitoring of water organic pollutants identified by EU guidelines. J. Hazard. Mater. 2018, 344, 146–162. [Google Scholar] [CrossRef]
- Yang, Y.; Ok, Y.S.; Kim, K.-H.; Kwon, E.E.; Tsang, Y.F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ. 2017, 596–597, 303–320. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Decision (EU) 2015/495 of 20 March 2015 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- European Commission. The European Union Water Framework Directive—Directive 2000/60/EC of the European Parliament and of the Council Establishing a Framework for the Community Action in the Field of Water Policy; European Commission: Brussels, Belgium, 2000. [Google Scholar]
- Loos, R.; Marinov, D.; Sanseverino, I.; Napierska, D.; Lettieri, T. Review of the 1st Watch List under the Water Framework Directive and Recommendations for the 2nd Watch List; JRC Technical Reports; Joint Research Centre: Brussels, Belgium, 2018. [Google Scholar]
- Baran, W.; Adamek, E.; Ziemiańska, J.; Sobczak, A. Effects of the presence of sulfonamides in the environment and their influence on human health. J. Hazard. Mater. 2011, 196, 1–15. [Google Scholar] [CrossRef]
- Felis, E.; Kalka, J.; Sochacki, A.; Kowalska, K.; Bajkacz, S.; Harnisz, M.; Korzeniewska, E. Antimicrobial pharmaceuticals in the aquatic environment—Occurrence and environmental implications. Eur. J. Pharmacol. 2020, 866, 172813. [Google Scholar] [CrossRef]
- Liu, L.; Chen, S.; Xu, K.; Huang, X.; Liu, C. Influence of hydraulic loading rate on antibiotics removal and antibiotic resistance expression in soil layer of constructed wetlands. Chemosphere 2021, 265, 129100. [Google Scholar] [CrossRef]
- Miarov, O.; Tal, A.; Avisar, D. A critical evaluation of comparative regulatory strategies for monitoring pharmaceuticals in recycled wastewater. J. Environ. Manag. 2020, 254, 109794. [Google Scholar] [CrossRef]
- Batt, A.L.; Furlong, E.T.; Mash, H.E.; Glassmeyer, S.T.; Kolpin, D.W. The importance of quality control in validating concentrations of contaminants of emerging concern in source and treated drinking water samples. Sci. Total Environ. 2017, 579, 1618–1628. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.K.; Rehman, M.Y.A.; Malik, R.N. Fate and toxicity of pharmaceuticals in water environment: An insight on their occurrence in South Asia. J. Environ. Manag. 2020, 271, 111030. [Google Scholar] [CrossRef]
- Bashir, S.; Peerzada, O.H.; Kaur, N.; Ali, S. Reduction of pollution load in sewage water using aquatic macrophyte Lemna minor L. (duck weed). Environ. Ecol. 2017, 35, 2393–2395. [Google Scholar]
- Mitsou, K.; Koulianou, A.; Lambropoulou, D.; Pappas, P.; Albanis, T.; Lekka, M. Growth rate effects, responses of antioxidant enzymes and metabolic fate of the herbicide Propanil in the aquatic plant Lemna minor. Chemosphere 2006, 62, 275–283. [Google Scholar] [CrossRef]
- Olmstead, A.W.; LeBlanc, G.A. Effects of endocrine-active chemicals on the development of sex characteristics of Daphnia magna. Environ. Toxicol. Chem. 2000, 19, 2107–2113. [Google Scholar] [CrossRef]
- Farré, M.; Barceló, D. Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. Trends. Anal. Chem. 2003, 22, 299–310. [Google Scholar] [CrossRef]
- Parvez, S.; Venkataraman Ch Mukherji, S. A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ. Int. 2006, 32, 265–268. [Google Scholar] [CrossRef]
- Sochacki, A.; Nowrotek, M.; Felis, E.; Kalka, J.; Ziembińska-Buczyńska, A.; Bajkacz, S.; Ciesielski, S.; Miksch, K. The effect of loading frequency and plants on the degradation of sulfamethoxazole and diclofenac in vertical-flow constructed wetlands. Ecol. Eng. 2018, 122, 187–196. [Google Scholar] [CrossRef]
- Nopens, I.; Capalozza, C.; Vanrolleghem, P.A. Technical Report: Stability Analysis of a Synthetic Municipal Wastewater; Ghent University: Ghent, Belgium, 2001. [Google Scholar]
- Nowrotek, M.; Sochacki, A.; Felis, E.; Miksch, K. Removal of diclofenac and sulfamethoxazole from synthetic municipal waste water in microcosm downflow constructed wetlands: Start-up results. Int. J. Phytoremediation 2016, 18, 157–163. [Google Scholar] [CrossRef]
- Góth, L. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta 2001, 196, 143–152. [Google Scholar] [CrossRef]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- ISO 11348-3:2007; Water Quality—Determination of the Inhibitory Effect of Waste Samples on the Light Emission of Vibrio fischeri (Luminescent bacteria Test)—Part 3: Method Using Freeze-Dried Bacteria. International Organization for Standardization: Geneva, Switzerland, 2007.
- ISO 10253:2016; Water Quality—Marine Algal Growth Inhibition Test with Skeletonema sp. and Phaeodactylum tricornutum. International Organization for Standardization: Geneva, Switzerland, 2016.
- Drzymała, J.; Kalka, J. Elimination of the hormesis phenomenon by the use of synthetic sea water in a toxicity test towards Aliivibrio fischeri. Chemosphere 2020, 248, 126085. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 202: Daphnia sp. Acute Immobilisation Test. In OECD Guidelines for the Testing of Chemicals; Section 2; OECD Publishing: Paris, France, 2004. [Google Scholar]
- OECD. Test No. 221: Lemna sp. Growth Inhibition Test. In OECD Guidelines for the Testing of Chemicals; Section 2; OECD Publishing: Paris, France, 2006. [Google Scholar]
- Persoone, G.; Marsalek, B.; Blinova, I.; Törökne, A.; Zarina, D.; Manusadzianas, L.; Nalecz-Jawecki, G.; Tofan, L.; Stepanova, N.; Tothova, L.; et al. A practical and user-friendly toxicity classification system with Microbiotests for natural waters and wastewaters. Environ. Toxicol. 2003, 18, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Ra, J.S.; Lee, B.C.; Chang, N.I.; Kim, S.D. Comparative whole effluent toxicity assessment of wastewater treatment plant effluents using Daphnia magna. Bull. Environ. Contam. Toxicol. 2008, 80, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Gizińska-Górna, M.; Czekała, W.; Jóźwiakowski, K.; Lewicki, A.; Dach, J. The possibility of using plants from hybrid constructed wetland wastewater treatment plant for energy purposes. Ecol. Eng. 2016, 95, 534–541. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Kotani, K.; Kashiwada, S.; Masunaga, S. Does the choice of NOEC or EC10 affect the hazardous concentration for 5% of the species? Environ. Sci. Technol. 2015, 49, 9326–9330. [Google Scholar] [CrossRef]
- van Vlaardingen, P.; Traas, T.P.; Wintersen, A.; Aldenberg, T. ETX 2.0. A Program to Calculate Hazardous Concentrations and Fraction Affected, Based on Normally Distributed Toxicity Data; RIVM report 601501028/2004; National Institute for Public Health and the Environment: Utrecht, The Netherlands, 2004. [Google Scholar]
- Saeed, T.; Sun, G. A lab-scale study of constructed wetlands with sugarcane bagasse and sand media for the treatment of textile wastewater. Bioresour. Technol. 2013, 128, 438–447. [Google Scholar] [CrossRef]
- Bulc, T.G.; Ojstršek, A. The use of constructed wetland for dye-rich textile wastewater treatment. J. Hazard. Mater. 2008, 155, 76–82. [Google Scholar] [CrossRef]
- Davies, L.C.; Carias, C.C.; Novais, J.M.; Martins-Dias, S. Phytoremediation of textile effluents containing azo dye by using Phragmites australis in a vertical flow intermittent feeding constructed wetland. Ecol. Eng. 2005, 25, 594–605. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Tan, S.K.; Gersberg, R.M.; Zhu, J.; Sadreddini, S.; Li, Y. Nutrient removal in tropical subsurface flow constructed wetlands under batch and continuous flow conditions. J. Environ. Manag. 2012, 96, 1–6. [Google Scholar] [CrossRef]
- Ávila, C.; Matamoros, V.; Reyes-Contreras, C.; Piña, B.; Casado, M.; Mita, L.; Rivetti, C.; Barata, C.; García, J.; Bayona, J.M. Attenuation of emerging organic contaminants in a hybrid constructed wetland system under different hydraulic loading rates and their associated toxicological effects in wastewater. Sci. Total Environ. 2014, 470–471, 1272–1280. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef]
- Carranza-Diaz, O.; Schultze-Nobre, L.; Moeder, M.; Nivala, J.; Kuschk, P.; Koeser, H. Removal of selected organic micropollutants in planted and unplanted pilot-scale horizontal flow constructed wetlands under conditions of high organic load. Ecol. Eng. 2014, 71, 234–245. [Google Scholar] [CrossRef]
- de la Paz, A.; Salinas, N.; Matamoros, V. Unravelling the role of vegetation in the attenuation of contaminants of emerging concern from wetland systems: Preliminary results from column studies. Water Res. 2019, 166, 115031. [Google Scholar] [CrossRef]
- Miller, E.L.; Nason, S.L.; Karthikeyan, K.G.; Pedersen, J.A. Root uptake of pharmaceutical and personal care product ingredients. Environ. Sci. Technol. 2016, 50, 525–541. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, G.; Ng, W.J.; Tan, S.K. A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: Design, performance and mechanism. Sci. Total Environ. 2014, 468–469, 908–932. [Google Scholar] [CrossRef]
- Dordio, A.V.; Carvalho, A.J.P. Organic xenobiotics removal in constructed wetlands, with emphasis on the importance of the support matrix. J. Hazard. Mater. 2013, 252–253, 272–292. [Google Scholar] [CrossRef]
- Hu, X.; Xie, H.; Zhuang, L.; Zhang, J.; Hu, Z.; Liang, S.; Feng, K. A review on the role of plant in pharmaceuticals and personal care products (PPCPs) removal in constructed wetlands. Sci. Total Environ. 2021, 780, 146637. [Google Scholar] [CrossRef]
- Shukla, A.; Parde, D.; Gupta, V.; Vijay, R.; Kumar, R. A review on effective design processes of constructed wetlands. Int. J. Environ. Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Gorgoglione, A.; Torretta, V. Sustainable management and successful application of constructed wetlands: A critical review. Sustainability 2018, 10, 3910. [Google Scholar] [CrossRef]
- Fernandez, R.; Colás-Ruiz, N.R.; Bolívar-Anillo, H.J.; Anfuso, G.; Hampel, M. Occurrence and Effects of antimicrobials drugs in aquatic ecosystems. Sustainability 2021, 13, 13428. [Google Scholar] [CrossRef]
- Gonzalez-Gonzalez, R.B.; Flores-Contreras, E.A.; Parra-Saldívar, R.; Iqbal, H.N.M. Bio-removal of emerging pollutants by advanced bioremediation techniques. Environ. Res. 2022, 214, 113936. [Google Scholar] [CrossRef] [PubMed]
- Sági, G.; Bezsenyi, A.; Kovács, K.; Klátyik, S.; Darvas, B.; Székács, A.; Wojnárovits, L.; Takács, E. The impact of H2O2 and the role of mineralization in biodegradation or ecotoxicity assessment of advanced oxidation processes. Radiat. Phys. Chem. 2018, 144, 361–366. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Lei, Y.; Li, X.; Nagarajan, D.; Lee, D.-J.; Chang, J.-S. Analysis of pollutants removal efficiency, cellular composition, and bacterial community. Bioresour. Technol. 2022, 351, 126964. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.; Liu, Y.S.; Hu, L.X.; Shi, Z.Q.; Cai, W.W.; He, L.Y.; Ying, G.G. Cometabolism of sulfamethoxazole by a freshwater microalga Chlorella pyrenoidosa. Water Res. 2020, 175, 115656. [Google Scholar] [CrossRef]
- Lushchak, V.I. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 2011, 101, 13–30. [Google Scholar] [CrossRef]
- Lushchak, V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact. 2014, 224, 164–175. [Google Scholar] [CrossRef]
- Ahmad, R.; Jaleel, C.A.; Salem, M.A.; Nabi, G.; Sharma, S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 2010, 30, 161–175. [Google Scholar] [CrossRef]
- Alscher, R.G.; Erturk, N.; Heath, L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 2002, 53, 1331–1341. [Google Scholar] [CrossRef]
- Zhang, X.B.; Liu, P.; Yang, Y.S.; Chen, W.R. Phytoremediation of urban wastewater by model wetlands with ornamental hydrophytes. J. Environ. Sci. 2007, 19, 902–909. [Google Scholar] [CrossRef]
- Yan, Q.; Feng, G.; Gao, X.; Sun Ch Guo, J.-S.; Zhu, Z. Removal of pharmaceutically active compounds (PhACs) and toxicological response of Cyperus alternifolius exposed to PhACs in microcosm constructed wetlands. J. Hazard. Mater. 2016, 301, 566–575. [Google Scholar] [CrossRef]
- Pradhan, A.; Sahu, S.K.; Dash, A.K. Changes in pigment content (chlorophyll and carotenoid), enzyme activities (catalase and peroxidase), biomass and yield of rice plant (Oriza sativa.L) following irrigation of rice mill wastewater under pot culture conditions. Int. J. Sci. Eng. Res. 2013, 4, 6. [Google Scholar]
- Lyubenova, L.; Schröder, P. Plants for waste water treatment—Effects of heavy metals on the detoxification system of Typha latifolia. Bioresour. Technol. 2011, 102, 996–1004. [Google Scholar] [CrossRef]
- Rizzo, L.; Meric, S.; Guida, M.; Kassinos, D.; Belgiorno, V. Heterogenous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals. Water Res. 2009, 43, 4070–4078. [Google Scholar] [CrossRef]
- Majewsky, M.; Wagner, D.; Delay, M.; Bräse, S.; Yargeau, V.; Horn, H. Antibacterial activity of sulfamethoxazole transformation products (TPs): General relevance for sulfonamide TPs modified at the para position. Chem. Res. Toxicol. 2014, 27, 1821–1828. [Google Scholar] [CrossRef]
- Punzi, M.; Nilsson, F.; Anbalagan, A.; Svensson, B.-M.; Jönsson, K.; Mattiasson, B.; Jonstrup, M. Combined anaerobic-ozonation process for treatment of textile wastewater: Removal of acute toxicity and mutagenicity. J. Hazard. Mater. 2015, 292, 52–60. [Google Scholar] [CrossRef]
- Vymazal, J. Plants used in constructed wetlands with horizontal subsurface flow: A review. Hydrobiologia 2011, 674, 133–156. [Google Scholar] [CrossRef]
- Drzymała, J.; Kalka, J. Ecotoxic interactions between pharmaceuticals in mixtures: Diclofenac and sulfamethoxazole. Chemosphere 2020, 259, 127407. [Google Scholar] [CrossRef]
- Pascual-Benito, M.; Nadal-Sala, D.; Tobella, M.; Ballesté, E.; García-Aljaro, C.; Sabaté, S.; Sabater, F.; Martí, E.; Gracia, C.A.; Blanch, A.R.; et al. Modelling the seasonal impacts of a wastewater treatment plant on water quality in a Mediterranean stream using microbial indicators. J. Environ. Manag. 2020, 261, 110220. [Google Scholar] [CrossRef]
- Rice, J.; Wutich, A.; Westerhoff, P. Assessment of de facto wastewater reuse across the U.S.: Trends between 1980 and 2008. Environ. Sci. Technol. 2013, 47, 11099–11105. [Google Scholar] [CrossRef]
- Fortney, L.; Podein, R.; Hernke, M. Detoxification. In Integrative Medicine; Rakel, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 996–1002. [Google Scholar]
Type of Costs | Unit | CWs | SBR |
---|---|---|---|
Electricity | KW year−1 | 260,000 | 7,500,000 |
Labor cost | Full-time equivalent year−1 | 0.75 | 12 |
Maintenance cost | DFC year−1 | 0.9 | 1.9 |
Miscellaneous cost | USD year−1 | 26,000 | 245,000 |
Impact on ozone depletion | kg CFC | 6.6 × 10−9 | 6.6 × 10−7 |
Land requirement | m2 person−1 | 1.5–2.5 | 0.05–0.01 |
Types of Columns | R1-CTRL-Planted | R1-PhC-Planted | R1-CTRL-Unplanted | R1-PhC-Unplanted | R2-CTRL-Planted | R2-PhC-Planted | R2-CTRL-Unplanted | R2-PhC-Unplanted |
---|---|---|---|---|---|---|---|---|
Feeding regime (R) | R1 | R2 | ||||||
2 days of feeding/5 days of resting | 5 days of feeding/2 days of resting | |||||||
Wastewater volume | 2.5 L/d 5 L/week | 1 L/d 5 L/week | ||||||
HLR 1 | 0.08 m3 m−2 d−1 | 0.032 m3 m−2 d−1 | ||||||
Plants | yes | no | Yes | no | ||||
PhC 2 | no | yes | no | yes | no | yes | no | yes |
Types of Columns | Removal Efficiency, % * | |||
---|---|---|---|---|
TOC | N-NH4 | DCF | SMX | |
R1-CTRL-Planted | 87.8 ± 3.93 | 19.9 ± 7.3 | – | – |
R1-PhC-Planted | 87.3 ± 1.94 | 18.0 ± 11.4 | 68.8 ± 8.2 | 79.1 ± 4.3 |
R1-CTRL-Unplanted | 90.8 ± 1.08 | 39.3 ± 10.3 | – | – |
R1-PhC-Unplanted | 90.0 ± 0.97 | 22.9 ± 12.6 | 13.7 ± 16.3 | 78.9 ± 22.5 |
R2-CTRL-Planted | 93.3 ± 1.43 | 45.8 ± 11.9 | – | – |
R2-PhC-Planted | 92.3 ± 1.12 | 58.9 ± 10.0 | 86.8 ± 9.7 | 98.0 ± 0.8 |
R2-CTRL-Unplanted | 93.7 ± 1.07 | 29.1 ± 8.3 | – | – |
R2-PhC-Unplanted | 94.1 ± 0.59 | 58.3 ± 4.6 | 76.6 ± 9.4 | 97.4 ± 0.7 |
Types of Columns | TU | Toxicity Classification 2 | |||
---|---|---|---|---|---|
A. fischeri1 | D. magna, 24 h | D. magna, 48 h | L. minor | ||
Influent CTRL | 1.1 ± 0.3 a | 3.1 ± 0.8 b | 4.1 ± 0.9 b | 11.2 ± 1.7 a | high toxicity |
Influent PhC | 1.0 ± 0.3 a | 2.8 ± 1.0 b | 3.9 ± 0.8 b | 11.5 ± 2.1 a | high toxicity |
R1-CTRL-Planted | 1.3 ± 0.1 a | 2.7 ± 1.5 | 3.6 ± 1.4 | 8.8 ± 2.9 | average toxicity |
R1-PhC-Planted | 1.4 ± 0.1 a | 2.3 ± 0.8 | 3.6 ± 1.4 | 7.1 ± 1.7 a | average toxicity |
R1-CTRL-Unplanted | 1.3 ± 0.1 a | 1.6 ± 0.6 b | 2.8 ± 1.3 b | 6.3 ± 3.5 | average toxicity |
R1-PhC-Unplanted | 1.0 ± 0.1 a | 1.7 ± 0.4 b | 2.3 ± 0.6 b | 7.4 ± 3.7 | average toxicity |
R2-CTRL-Planted | 0.5 ± 0.1 a | 0.9 ± 0.8 b | 2.7 ± 2.0 b | 4.7 ± 3.6 a | average toxicity |
R2-PhC-Planted | 0.4 ± 0.2 a | 0.5 ± 0.8 b | 1.2 ± 0.9 b | 3.1 ± 2.4 a | average toxicity |
R2-CTRL-Unplanted | 0.9 ± 0.3 a | 1.6 ± 0.4 b | 2.4 ± 0.8 b | 4.0 ± 1.6 a | average toxicity |
R2-PhC-Unplanted | 0.6 ± 0.1 a | 0.6 ± 0.5 b | 1.5 ± 0.8 b | 2.2 ± 1.3 a | average toxicity |
Types of Columns | Parameter, % | ||
---|---|---|---|
LL 1 | HC5 | UL 2 | |
Influent CTRL | 4.0 | 5.7 | 7.2 |
Influent PhC | 4.0 | 5.8 | 7.3 |
R1-CTRL-Planted | 13.6 | 15.8 | 17.8 |
R1-PhC-Planted | 14.0 | 16.4 | 18.5 |
R1-CTRL-Unplanted | 13.9 | 17.2 | 20.7 |
R1-PhC-Unplanted | 18.6 | 22.1 | 25.1 |
R2-CTRL-Planted | 13.9 | 17.0 | 19.5 |
R2-PhC-Planted | 16.0 | 18.5 | 20.8 |
R2-CTRL-Unplanted | 18.1 | 21.5 | 23.1 |
R2-PhC-Unplanted | 19.4 | 24.0 | 26.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drzymała, J.; Kalka, J.; Sochacki, A.; Felis, E. Towards Sustainable Wastewater Treatment: Bioindication as a Technique for Supporting Treatment Efficiency Assessment. Int. J. Environ. Res. Public Health 2022, 19, 11859. https://doi.org/10.3390/ijerph191911859
Drzymała J, Kalka J, Sochacki A, Felis E. Towards Sustainable Wastewater Treatment: Bioindication as a Technique for Supporting Treatment Efficiency Assessment. International Journal of Environmental Research and Public Health. 2022; 19(19):11859. https://doi.org/10.3390/ijerph191911859
Chicago/Turabian StyleDrzymała, Justyna, Joanna Kalka, Adam Sochacki, and Ewa Felis. 2022. "Towards Sustainable Wastewater Treatment: Bioindication as a Technique for Supporting Treatment Efficiency Assessment" International Journal of Environmental Research and Public Health 19, no. 19: 11859. https://doi.org/10.3390/ijerph191911859
APA StyleDrzymała, J., Kalka, J., Sochacki, A., & Felis, E. (2022). Towards Sustainable Wastewater Treatment: Bioindication as a Technique for Supporting Treatment Efficiency Assessment. International Journal of Environmental Research and Public Health, 19(19), 11859. https://doi.org/10.3390/ijerph191911859