Two of a Kind? Similarities and Differences between Runners and Walkers in Sociodemographic Characteristics, Sports Related Characteristics and Wearable Usage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Procedure
2.2. Respondents
2.3. Questionnaire
2.4. Analyses
3. Results
3.1. Profile of Running and Walking Participants
3.2. Predicting Wearable Types
4. Discussion
Limitations and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scheerder, J.; Vandermeerschen, H.; Van Tuyckom, C.; Hoekman, R.; Breedveld, K.; Vos, S. Understanding the Game: Sport Participation in Europe: Facts, Reflections and Recommendations; Sport Policy & Management Studies; KU Leuven, Research Unit of Social Kinesiology & Sport Management: Leuven, Belgium, 2011; Volume 10. [Google Scholar]
- Downward, P.; Lera-López, F.; Rasciute, S. The correlates of sports participation in Europe. Eur. J. Sport Sci. 2014, 14, 592–602. [Google Scholar] [CrossRef]
- Green, K. Lifelong Participation, Physical Education and the Work of Ken Roberts. Sport Educ. Soc. 2002, 7, 167–182. [Google Scholar] [CrossRef]
- Scheerder, J.; Helsen, K.; Elmose-Østerlund, K.; Nagel, S. Exploring Pan-European Similarities and Differences in Club-Organised Sports: A Cross-National and Cross-Temporal Comparison. In Functions of Sports Clubs in European Societies. A Cross-National Comparative Study; Nagel, S., Elmose-Østerlund, K., Ibsen, B., Scheerder, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 315–343. ISBN 2191-298X. [Google Scholar]
- Scheerder, J.; Breedveld, K.; Borgers, J. (Eds.) Running Across Europe. The Rise and Size of One of the Largest Sport Markets; Palgrave Macmillan: BasingStoke, UK, 2015; ISBN 978-1-137-44636-7. [Google Scholar]
- Van Rheenen, D.; Sobry, C.; Melo, R. Running Tourism and the Global Rise of Small Scale Sport Tourism Events. In Small Scale Sport Tourism Events and Local Sustainable Development. A Cross-National Comparative Perspective; Melo, R., Sobry, C., Van Rheenen, D., Eds.; Sports Economics, Management and Policy; Springer International Publishing: Cham, Switzerland, 2021; Volume 18, pp. 1–17. ISBN 2191-298X. [Google Scholar]
- Scheerder, J.; Vehmas, H.; Helsen, K. (Eds.) The Rise and Size of the Fitness Industry in Europe: Fit for the Future? Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-53347-2. [Google Scholar]
- Simpson, M.E.; Serdula, M.; Galuska, D.A.; Gillespie, C.; Donehoo, R.; Macera, C.; Mack, K. Walking trends among U.S. adults: The Behavioral Risk Factor Surveillance System, 1987–2000. Am. J. Prev. Med. 2003, 25, 95–100. [Google Scholar] [CrossRef]
- Eagles, P.F.J. Research priorities in park tourism. J. Sustain. Tour. 2014, 22, 528–549. [Google Scholar] [CrossRef]
- Bale, J. Running Cultures: Racing in Time and Space; Routledge: London, UK, 2004; ISBN 0-7146-8424-4. [Google Scholar]
- Janssen, M.A.; Walravens, R.; Thibaut, E.; Scheerder, J.; Brombacher, A.C.; Vos, S.B. Understanding different types of recreational runners and how they use running-related technology. Int. J. Environ. Res. Public Health 2020, 17, 2276. [Google Scholar] [CrossRef] [Green Version]
- Parra-Camacho, D.; González-Serrano, M.H.; González-García, R.J.; Moreno, F.C. Sporting habits of urban runners: Classification according to their motivation. Int. J. Environ. Res. Public Health 2019, 16, 4990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baxter, N. Running, Identity and Meaning: The Pursuit of Distinction through Sport, 1st ed.; Emerald Publishing Limited: Bingley, UK, 2021; ISBN 1-80043-367-0. [Google Scholar]
- Clermont, C.A.; Duffett-Leger, L.; Hettinga, B.A.; Ferber, R. Runners’ Perspectives on “Smart” Wearable Technology and Its Use for Preventing Injury. Int. J. Hum.-Comput. Int. 2020, 36, 31–40. [Google Scholar] [CrossRef]
- Vos, S.; Scheerder, J. Loopsport in veelvoud: Naar een typologie van loopsporters [Multiple types of running: Towards a typologie of running participants]. In Vlaanderen Loopt! Sociaal-Wetenschappelijk Onderzoek naar de Loopsportmarkt [Flanders Is Running! Social Scientific Research on the Running Market]; Scheerder, J., Boen, F., Eds.; Academia Press: Ghent, Belgium, 2009; pp. 267–287. ISBN 978-90-382-1484-9. [Google Scholar]
- Hallmann, K.; Wicker, P. Consumer profiles of runners at marathon races. Int. J. Event Festiv. Manag. 2012, 3, 171–187. [Google Scholar] [CrossRef]
- Helsen, K.; Scheerder, J. Flemish Running Events in International Perspective: Participant Profile, Motivation and Attitudes: Results Based on the European RUN for HEALTH Project; Sport Policy & Management Studies; KU Leuven, Policy in Sports & Physical Activity Research Group: Leuven, Belgium, 2020; Volume 72, ISBN 978-94-92134-66-0. [Google Scholar]
- Helsen, K.; Derom, I.; Corthouts, J.; De Bosscher, V.; Willem, A.; Scheerder, J. Participatory sport events in times of COVID-19: Analysing the (virtual) sport behaviour of event participants. Eur. Sport Manag. Q. 2022, 22, 35–54. [Google Scholar] [CrossRef]
- Ogles, B.M.; Masters, K.S. A typology of marathon runners based on cluster analysis of motivations. J. Sport Behav. 2003, 26, 69–85. [Google Scholar]
- Janssen, M.; Scheerder, J.; Thibaut, E.; Brombacher, A.; Vos, S. Who uses running apps and sports watches? Determinants and consumer profiles of event runners’ usage of running-related smartphone applications and sports watches. PLoS ONE 2017, 12, e0181167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohm, A.J.; Milne, G.R.; McDonald, M.A. A Mixed-Method Approach for Developing Market Segmentation Typologies in the Sports Industry. Sport Mark. Q. 2006, 15, 29–39. [Google Scholar]
- McGehee, N.G.; Yoon, Y.; Cárdenas, D. Involvement and travel for recreational runners in North Carolina. J. Sport Manag. 2003, 17, 305–324. [Google Scholar] [CrossRef]
- Deelen, I.; Janssen, M.; Vos, S.; Kamphuis, C.; Ettema, D.F. Attractive running environments for all? A cross-sectional study on physical environmental characteristics and runners’ motives and attitudes, in relation to the experience of the running environment. BMC Public Health 2019, 19, 366. [Google Scholar] [CrossRef] [PubMed]
- Pedrinola, A.; Li Volti, G.; Galvano, F.; Schena, F.; Perciavale, V.; Di Corrado, D. Bioenergetics and psychological profile of an ultra-endurance walker. J. Sport Med. Phys. Fit. 2018, 58, 549–554. [Google Scholar] [CrossRef]
- Ensari, I.; Sandroff, B.M.; Motl, R.W. Intensity of treadmill walking exercise on acute mood symptoms in persons with multiple sclerosis. Anxiety Stress Copin. 2017, 30, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Salbach, N.M.; Veinot, P.; Rappolt, S.; Bayley, M.; Burnett, D.; Judd, M.; Jaglal, S.B. Physical Therapists’ Experiences Updating the Clinical Management of Walking Rehabilitation after Stroke: A Qualitative Study. Phys. Ther. 2009, 89, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Ball, K.; Abbott, G.; Wilson, M.; Chisholm, M.; Sahlqvist, S. How to get a nation walking: Reach, retention, participant characteristics and program implications of Heart Foundation Walking, a nationwide Australian community-based walking program. Int. J. Behav. Nutr. Phys. 2017, 14, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, C.E.; Brennan, G.; Matthews, A.; McAdam, C.; Fitzsimons, C.; Mutrie, N. Recruiting participants to walking intervention studies: A systematic review. Int. J. Behav. Nutr. Phys. 2011, 8, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, K.O.; Lopes, S.S.; Kelly, C.; Welsh, R.S.; Chen, L.; Wilson, M.; Jindal, M.; Zinzow, H.; Zhang, L.; Shi, L. A qualitative study on participants’ experiences with a community-based mindful walking intervention and mobile device activity measurement. Complement. Ther. Med. 2021, 57, 102640. [Google Scholar] [CrossRef]
- van Bottenburg, M.; Rijnen, B.; van Sterkenburg, J. Sports Participation in the European Union: Trends and Differences; Mulier Instituut: ’s-Hertogenbosch, The Netherlands, 2005; ISBN 90-5472-000-X. [Google Scholar]
- Cohen, S.A. Lifestyle travellers. Backpacking as a way of life. Ann. Tour. Res. 2011, 38, 1535–1555. [Google Scholar] [CrossRef] [Green Version]
- Kyle, G.; Graefe, A.; Manning, R.; Bacon, J. Predictors of Behavioral Loyalty Among Hikers Along the Appalachian Trail. Leis. Sci. 2004, 26, 99–118. [Google Scholar] [CrossRef]
- Leister, W. Strengthening Tourists’ Engagement in Guided Hiking and Trekking. Admin Sci. 2019, 9, 45. [Google Scholar] [CrossRef] [Green Version]
- European Commission; Directorate-General for Employment, Industrial Relations, Social Affairs. A Pan-EU Survey on Consumer Attitudes to Physical Activity, Body Weight and Health; Office for Official Publications of the European Community: Luxembourg, 1999; ISBN 978-92-828-5421-1. [Google Scholar]
- European Commission. How Europeans Spend their Time: Everyday Life of Women and Men: Data 1998–2002, 2004th ed.; Office for Official Publications of the European Communities: Luxembourg, 2004; ISBN 92-894-7235-9. [Google Scholar]
- Bourke, A. The Shape of the Fitness Industry in Ireland. In The Rise and Size of the Fitness Industry in Europe: Fit for the Future? Scheerder, J., Vehmas, H., Helsen, K., Eds.; Palgrave Macmillan: Cham, Switzerland, 2020; pp. 257–282. ISBN 978-3-030-53348-9. [Google Scholar]
- Leonard, K.; Welch, N.; Ali-Joseph, A. Covid-19 in Indigenous communities: Five protective factors of “exercising” sovereignty. In Sport and the Pandemic. Perspectives on Covid-19’s Impact on the Sport Industry; Routledge: London, UK, 2020; pp. 236–246. ISBN 978-1-00-310591-6. [Google Scholar]
- Hansen, A.S.; Beery, T.; Fredman, P.; Wolf-Watz, D. Outdoor recreation in Sweden during and after the Covid-19 pandemic—Management and policy implications. J. Environ. Plan. Manag. 2022, 1–22, ahead-of-print. [Google Scholar] [CrossRef]
- Lau, H.; Khosrawipour, V.; Kocbach, P.; Mikolajczyk, A.; Schubert, J.; Bania, J.; Khosrawipour, T. The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China. J. Travel Med. 2021, 27, taaa037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapisarda, V.; Loreto, C.; De Angelis, L.; Simoncelli, G.; Lombardo, C.; Resina, R.; Mucci, N.; Matarazzo, A.; Vimercati, L.; Ledda, C. Home working and physical activity during SARS-CoV-2 pandemic: A longitudinal cohort study. Int. J. Environ. Res. Public Health 2021, 18, 13021. [Google Scholar] [CrossRef] [PubMed]
- Constandt, B.; Thibaut, E.; De Bosscher, V.; Scheerder, J.; Ricour, M.; Willem, A. Exercising in times of lockdown: An analysis of the impact of COVID-19 on levels and patterns of exercise among adults in Belgium. Int. J. Environ. Res. Public Health 2020, 17, 4144. [Google Scholar] [CrossRef]
- Thibaut, E.; Constandt, B.; De Bosscher, V.; Willem, A.; Ricour, M.; Scheerder, J. Sports participation during a lockdown. How COVID-19 changed the sports frequency and motivation of participants in club, event, and online sports. Leis. Stud. 2021, 41, 457–470. [Google Scholar] [CrossRef]
- Schweizer, A.-M.; Leiderer, A.; Mitterwallner, V.; Walentowitz, A.; Mathes, G.H.; Steinbauer, M.J. Outdoor cycling activity affected by COVID-19 related epidemic-control-decisions. PLoS ONE 2021, 16, e0249268. [Google Scholar] [CrossRef] [PubMed]
- Venter, Z.S.; Barton, D.N.; Gundersen, V.; Figari, H.; Nowell, M. Urban nature in a time of crisis: Recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 2020, 15, 104075. [Google Scholar] [CrossRef]
- Edensor, T. Walking in the British Countryside: Reflexivity, Embodied Practices and Ways to Escape. Body Soc. 2000, 6, 81–106. [Google Scholar] [CrossRef]
- Rybråten, S.; Skår, M.; Nordh, H. The phenomenon of walking: Diverse and dynamic. Landsc. Res. 2019, 44, 62–74. [Google Scholar] [CrossRef]
- Norman, P.; Pickering, C.M. Factors influencing park popularity for mountain bikers, walkers and runners as indicated by social media route data. J. Environ. Manag. 2019, 249, 109413. [Google Scholar] [CrossRef]
- Pobiruchin, M.; Suleder, J.; Zowalla, R.; Wiesner, M. Accuracy and adoption of wearable technology used by active citizens: A marathon event field study. JMIR mHealth uHealth 2017, 5, e24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutz, M.; Müller, J.; Reimers, A.K. Use of digital media for home-based sports activities during the covid-19 pandemic: Results from the German spovid survey. Int. J. Environ. Res. Public Health 2021, 18, 4409. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Tamilmani, K.; Rana, N.P.; Wamba, S.F.; Dwivedi, R. The extended Unified Theory of Acceptance and Use of Technology (UTAUT2): A systematic literature review and theory evaluation. Int. J. Inform. Manag. 2021, 57, 102269. [Google Scholar] [CrossRef]
- Svensson, D.; Radmann, A. Keeping Distance? Adaptation Strategies to the Covid-19 Pandemic Among Sport Event Organizers in Sweden. J. Glob. Sport Manag. 2021, 1–18, ahead-of-print. [Google Scholar] [CrossRef]
- Grix, J.; Brannagan, P.M.; Grimes, H.; Neville, R. The impact of Covid-19 on sport. Int. J. Sport Policy Politics 2021, 13, 1–12. [Google Scholar] [CrossRef]
- Scheerder, J.; Helsen, K. De Vlaamse Loopen Wandelsporter in Beeld: Leuven Running & Walking Study2.0 (LRWS2.0). Kader en Methodologische Toelichting (Deel 1) [The Flemish Running and Walking Participant Studied. Leuven Running & Walking Study2.0 (LRWS2.0): Framework and Methodological Explanation (Part 1)]; Sport Policy & Management Studies; KU Leuven—Policy in Sports & Physical Activity Research Group: Leuven, Belgium, 2022; Volume 110, ISBN 978-94-92134-99-8. [Google Scholar]
- Participatie in Vlaanderen 1: Basisgegevens van de ParticipatieSurvey 2014 [Participation in Flanders 1: Basic data of the Participation Survey 2014]; Lievens, J.; Siongers, J.; Waege, H. (Eds.) Acco: Leuven, Belgium, 2015; ISBN 9789462922400. [Google Scholar]
- Laurent, G.; Kapferer, J.-N. Measuring consumer involvement profiles. J. Mark. Res. 1985, 22, 41–53. [Google Scholar] [CrossRef]
- Zaichkowsky, J.L. Measuring the Involvement Construct. J. Consum. Res. 1985, 12, 341–352. [Google Scholar] [CrossRef]
- Kyle, G.; Bricker, K.; Graefe, A.; Wickham, T. An Examination of Recreationists’ Relationships with Activities and Settings. Leis. Sci. 2004, 26, 123–142. [Google Scholar] [CrossRef]
- Chin, W.W. Issues and opinion on structural equation modeling. MIS Q. 1998, 22. [Google Scholar]
- Browne, M.W.; Cudeck, R. Alternative ways of assessing model fit. In Testing Structural Equation Models; Bollen, K.A., Long, J.S., Eds.; Sage: Beverly Hills, CA, USA, 2003; pp. 136–162. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Pearson Education: Harlow, UK, 2013. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Walravens, R.; Janssen, M.; Vos, S. Naar een Geïntegreerd Model Voor Het Verklaren van App-Aanvaarding en App-Gebruik Onder Hardlopers [Towards an Integrated Model for Explaining App Adoption and App Use among Runners]. In Proceedings of the Dag van het Sportonderzoek [Day of Sports Research], Zwolle, The Netherlands, 29 October 2015. [Google Scholar]
- Meloun, M.; Militký, J. (Eds.) Statistical Data Analysis: A Practical Guide; Woodhead: New Delhi, India, 2012; ISBN 978-0-85709-109-3. [Google Scholar]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1998; ISBN 0-13-894858-5. [Google Scholar]
- Nunnally, J.C.; Bernstein, I.H. Psychometric Theory, 3rd ed.; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Stragier, J.; Vanden Abeele, M.; De Marez, L. Recreational athletes’ running motivations as predictors of their use of online fitness community features. Behav. Inform. Technol. 2018, 37, 815–827. [Google Scholar] [CrossRef]
- Kemler, E.; Romeijn, K.; Vriend, I.; Huisstede, B. The relationship between the use of running applications and running-related injuries. Physician Sportsmed. 2018, 46, 73–77. [Google Scholar] [CrossRef] [PubMed]
Variable | Running Participants CFI = 0.976; TLI = 0.959; RMSEA = 0.059 | Walking Participants CFI = 0.964; TLI = 0.938; RMSEA = 0.075 | ||||||
---|---|---|---|---|---|---|---|---|
β | AVE | CR | SC | β | AVE | CR | SC | |
Attraction | 0.59 | 0.85 | 0.23–0.50 | 0.62 | 0.86 | 0.17–0.43 | ||
[sport] 1 is important to me. | 0.74 | 0.71 | ||||||
Participating in [sport] 1 is one of the most enjoyable things that I do. | 0.89 | 0.91 | ||||||
Participating in [sport] 1 is one of the most satisfying things that I do. | 0.80 | 0.89 | ||||||
I have little or no interest in [sport] 1. | 0.62 | 0.60 | ||||||
[sport] 1 offers me relaxation when pressures build up. | ||||||||
Centrality | 0.62 | 0.82 | 0.40–0.50 | 0.59 | 0.81 | 0.42–0.43 | ||
I find a lot of my life is organised around [sport] 1. | 0.84 | 0.83 | ||||||
[sport] 1 plays a central role in my life. | 0.88 | 0.85 | ||||||
I enjoy discussing [sport] 1 with my friends. | 0.62 | 0.61 | ||||||
Most of my friends are in some way connected with [sport] 1. | ||||||||
Self-expression | 0.56 | 0.79 | 0.23–0.40 | 0.59 | 0.81 | 0.17–0.42 | ||
When I participate in [sport] 1 I can really be myself. | ||||||||
You can tell a lot about a person be seeing them [sport] 1. | 0.61 | 0.64 | ||||||
When I participate in [sport] 1 other see me the way I want them to see me. | 0.70 | 0.75 | ||||||
[sport] 1 says a lot about who I am. | 0.90 | 0.90 |
Item 1 | Running Participants—App | Walking Participants—App | Running Participants—Watch | Walking Participants—Watch | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F1 | F2 | F3 | F4 | F5 | F1 | F2 | F3 | F4 | F5 | F1 | F2 | F3 | F4 | F5 | |
EE1 | 0.61 | 0.78 | 0.66 | 0.64 | 0.44 | |||||||||||||||
EE2 | 0.71 | 0.65 | 0.34 | 0.65 | 0.71 | |||||||||||||||
EE3 | 0.54 | 0.75 | 0.63 | 0.73 | ||||||||||||||||
EE4 | 0.62 | 0.34 | 0.47 | 0.53 | 0.55 | 0.37 | ||||||||||||||
FC1 | 0.59 | 0.64 | 0.57 | 0.67 | ||||||||||||||||
FC2 | 0.79 | 0.77 | 0.80 | 0.78 | ||||||||||||||||
FC3 | 0.80 | 0.76 | 0.73 | 0.76 | ||||||||||||||||
HA1 | 0.77 | 0.56 | 0.35 | 0.65 | 0.40 | 0.41 | 0.42 | |||||||||||||
HA2 | 0.71 | 0.35 | 0.38 | 0.49 | 0.77 | 0.74 | ||||||||||||||
HA3 | 0.36 | 0.68 | 0.41 | 0.51 | 0.74 | 0.42 | 0.55 | |||||||||||||
HE1 | 0.63 | 0.50 | 0.45 | 0.62 | 0.48 | 0.36 | ||||||||||||||
HE2 | 0.88 | 0.85 | 0.86 | 0.87 | ||||||||||||||||
HE4 | 0.84 | 0.84 | 0.83 | 0.85 | ||||||||||||||||
ID1 | 0.68 | 0.71 | 0.70 | 0.76 | ||||||||||||||||
PE1 | 0.70 | 0.77 | 0.77 | 0.78 | ||||||||||||||||
PE3 | 0.61 | 0.68 | 0.57 | 0.33 | 0.72 | |||||||||||||||
PE5 | 0.83 | 0.84 | 0.84 | 0.85 | ||||||||||||||||
PV2 | 0.62 | 0.72 | 0.62 | 0.68 | ||||||||||||||||
PV3 | 0.69 | 0.77 | 0.63 | 0.63 | ||||||||||||||||
SI1 | 0.77 | 0.66 | 0.65 | 0.66 | ||||||||||||||||
SI2 | 0.62 | 0.62 | 0.63 | 0.69 | ||||||||||||||||
SI4 | 0.82 | 0.76 | 0.77 | 0.32 | 0.72 | 0.31 | ||||||||||||||
SI5 | 0.82 | 0.78 | 0.77 | 0.74 | ||||||||||||||||
SI6 | 0.77 | 0.78 | 0.79 | 0.81 | ||||||||||||||||
EV | 7.0 | 2.5 | 2.0 | 1.6 | 1.3 | 8.2 | 2.3 | 1.8 | 1.3 | 1.0 | 6.8 | 2.6 | 2.0 | 1.3 | 1.2 | 7.8 | 2.8 | 2.1 | 1.2 | 1.0 |
% of var | 29.3 | 10.3 | 8.5 | 6.6 | 5.4 | 34.3 | 9.7 | 7.6 | 5.6 | 4.4 | 28.5 | 10.8 | 8.2 | 5.5 | 5.0 | 32.6 | 11.8 | 8.9 | 4.9 | 4.1 |
Running Participants—App | Walking Participants—App | Running Participants—Watch | Walking Participants—Watch | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F1 | F2 | F3 | F4 | F5 | F1 | F2 | F3 | F4 | F5 | F1 | F2 | F3 | F4 | F5 | |
Label | Enjoyment and performance expectancy | Social influence | Price and support values | Effort expectancy | Habit | Enjoyment and performance expectancy | Social influence | Price and support values | Effort expectancy | Habit | Enjoyment and performance expectancy | Social influence | Price and support values | Effort expectancy | Habit | Enjoyment and performance expectancy | Social influence | Price and support values | Effort expectancy | Habit |
Items | 6 | 6 | 5 | 4 | 3 | 6 | 6 | 5 | 4 | 3 | 6 | 6 | 5 | 4 | 3 | 6 | 6 | 5 | 4 | 3 |
Cronbach’s Alpha | 0.88 | 0.87 | 0.80 | 0.59 | 0.72 | 0.89 | 0.85 | 0.85 | 0.57 | 0.67 | 0.88 | 0.84 | 0.78 | 0.64 | 0.66 | 0.90 | 0.84 | 0.83 | 0.72 | 0.67 |
Variable | Running Participants (Nweighted = 2146) | Walking Participants (Nweighted = 2767) | Sign. |
---|---|---|---|
Sex | *** | ||
Male | 51.8 a | 45.0 b | |
Female | 48.2 a | 55.0 b | |
Age | *** | ||
18–34 years old | 30.7 a | 7.9 b | |
35–54 years old | 58.2 a | 31.6 b | |
55 years old and older | 11.1 a | 60.5 b | |
Highest education achieved | *** | ||
Lower and secondary education | 43.0 a | 63.6 b | |
Higher education | 57.0 a | 36.4 b | |
General sports participation | *** | ||
1–2 times/week | 12.5 a | 32.0 b | |
3–4 times/week | 53.5 a | 38.8 b | |
5 times/week or more | 34.1 a | 29.2 b | |
Specific running or walking participation | *** | ||
1–2 times/week | 34.4 a | 41.3 b | |
3–4 times/week | 53.5 a | 31.2 b | |
5 times/week or more | 12.1 a | 27.5 b | |
Main sport | ** | ||
Running or walking | 76.9 a | 73.3 b | |
Other sport | 23.1 a | 26.7 b | |
Event participation | *** | ||
Never | 13.6 a | 23.3 b | |
At least once | 86.4 a | 76.7 b | |
Wearable usage 1 | *** | ||
Yes | 91.4 a | 59.5 b | |
No | 8.6 a | 40.5 b | |
Type of wearable used | |||
Application for smartphone | 42.4 a | 65.9 b | *** |
(Sports)watch/smartwatch (very suitable during sport) | 84.8 a | 45.6 b | *** |
Activity tracker (less suitable during sport) | 5.0 a | 9.7 b | *** |
Handheld GPS | 2.0 a | 13.8 b | *** |
Most important type of wearable used | *** | ||
Application for smartphone | 18.8 a | 48.6 b | |
(Sports)watch/smartwatch (very suitable during sport) | 79.6 a | 38.7 b | |
Activity tracker (less suitable during sport) | 1.6 a | 6.0 b | |
Handheld GPS | 0.1 a | 6.7 b | |
Number of wearables used | NS | ||
Only one wearable | 68.5 a | 69.4 a | |
Two or more wearables | 31.5 a | 30.6 a | |
What do you register with wearable 2 | |||
Running time | 97.3 a | 80.1 b | *** |
Distance | 97.3 a | 89.8 b | *** |
Speed | 91.7 a | 51.6 b | *** |
Heart rate | 78.9 a | 34.5 b | *** |
Cadence | 49.3 a | 13.2 b | *** |
Route | 79.2 a | 56.4 b | *** |
What do you do with your registered data 2 | |||
I do not do anything with this data | 3.1 a | 19.9 b | *** |
I look at this data after my training | 91.1 a | 72.1 b | *** |
I use this data to monitor my progress | 63.2 a | 17.0 b | *** |
I use this data to adjust my workouts | 22.5 a | 3.4 b | *** |
Variable | Model 1 Exp(B) | Model 2 Exp(B) | Model 3 Exp(B) | Model 4 Exp(B) | Model 5 Exp(B) | Model 6 Exp(B) |
---|---|---|---|---|---|---|
Sex (ref. = male) | ||||||
Female | 0.651 *** | 0.648 *** | 0.646 *** | 0.646 ** | 0.746 | 0.704 |
Age (ref. = 18–34 years old) | ||||||
35–54 years old | 1.648 *** | 1.429 ** | 1.413 * | 1.295 | 1.283 | 1.169 |
55 years old and older | 1.870 ** | 1.347 | 1.302 | 1.342 | 1.283 | 1.117 |
Education (ref. = primary/secondary education) | ||||||
Higher education | 0.866 | 0.940 | 0.954 | 1.003 | 1.004 | 0.982 |
Training frequency (ref. = 1–2 times/week) | ||||||
3–4 times/week | 1.646 *** | 1.656 *** | 1.522 ** | 1.492 * | 1.541 * | |
5 times/week or more | 2.286 ** | 2.267 ** | 2.096 ** | 2.505 ** | 2.765 ** | |
Main sport (ref. = running) | ||||||
Other sport | 1.281 | 1.298 | 1.354 | 1.255 | 1.292 | |
Event participation (ref. = never) | ||||||
At least once | 2.041 *** | 2.035 *** | 2.367 *** | 2.230 *** | 2.151 *** | |
Attraction (involvement) | 1.332 * | 1.321 * | 1.303 * | 1.431 * | 1.428 * | |
Centrality (involvement) | 1.711 *** | 1.738 *** | 1.670 *** | 1.576 *** | 1.554 ** | |
Self-expression (involvement) | 0.862 | 0.858 | 0.871 | 0.810 | 0.817 | |
Number of wearables used (ref. = only one) | ||||||
Multiple | 0.823 | 0.738 * | 0.476 *** | 0.482 *** | ||
Enjoyment and performance expectancy (motivation) | 1.058 | 0.966 | 1.018 | |||
Social influence (motivation) | 0.561 *** | 0.577 *** | 0.568 *** | |||
Price and support values (motivation) | 2.136 *** | 1.351 * | 1.324 | |||
Effort expectancy (motivation) | 1.107 | 1.089 | 1.178 | |||
Habit (motivation) | 1.604 *** | 1.546 *** | 1.602 *** | |||
Registered with wearable (ref. = not registered) | ||||||
Running time | 1.796 | 2.046 | ||||
Distance | 0.651 | 0.565 | ||||
Speed | 1.043 | 1.133 | ||||
Heart rate | 32.310 *** | 36.364 *** | ||||
Cadence | 1.690 * | 1.792 ** | ||||
Route | 0.348 *** | 0.345 *** | ||||
Purpose of collected data (ref. = not checked) | ||||||
I do not do anything with this data | 0.861 | |||||
I look at this data after my training | 1.071 | |||||
I use this data to monitor my progress | 0.519 ** | |||||
I use this data to adjust my workouts | 0.936 | |||||
Nagelkerke R² | 0.033 | 0.166 | 0.168 | 0.266 | 0.586 | 0.592 |
Model χ² (df) | 39.312 (4) *** | 207.969 (11) *** | 210.085 (12) *** | 343.966 (17) *** | 864.437 (23) *** | 875.502 (27) *** |
Variable | Model 1 Exp(B) | Model 2 Exp(B) | Model 3 Exp(B) | Model 4 Exp(B) | Model 5 Exp(B) | Model 6 Exp(B) |
---|---|---|---|---|---|---|
Sex (ref. = male) | ||||||
Female | 1.115 | 1.136 | 1.228 | 1.337 * | 1.211 | 1.171 |
Age (ref. = 18–34 years old) | ||||||
35–54 years old | 0.661 * | 0.699 | 0.690 | 0.751 | 0.730 | 0.731 |
55 years old and older | 0.425 *** | 0.450 *** | 0.492 ** | 0.528 ** | 0.544 * | 0.535 * |
Education (ref. = primary/secondary education) | ||||||
Higher education | 1.045 | 0.971 | 0.947 | 1.008 | 1.083 | 1.097 |
Training frequency (ref. = 1–2 times/week) | ||||||
3–4 times/week | 1.373 * | 1.300 | 1.214 | 1.256 | 1.298 | |
5 times/week or more | 1.350 * | 1.374 * | 1.123 | 0.956 | 0.997 | |
Main sport (ref. = running) | ||||||
Other sport | 1.667 *** | 1.690 *** | 1.517 ** | 1.216 | 1.208 | |
Event participation (ref. = never) | ||||||
At least once | 1.079 | 0.981 | 1.019 | 1.018 | 1.019 | |
Attraction (involvement) | 1.119 | 1.154 | 0.950 | 0.929 | 0.960 | |
Centrality (involvement) | 0.934 | 0.930 | 0.907 | 0.944 | 0.940 | |
Self-expression (involvement) | 0.890 | 0.870 | 0.863 | 0.982 | 0.961 | |
Number of wearables used (ref. = only one) | ||||||
Multiple | 2.619 *** | 2.442 *** | 1.610 ** | 1.669 ** | ||
Enjoyment and performance expectancy (motivation) | 1.095 | 0.943 | 0.962 | |||
Social influence (motivation) | 0.476 *** | 0.504 *** | 0.511 *** | |||
Price and support values (motivation) | 1.757 *** | 1.439 ** | 1.465 ** | |||
Effort expectancy (motivation) | 0.998 | 0.826 | 0.835 | |||
Habit (motivation) | 1.886 *** | 2.017 *** | 2.016 *** | |||
Registered with wearable (ref. = not registered) | ||||||
Running time | 0.852 | 0.850 | ||||
Distance | 1.053 | 1.074 | ||||
Speed | 0.689 | 0.689 | ||||
Heart rate | 30.553 *** | 31.773 *** | ||||
Cadence | 1.167 | 1.168 | ||||
Route | 0.712 | 0.707 | ||||
Purpose of collected data (ref. = not checked) | ||||||
I do not do anything with this data | 2.587 * | |||||
I look at this data after my training | 2.270 * | |||||
I use this data to monitor my progress | 0.949 | |||||
I use this data to adjust my workouts | 0.727 | |||||
Nagelkerke R² | 0.029 | 0.053 | 0.110 | 0.248 | 0.576 | 0.581 |
Model χ² (df) | 30.901 (4) *** | 56.466 (11) *** | 119.319 (12) *** | 284.889 (17) *** | 781.599 (23) *** | 791.099 (27) *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helsen, K.; Janssen, M.; Vos, S.; Scheerder, J. Two of a Kind? Similarities and Differences between Runners and Walkers in Sociodemographic Characteristics, Sports Related Characteristics and Wearable Usage. Int. J. Environ. Res. Public Health 2022, 19, 9284. https://doi.org/10.3390/ijerph19159284
Helsen K, Janssen M, Vos S, Scheerder J. Two of a Kind? Similarities and Differences between Runners and Walkers in Sociodemographic Characteristics, Sports Related Characteristics and Wearable Usage. International Journal of Environmental Research and Public Health. 2022; 19(15):9284. https://doi.org/10.3390/ijerph19159284
Chicago/Turabian StyleHelsen, Kobe, Mark Janssen, Steven Vos, and Jeroen Scheerder. 2022. "Two of a Kind? Similarities and Differences between Runners and Walkers in Sociodemographic Characteristics, Sports Related Characteristics and Wearable Usage" International Journal of Environmental Research and Public Health 19, no. 15: 9284. https://doi.org/10.3390/ijerph19159284
APA StyleHelsen, K., Janssen, M., Vos, S., & Scheerder, J. (2022). Two of a Kind? Similarities and Differences between Runners and Walkers in Sociodemographic Characteristics, Sports Related Characteristics and Wearable Usage. International Journal of Environmental Research and Public Health, 19(15), 9284. https://doi.org/10.3390/ijerph19159284