The Mereology of Depression—Networks of Depressive Symptoms during the Course of Psychotherapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Procedure
2.3. Measures
2.4. Statistical Analyses
2.4.1. Network Connectivity
2.4.2. Community Structure
2.4.3. Symptom Centrality
2.4.4. Predictability
3. Results
3.1. Means and Variation of all BDI-II Symptoms
3.2. Network Connectivity
3.3. Community Structure
3.4. Symptom Centrality
3.5. Predictability
4. Discussion
4.1. Practical Implications
4.2. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Depression. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 13 September 2021).
- Tolin, D.F. Is cognitive–behavioral therapy more effective than other therapies?: A meta-analytic review. Clin. Psychol. Rev. 2010, 30, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Butler, A.C.; Chapman, J.E.; Forman, E.M.; Beck, A.T. The empirical status of cognitive-behavioral therapy: A review of meta-analyses. Clin. Psychol. Rev. 2006, 26, 17–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnsen, T.J.; Friborg, O. The effects of cognitive behavioral therapy as an anti-depressive treatment is falling: A meta-analysis. Psychol. Bull. 2015, 141, 747–768. [Google Scholar] [CrossRef] [PubMed]
- Ljótsson, B.; Hedman, E.; Mattsson, S.; Andersson, E. The effects of cognitive–behavioral therapy for depression are not falling: A re-analysis of Johnsen and Friborg (2015). Psychol. Bull. 2017, 143, 321–325. [Google Scholar] [CrossRef]
- Cristea, I.A.; Stefan, S.; Karyotaki, E.; David, D.; Hollon, S.D.; Cuijpers, P. The effects of cognitive behavioral therapy are not systematically falling: A revision of Johnsen and Friborg (2015). Psychol. Bull. 2017, 143, 326–340. [Google Scholar] [CrossRef] [Green Version]
- Cuijpers, P.; Quero, S.; Noma, H.; Ciharova, M.; Miguel, C.; Karyotaki, E.; Cipriani, A.; Cristea, I.A.; Furukawa, T.A. Psychotherapies for depression: A network meta-analysis covering efficacy, acceptability and long-term outcomes of all main treatment types. World Psychiatry Off. J. World Psychiatr. Assoc. 2021, 20, 283–293. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Brown, G.K. Manual for the Beck Depression Inventory, 2nd ed.; The Psychological Corporation: San Antonio, TX, USA, 1996. [Google Scholar]
- Kühner, C.; Bürger, C.; Keller, F.; Hautzinger, M. Reliabilität und Validität des revidierten Beck-Depressionsinventars (BDI-II). Der Nervenarzt 2007, 78, 651–656. [Google Scholar] [CrossRef]
- Frances, A.; First, M.B.; Pincus, H.A. DSM-IV Guidebook; American Psychiatric Association: Washington, DC, USA, 1995. [Google Scholar]
- Fried, E.I.; Nesse, R.M. Depression sum-scores don’t add up: Why analyzing specific depression symptoms is essential. BMC Med. 2015, 13, 72. [Google Scholar] [CrossRef] [Green Version]
- McGrath, R.E. Conceptual complexity and construct validity. J. Personal. Assess. 2005, 85, 112–124. [Google Scholar] [CrossRef]
- Cramer, A.O.; Waldorp, L.J.; Van Der Maas, H.L.; Borsboom, D. Comorbidity: A network perspective. Behav. Brain Sci. 2010, 33, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Markus, K.A. Hypothesis formulation, model interpretation, and model equivalence: Implications of a mereological causal interpretation of structural equation models. Multivar. Behav. Res. 2008, 43, 177–209. [Google Scholar] [CrossRef]
- Borsboom, D. A network theory of mental disorders. World Psychiatry Off. J. World Psychiatr. Assoc. 2017, 16, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Epskamp, S.; Cramer, A.O.; Waldorp, L.J.; Schmittmann, V.D.; Borsboom, D. qgraph: Network visualizations of relationships in psychometric data. J. Stat. Softw. 2012, 48, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Borsboom, D.; Deserno, M.K.; Rhemtulla, M.; Epskamp, S.; Fried, E.I.; McNally, R.J.; Robinaugh, D.J.; Perugini, M.; Dalege, J.; Costantini, G. Network analysis of multivariate data in psychological science. Nat. Rev. Methods Primers 2021, 1, 58. [Google Scholar] [CrossRef]
- Robinaugh, D.J.; Hoekstra, R.H.; Toner, E.R.; Borsboom, D. The network approach to psychopathology: A review of the literature 2008–2018 and an agenda for future research. Psychol. Med. 2020, 50, 353–366. [Google Scholar] [CrossRef]
- Cramer, A.O.; Van Borkulo, C.D.; Giltay, E.J.; Van Der Maas, H.L.; Kendler, K.S.; Scheffer, M.; Borsboom, D. Major depression as a complex dynamic system. PLoS ONE 2016, 11, e0167490. [Google Scholar] [CrossRef]
- Wichers, M.; Riese, H.; Hodges, T.M.; Snippe, E.; Bos, F.M. A Narrative Review of Network Studies in Depression: What Different Methodological Approaches Tell Us About Depression. Front. Psychiatry 2021, 12, 1865. [Google Scholar] [CrossRef]
- van Borkulo, C.D.; Boschloo, L.; Borsboom, D.; Penninx, B.W.; Waldorp, L.J.; Schoevers, R.A. Association of symptom network structure with the course of depression. JAMA Psychiatry 2015, 72, 1219–1226. [Google Scholar] [CrossRef]
- Madhoo, M.; Levine, S.Z. Network analysis of the Quick Inventory of Depressive Symptomatology: Reanalysis of the STAR* D clinical trial. Eur. Neuropsychopharmacol. 2016, 26, 1768–1774. [Google Scholar] [CrossRef]
- Bos, F.M.; Fried, E.I.; Hollon, S.D.; Bringmann, L.F.; Dimidjian, S.; DeRubeis, R.J.; Bockting, C.L. Cross-sectional networks of depressive symptoms before and after antidepressant medication treatment. Soc. Psychiatry Psychiatr. Epidemiol. 2018, 53, 617–627. [Google Scholar] [CrossRef] [Green Version]
- Berlim, M.T.; Richard-Devantoy, S.; Dos Santos, N.R.; Turecki, G. The network structure of core depressive symptom-domains in major depressive disorder following antidepressant treatment: A randomized clinical trial. Psychol. Med. 2020, 51, 2399–2413. [Google Scholar] [CrossRef]
- Fried, E.I.; Epskamp, S.; Nesse, R.M.; Tuerlinckx, F.; Borsboom, D. What are ’good’ depression symptoms? Comparing the centrality of DSM and non-DSM symptoms of depression in a network analysis. J. Affect. Disord. 2016, 189, 314–320. [Google Scholar] [CrossRef]
- Bringmann, L.F.; Lemmens, L.; Huibers, M.; Borsboom, D.; Tuerlinckx, F. Revealing the dynamic network structure of the Beck Depression Inventory-II. Psychol. Med. 2015, 45, 747–757. [Google Scholar] [CrossRef] [Green Version]
- Dilling, H.; Mombour, M.; Schmidt, M.; Schulte-Markwort, E. WHO: ICD-10 Kapitel V (F) Diagnostische Kriterien für Forschung und Praxis; Hogrefe: Göttingen, Germany, 2016; Volume 6. [Google Scholar]
- World Medical Association. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull. World Health Organ. 2001, 79, 373–374. [Google Scholar]
- Williams, J.R. The Declaration of Helsinki and public health. Bull. World Health Organ. 2008, 86, 650–652. [Google Scholar] [CrossRef]
- Hautzinger, M.; Stark, W.; Treiber, R. Kognitive Verhaltenstherapie bei Depressionen; Verlagsgruppe Beltz: Weinheim, Germany, 2008. [Google Scholar]
- Hautzinger, M.; Keller, F.; Kühner, C. Beck Depressions-Inventar Revision: Manual; Harcourt: Frankfurt am Main, Germany, 2006. [Google Scholar]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Fruchterman, T.M.; Reingold, E.M. Graph drawing by force-directed placement. Softw. Pract. Exp. 1991, 21, 1129–1164. [Google Scholar] [CrossRef]
- Van Borkulo, C.D.; Boschloo, L.; Kossakowski, J.; Tio, P.; Schoevers, R.A.; Borsboom, D.; Waldorp, L.J. Comparing network structures on three aspects: A permutation test. Psychol. Methods 2022. [Google Scholar] [CrossRef]
- Golino, H.F.; Epskamp, S. Exploratory graph analysis: A new approach for estimating the number of dimensions in psychological research. PLoS ONE 2017, 12, e0174035. [Google Scholar] [CrossRef] [Green Version]
- Opsahl, T.; Agneessens, F.; Skvoretz, J. Node centrality in weighted networks: Generalizing degree and shortest paths. Soc. Netw. 2010, 32, 245–251. [Google Scholar] [CrossRef]
- Epskamp, S.; Borsboom, D.; Fried, E.I. Estimating psychological networks and their accuracy: A tutorial paper. Behav. Res. Methods 2018, 50, 195–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haslbeck, J.; Fried, E.I. How predictable are symptoms in psychopathological networks? A reanalysis of 18 published datasets. Psychol. Med. 2017, 47, 2767–2776. [Google Scholar] [CrossRef] [PubMed]
- Haslbeck, J.; Waldorp, L.J. Structure estimation for mixed graphical models in high-dimensional data. arXiv 2015, arXiv:1510.05677. [Google Scholar]
- Fokkema, M.; Smits, N.; Kelderman, H.; Cuijpers, P. Response shifts in mental health interventions: An illustration of longitudinal measurement invariance. Psychol. Assess. 2013, 25, 520–531. [Google Scholar] [CrossRef] [Green Version]
- Bos, E.H.; Wanders, R.B. Group-level symptom networks in depression. JAMA Psychiatry 2016, 73, 411. [Google Scholar] [CrossRef]
- Fisher, A.J.; Medaglia, J.D.; Jeronimus, B.F. Lack of group-to-individual generalizability is a threat to human subjects research. Proc. Natl. Acad. Sci. USA 2018, 115, E6106–E6115. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Chen, J.-H. Meta-analysis of the factor structures of the Beck Depression Inventory–II. Assessment 2015, 22, 459–472. [Google Scholar] [CrossRef]
- Widaman, K.F.; Ferrer, E.; Conger, R.D. Factorial invariance within longitudinal structural equation models: Measuring the same construct across time. Child Dev. Perspect. 2010, 4, 10–18. [Google Scholar] [CrossRef]
- Fried, E.I.; van Borkulo, C.D.; Epskamp, S.; Schoevers, R.A.; Tuerlinckx, F.; Borsboom, D. Measuring depression over time... Or not? Lack of unidimensionality and longitudinal measurement invariance in four common rating scales of depression. Psychol. Assess. 2016, 28, 1354–1367. [Google Scholar] [CrossRef]
- Boschloo, L.; van Borkulo, C.D.; Borsboom, D.; Schoevers, R.A. A prospective study on how symptoms in a network predict the onset of depression. Psychother. Psychosom. 2016, 85, 183–184. [Google Scholar] [CrossRef]
- Bringmann, L.F.; Elmer, T.; Epskamp, S.; Krause, R.W.; Schoch, D.; Wichers, M.; Wigman, J.T.; Snippe, E. What do centrality measures measure in psychological networks? J. Abnorm. Psychol. 2019, 128, 892–903. [Google Scholar] [CrossRef] [Green Version]
- von Klipstein, L.; Riese, H.; Servaas, M.N.; Schoevers, R.A. Using person-specific networks in psychotherapy: Challenges, limitations, and how we could use them anyway. BMC Med. 2020, 18, 345. [Google Scholar] [CrossRef]
- Trull, T.J.; Ebner-Priemer, U. The role of ambulatory assessment in psychological science. Curr. Dir. Psychol. Sci. 2014, 23, 466–470. [Google Scholar] [CrossRef]
- Trull, T.J.; Ebner-Priemer, U.W. Using experience sampling methods/ecological momentary assessment (ESM/EMA) in clinical assessment and clinical research: Introduction to the special section. Psychol. Assess. 2009, 21, 457–462. [Google Scholar] [CrossRef] [Green Version]
- Santangelo, P.; Bohus, M.; Ebner-Priemer, U.W. Ecological momentary assessment in borderline personality disorder: A review of recent findings and methodological challenges. J. Personal. Disord. 2014, 28, 555–576. [Google Scholar] [CrossRef]
- Cohen, Z.D.; DeRubeis, R.J. Treatment Selection in Depression. Annu. Rev. Clin. Psychol. 2018, 14, 209–236. [Google Scholar] [CrossRef]
- Terluin, B.; De Boer, M.R.; De Vet, H.C. Differences in connection strength between mental symptoms might be explained by differences in variance: Reanalysis of network data did not confirm staging. PLoS ONE 2016, 11, e0155205. [Google Scholar] [CrossRef]
- Bos, F.M.; Snippe, E.; de Vos, S.; Hartmann, J.A.; Simons, C.J.; van der Krieke, L.; de Jonge, P.; Wichers, M. Can we jump from cross-sectional to dynamic interpretations of networks implications for the network perspective in psychiatry. Psychother. Psychosom. 2017, 86, 175–177. [Google Scholar] [CrossRef] [Green Version]
No. | Item | Pre-CBT | 12 Sessions of CBT | Post-CBT | Comparisons of p-Values | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | SD | Var | M | SD | Var | M | SD | Var | Pre vs. 12 | 12 vs. Post | ||||
M | Var | M | Var | |||||||||||
1 | Sadness | 1.06 | 0.74 | 0.55 | 0.88 | 0.71 | 0.51 | 0.68 | 0.67 | 0.45 | *** | n.s. | *** | *** |
2 | Pessimism | 1.02 | 0.94 | 0.89 | 0.70 | 0.87 | 0.76 | 0.49 | 0.79 | 0.62 | *** | ** | *** | *** |
3 | Past failure | 1.35 | 0.98 | 0.96 | 1.11 | 0.92 | 0.85 | 0.87 | 0.90 | 0.81 | *** | ** | *** | n.s. |
4 | Loss of pleasure | 1.39 | 0.85 | 0.72 | 1.04 | 0.85 | 0.72 | 0.76 | 0.80 | 0.64 | *** | n.s. | *** | *** |
5 | Guilty feelings | 1.06 | 0.86 | 0.74 | 0.90 | 0.80 | 0.64 | 0.69 | 0.78 | 0.61 | *** | ** | *** | n.s. |
6 | Punishment feelings | 0.78 | 1.10 | 1.21 | 0.57 | 0.93 | 0.86 | 0.48 | 0.88 | 0.77 | *** | *** | n.s.. | *** |
7 | Self-dislike | 1.09 | 0.93 | 0.86 | 0.83 | 0.93 | 0.86 | 0.58 | 0.85 | 0.72 | *** | n.s. | *** | *** |
8 | Self-criticalness | 1.21 | 0.92 | 0.85 | 0.95 | 0.92 | 0.85 | 0.73 | 0.90 | 0.81 | *** | n.s. | *** | n.s. |
9 | Suicidal ideation | 0.40 | 0.57 | 0.32 | 0.32 | 0.55 | 0.30 | 0.23 | 0.50 | 0.25 | *** | n.s. | *** | *** |
10 | Crying | 1.03 | 1.05 | 1.10 | 0.70 | 0.99 | 0.98 | 0.52 | 0.91 | 0.83 | *** | * | *** | *** |
11 | Agitation | 0.85 | 0.78 | 0.61 | 0.65 | 0.80 | 0.64 | 0.45 | 0.71 | 0.50 | *** | n.s. | *** | *** |
12 | Loss of interest | 1.06 | 1.00 | 1.00 | 0.68 | 0.82 | 0.67 | 0.52 | 0.79 | 0.62 | *** | *** | *** | * |
13 | Indecisiveness | 1.28 | 1.03 | 1.06 | 0.93 | 0.95 | 0.90 | 0.67 | 0.92 | 0.85 | *** | *** | *** | * |
14 | Worthlessness | 1.23 | 1.03 | 1.06 | 0.91 | 1.02 | 1.04 | 0.70 | 0.93 | 0.86 | *** | n.s. | *** | *** |
15 | Loss of energy | 1.21 | 0.77 | 0.59 | 0.98 | 0.74 | 0.55 | 0.68 | 0.75 | 0.56 | *** | n.s. | *** | n.s. |
16 | Change in sleep | 1.28 | 0.94 | 0.88 | 1.06 | 0.93 | 0.86 | 0.84 | 0.84 | 0.71 | *** | n.s. | *** | *** |
17 | Irritability | 0.92 | 0.88 | 0.77 | 0.71 | 0.83 | 0.69 | 0.51 | 0.78 | 0.61 | *** | * | *** | *** |
18 | Change in appetite | 0.83 | 1.00 | 1.00 | 0.75 | 0.96 | 0.92 | 0.59 | 0.86 | 0.74 | n.s. | n.s. | ** | ** |
19 | Concentration difficulty | 1.29 | 0.86 | 0.74 | 1.03 | 0.86 | 0.74 | 0.74 | 0.85 | 0.72 | *** | n.s. | *** | n.s. |
20 | Fatigue | 1.29 | 0.84 | 0.71 | 0.97 | 0.78 | 0.61 | 0.72 | 0.74 | 0.55 | *** | ** | *** | *** |
21 | Loss of interest in sex | 0.84 | 1.08 | 1.17 | 0.75 | 1.00 | 1.00 | 0.60 | 0.96 | 0.92 | n.s. | ** | ** | ** |
BDI sum score | 22.44 | 12.02 | 144.48 | 17.40 | 12.03 | 144.72 | 13.03 | 11.82 | 139.71 | *** | n.s. | *** | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Höller, I.; Schreiber, D.; Bos, F.; Forkmann, T.; Teismann, T.; Margraf, J. The Mereology of Depression—Networks of Depressive Symptoms during the Course of Psychotherapy. Int. J. Environ. Res. Public Health 2022, 19, 7131. https://doi.org/10.3390/ijerph19127131
Höller I, Schreiber D, Bos F, Forkmann T, Teismann T, Margraf J. The Mereology of Depression—Networks of Depressive Symptoms during the Course of Psychotherapy. International Journal of Environmental Research and Public Health. 2022; 19(12):7131. https://doi.org/10.3390/ijerph19127131
Chicago/Turabian StyleHöller, Inken, Dajana Schreiber, Fionneke Bos, Thomas Forkmann, Tobias Teismann, and Jürgen Margraf. 2022. "The Mereology of Depression—Networks of Depressive Symptoms during the Course of Psychotherapy" International Journal of Environmental Research and Public Health 19, no. 12: 7131. https://doi.org/10.3390/ijerph19127131