The Social and Natural Environment’s Impact on SARS-CoV-2 Infections in the UK Biobank
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Demographics
3.2. Socioeconomic Status
3.3. Air Pollution
3.4. Green Space
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, S.-C.; Chang, Y.-C.; Fan Chiang, Y.-L.; Chien, Y.-C.; Cheng, M.; Yang, C.-H.; Huang, C.-H.; Hsu, Y.-N. First case of Coronavirus Disease 2019 (COVID-19) pneumonia in Taiwan. J. Formos. Med. Assoc. 2020, 119, 747–751. [Google Scholar] [CrossRef] [PubMed]
- Berry, I.; Brewer, T.; Brownstein, J. COVID-19. 2020. Available online: https://www.healthmap.org/covid-19/ (accessed on 11 November 2020).
- Zhao, Q.; Meng, M.; Kumar, R.; Wu, Y.; Huang, J.; Lian, N.; Deng, Y.; Lin, S. The impact of COPD and smoking history on the severity of COVID-19: A systemic review and meta-analysis. J. Med. Virol. 2020, 92, 1915–1921. [Google Scholar] [CrossRef] [Green Version]
- Soeroto, A.Y.; Soetedjo, N.N.; Purwiga, A.; Santoso, P.; Kulsum, I.D.; Suryadinata, H.; Ferdian, F. Effect of increased BMI and obesity on the outcome of COVID-19 Adult Patients: A systematic review and meta-analysis. Diabetes Metab. Syndr. 2020, 14, 1897–1904. [Google Scholar] [CrossRef] [PubMed]
- Scalsky, R.J.; Chen, Y.-J.; Desai, K.; O’Connell, J.R.; Perry, J.A.; Hong, C.C. Baseline cardiometabolic profiles and SARS-COV-2 infection in the UK Biobank. PLoS ONE 2021, 16, e0248602. [Google Scholar] [CrossRef] [PubMed]
- Miravitlles, M.; Naberan, K.; Cantoni, J.; Azpeitia, A. Socioeconomic status and health-related quality of life of patients with chronic obstructive pulmonary disease. Respiration 2011, 82, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Schultz, W.M.; Kelli, H.M.; Lisko, J.C.; Varghese, T.; Shen, J.; Sandesara, P.; Quyyumi, A.A.; Taylor, H.A.; Gulati, M.; Harold, J.G.; et al. Socioeconomic status and cardiovascular outcomes. Circulation 2018, 137, 2166–2178. [Google Scholar] [CrossRef]
- Townsend, M.J.; Kyle, T.K.; Stanford, F.C. Outcomes of COVID-19: Disparities in obesity and by ethnicity/race. Int. J. Obes. 2020, 44, 1807–1809. [Google Scholar] [CrossRef]
- Ogen, Y. Assessing nitrogen dioxide (no2) levels as a contributing factor to coronavirus (COVID-19) fatality. Sci. Total Environ. 2020, 726, 138605. [Google Scholar] [CrossRef]
- Current and Future Availability of COVID-19 Related Health Outcome Data. Available online: http://biobank.ndph.ox.ac.uk/ukb/exinfo.cgi?src=COVID19_availability (accessed on 22 July 2020).
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, s13742-015. [Google Scholar] [CrossRef]
- Price, A.J.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006, 38, 904–909. [Google Scholar] [CrossRef]
- Copat, C.; Cristaldi, A.; Fiore, M.; Grasso, A.; Zuccarello, P. The role of air pollution (PM and no 2) in covid-19 spread and lethality: A systematic review. Environ. Res. 2020, 191, 1110129. [Google Scholar] [CrossRef]
- Brandt, E.B.; Beck, A.F.; Mersha, T.B. Air pollution, racial disparities, and COVID-19 mortality. J. Allergy Clin. Immunol. 2020, 146, 61–63. [Google Scholar] [CrossRef]
- Holuka, C.; Merz, M.P.; Fernandes, S.B.; Charalambous, E.G.; Seal, S.V.; Grova, N.; Turner, J.D. The COVID-19 pandemic: Does our early life environment, life trajectory and socioeconomic status determine disease susceptibility and severity? Int. J. Mol. Sci. 2020, 21, 5094. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, R.B.; Charles, E.J.; Mehaffey, J.H. Socio-economic status and COVID-19-related cases and fatalities. Public Health 2020, 189, 129–134. [Google Scholar] [CrossRef] [PubMed]
- U.S. Bureau of Labor Statistics. Characteristics of Minimum Wage Workers; BLS Reports; U.S. Bureau of Labor Statistics: Washington, DC, USA, 2019; Available online: https://www.bls.gov/opub/reports/minimum-wage/2019/home.htm (accessed on 4 October 2021).
- Essrow, D.; Cooper, D. Low-Wage Workers Are Older Than You Think: 88 Percent of Workers Who Would Benefit from a Higher Minimum Wage Are Older Than 20, One Third Are over 40; Economic Policy Institute: Washington, DC, USA, 2013; Available online: https://www.epi.org/publication/wage-workers-older-88-percent-workers-benefit/ (accessed on 4 October 2021).
- Heymann, J.; Sprague, A.; Earle, A.; McCormack, M.; Waisath, W.; Raub, A. US Sick Leave In Global Context: US Eligibility Rules Widen Inequalities Despite Readily Available Solutions. Heal. Aff. 2021, 40, 1501–1509. [Google Scholar] [CrossRef]
- Reid, A.; Rhonda-Perez, E.; Schenker, M.B. Migrant workers, essential work, and COVID-19. Am. J. Ind. Med. 2021, 642, 73–77. [Google Scholar] [CrossRef]
- The plight of essential workers during the COVID-19 pandemic. Lancet 2020, 395, 1587. [CrossRef]
- Okonkwo, N.E.; Aguwa, U.T.; Jang, M.; Barré, I.A.; Page, K.R.; Sullivan, P.S.; Beyrer, C.; Baral, S. COVID-19 and the US response: Accelerating health inequities. BMJ Evid. Based Med. 2021, 26, 176–179. [Google Scholar] [CrossRef]
- Cohen, R.I.S.; Bosk, E.A. Vulnerable Youth and the COVID-19 Pandemic. Pediatrics Perspect. 2020, 146, e20201306. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, J.; Huang, F.; Cao, L. Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Sci. Total Environ. 2020, 727, 138704. [Google Scholar] [CrossRef]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Sci. Total. Environ. 2020, 738, 139825. [Google Scholar] [CrossRef]
- Shi, Q.; Zhao, L.; Xu, C.; Zhang, L.; Zhao, H. High Molecular Weight Hyaluronan Suppresses Macrophage M1 Polarization and Enhances IL-10 Production in PM2.5-Induced Lung Inflammation. Molecules 2019, 24, 1766. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-W.; Huang, M.-Z.; Chen, C.-L.; Kuo, C.-Y.; Yang, C.-Y.; Chiang-Ni, C.; Chen, Y.-Y.M.; Hsieh, C.-M.; Wu, H.-Y.; Kuo, M.-L.; et al. PM2.5 impairs macrophage functions to exacerbate pneumococcus-induced pulmonary pathogenesis. Part. Fibre Toxicol. 2020, 17, 3308. [Google Scholar] [CrossRef]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio- respiratory mortality: A Review. Environ. Health 2013, 12, 43. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Pan, J.; Zhang, H.; Shi, C.; Li, G.; Peng, Z.; Ma, J.; Zhou, Y.; Zhang, L. Short-Term Exposure to Ambient Air Pollution and Asthma Mortality. Am. J. Respir. Crit. Care Med. 2019, 200, 24–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciencewicki, J.; Jaspers, I. Air Pollution and Respiratory Viral Infection. Inhal. Toxicol. 2007, 19, 1135–1146. [Google Scholar] [CrossRef] [PubMed]
- Woodby, B.; Arnold, M.M.; Valacchi, G. SARS-COV-2 infection, COVID-19 pathogenesis, and exposure to air pollution: What is the connection? Ann. N. Y. Acad. Sci. 2021, 1486, 15–38. [Google Scholar] [CrossRef] [PubMed]
- Al-Dimashki, M.; Appoh, E.K.; Balakrishnan, K.; Brauer, M.; Brunekreef, B. WHO Global Air Quality Guidelines; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Shenassa, E.D.; Williams, A.D. Concomitant exposure to area-level poverty, ambient air volatile organic compounds, and cardiometabolic dysfunction: A cross-sectional study of U.S. adolescents. Ann. Epidemiol. 2020, 48, 15–22. [Google Scholar] [CrossRef]
- Tonne, C.; Mila, C.; Fecht, D.; Alvarez, M.; Gulliver, J.; Smith, J.; Beevers, S.; Anderson, H.R.; Kelly, F. Socioeconomic and ethnic inequalities in exposure to air and noise pollution in London. Environ. Int. 2018, 115, 170–179. [Google Scholar] [CrossRef]
- Brihn, A.; Chang, J.; OYong, K.; Balter, S.; Terashita, D.; Rubin, Z.; Yeganeh, N. Diagnostic performance of an antigen test with RT-PCR for the detection of SARS-COV-2 in a hospital setting—Los Angeles County, California, June-August 2020. Morb. Mortal. Wkly. Rep. 2021, 70, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J. Long-term effects of exposure to Particulate Air Pollution. Clin. Occup. Environ. Med. 2006, 5, 837–848. [Google Scholar] [PubMed]
- Franchini, M.; Mannucci, P.M. Particulate Air Pollution and Cardiovascular Risk: Short-term and Long-term Effects. Semin. Thromb. Hemost. 2009, 35, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Rajak, R.; Chattopadhyay, A. Short and Long Term Exposure to Ambient Air Pollution and Impact on Health in India: A Systematic Review. Int. J. Environ. Health Res. 2020, 30, 593–617. [Google Scholar] [CrossRef]
- Concentrations of Particulate Matter (PM10 and PM2.5); National Statistics: London, UK; Available online: https://www.gov.uk/government/statistics/air-quality-statistics/concentrations-of-particulate-matter-pm10-and-pm25 (accessed on 22 December 2021).
- Concentrations of Nitrogen Dioxide; National Statistics: London, UK; Available online: https://www.gov.uk/government/statistics/air-quality-statistics/ntrogen-dioxide (accessed on 22 December 2021).
- Son, J.-Y.; Fong, K.C.; Heo, S.; Kim, H.; Lim, C.C.; Bell, M.L. Reductions in mortality resulting from reduced air pollution levels due to COVID-19 mitigation measures. Sci. Total. Environ. 2020, 744, 141012. [Google Scholar] [CrossRef]
- Andersen, Z.J.; Hoffmann, B.; Morawska, L.; Adams, M.; Furman, E.; Yorgancioglu, A.; Greenbaum, D.; Neira, M.; Brunekreef, B.; Forastiere, F.; et al. Air pollution and COVID-19: Clearing the air and charting a post-pandemic course: A joint workshop report of ERS, ISEE, HEI and WHO. Eur. Respir. J. 2021, 58, 2101063. [Google Scholar] [CrossRef]
- Steptoe, A.; Zaninotto, P. Lower socioeconomic status and the acceleration of aging: An outcome-wide analysis. Proc. Natl. Acad. Sci. USA 2020, 117, 14911–14917. [Google Scholar] [CrossRef] [PubMed]
- Volaco, A.; Cavalcanti, A.M.; Filho, R.P.; Precoma, D.B. Socioeconomic status: The missing link between Obesity and diabetes mellitus? Curr. Diabetes Rev. 2018, 14, 321–326. [Google Scholar] [CrossRef]
- Vathesatogkit, P.; Woodward, M.; Tanomsup, S.; Hengprasith, B.; Aekplakorn, W.; Yamwong, S.; Sritara, P. Long-term effects of socioeconomic status on incident hypertension and progression of blood pressure. J. Hypertens. 2012, 30, 1347–1353. [Google Scholar] [CrossRef]
- Hystad, P.; Carpiano, R.M.; Demers, P.A.; Johnson, K.C.; Brauer, M. Neighbourhood socioeconomic status and individual lung cancer risk: Evaluating long-term exposure measures and mediating mechanisms. Soc. Sci. Med. 2013, 97, 95–103. [Google Scholar] [CrossRef]
- Francis-Devine, B. Poverty in the UK: Statistics; House of Commons Library: London, UK, 2021; Available online: https://commonslibrary.parliament.uk/research-briefings/sn07096/ (accessed on 28 December 2021).
- Households below Average Income (HBAI) Statistics; Department for Work and Pensions, 2021; Available online: https://www.gov.uk/government/collections/households-below-average-income-hbai--2 (accessed on 28 December 2021).
N | Male (%) | Female (%) | White (%) | Non-White (%) | Age (SD) | |
---|---|---|---|---|---|---|
Cases | 15,156 | 7200 (47.5) | 7956 (52.5) | 13,545 (89.4) | 1611 (10.6) | 65.32 (8.61) |
Controls | 51,576 | 24,094 (46.7) | 27,482 (53.3) | 48,645 (94.3) | 2931 (5.7) | 69.64 (7.97) |
All | 66,732 | 31,294 (46.9) | 35,438 (53.1) | 62,190 (93.2) | 4542 (6.8) | 68.66 (8.32) |
% positive | 22.7% | 23.0% | 22.5% | 21.8% | 35.5% | N/A |
p-value | 8.6 × 10−2 | 2.8 × 10−100 | <1 × 10−300 |
Measure 1 | Cases | Controls | Range 2 | Mean (SD) | Odds Ratio 3 | p-Value | 95% CI |
---|---|---|---|---|---|---|---|
Health Score | 13,957 | 49,173 | −3.1–3.79 | −0.070 (0.883) | 1.261 | 6.8 × 10−103 | 1.24–1.29 |
Employment Score | 13,957 | 49,173 | 0–0.75 | 0.091 (0.062) | 1.207 | 3.1 × 10−83 | 1.19–1.23 |
Education Score | 13,957 | 49,173 | 0.02–98.09 | 16.37 (16.62) | 1.198 | 8.4 × 10−82 | 1.18–1.22 |
Income Score | 13,957 | 49,173 | 0.01–0.77 | 0.120 (0.101) | 1.179 | 5.9 × 10−60 | 1.16–1.2 |
Living Environment Score | 13,957 | 49,173 | 0.08–92.99 | 18.63 (15.35) | 1.106 | 5.1 × 10−21 | 1.083–1.130 |
Crime Score | 13,957 | 49,173 | −2.73–3.81 | −0.027 (0.782) | 1.102 | 2.6 × 10−20 | 1.08–1.12 |
Housing Score | 13,957 | 49,173 | 0.34–70.14 | 19.64 (10.20) | 1.066 | 5.9 × 10−10 | 1.05–1.09 |
Index of Multiple Deprivation (IMD) | 13,957 | 49,173 | 0.61–82 | 18.24 (14.35) | 1.207 | 1.4 × 10−77 | 1.18–1.23 |
Measure | Cases | Controls | Mean (SD) | Odds Ratio | p-Value | 95% CI |
---|---|---|---|---|---|---|
PM 2.5–2010 | 13,957 | 49,173 | 10.0 (1.05) | 1.063 | 5.58 × 10−9 | 1.04–1.09 |
PM 10–2010 | 13,957 | 49,174 | 16.25 (1.90) | 1.014 | 0.011 | 1.01–1.02 |
PM 10–2007 | 13,940 | 49,097 | 22.47 (2.80) | 0.9965 | 0.346 | 0.99–1.01 |
NOx–2010 | 13,957 | 49,185 | 44.13 (15.81) | 1.067 | 1.66 × 10−10 | 1.05–1.09 |
NO2–2010 | 13,957 | 49,184 | 26.73 (7.70) | 1.081 | 3.43 × 10−13 | 1.06–1.10 |
NO2–2007 | 13,957 | 49,184 | 31.53 (11.24) | 1.035 | 0.001 | 1.01–1.06 |
NO2–2006 | 13,957 | 49,184 | 29.43 (9.60) | 1.068 | 5.23 × 10−10 | 1.04–1.09 |
NO2–2005 | 13,957 | 49,184 | 30.56 (10.60) | 1.048 | 8.95 × 10−6 | 1.02–1.07 |
Measure | Cases | Controls | Covariates | Mean (SD) | Odds Ratio | p-Value | 95% CI |
---|---|---|---|---|---|---|---|
Green Space 300 m | 13,941 | 49,330 | IMD | 35.38 (23.12) | 0.925 | 1.99 × 10−13 | 0.906–0.944 |
Green Space 300 m | 14,223 | 50,111 | PM2.5, NOx | 35.33 (23.04) | 0.961 | 0.002 | 0.937–0.985 |
Green Space 1000 m | 13,941 | 49,330 | IMD | 45.14 (21.58) | 0.940 | 7.85 × 10−9 | 0.920–0.960 |
Green Space 1000 m | 14,223 | 50,111 | PM2.5, NOx | 45.08 (21.53) | 0.957 | 6.29 × 10−4 | 0.933–0.981 |
Natural Environment 300 m | 13,941 | 49,331 | IMD | 26.44 (25.37) | 0.939 | 3.57 × 10−9 | 0.920–0.960 |
Natural Environment 300 m | 14,836 | 50,503 | PM2.5, NOx | 26.37 (25.25) | 0.974 | 0.04 | 0.950–0.999 |
Natural Environment 1000 m | 13,941 | 49,331 | IMD | 40.92 (25.82) | 0.941 | 2.70 × 10−8 | 0.921–0.961 |
Natural Environment 1000 m | 14,836 | 50,503 | PM2.5, NOx | 40.86 (25.76) | 0.952 | 1.76 × 10−4 | 0.928–0.977 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scalsky, R.J.; Chen, Y.-J.; Ying, Z.; Perry, J.A.; Hong, C.C. The Social and Natural Environment’s Impact on SARS-CoV-2 Infections in the UK Biobank. Int. J. Environ. Res. Public Health 2022, 19, 533. https://doi.org/10.3390/ijerph19010533
Scalsky RJ, Chen Y-J, Ying Z, Perry JA, Hong CC. The Social and Natural Environment’s Impact on SARS-CoV-2 Infections in the UK Biobank. International Journal of Environmental Research and Public Health. 2022; 19(1):533. https://doi.org/10.3390/ijerph19010533
Chicago/Turabian StyleScalsky, Ryan J., Yi-Ju Chen, Zhekang Ying, James A. Perry, and Charles C. Hong. 2022. "The Social and Natural Environment’s Impact on SARS-CoV-2 Infections in the UK Biobank" International Journal of Environmental Research and Public Health 19, no. 1: 533. https://doi.org/10.3390/ijerph19010533
APA StyleScalsky, R. J., Chen, Y.-J., Ying, Z., Perry, J. A., & Hong, C. C. (2022). The Social and Natural Environment’s Impact on SARS-CoV-2 Infections in the UK Biobank. International Journal of Environmental Research and Public Health, 19(1), 533. https://doi.org/10.3390/ijerph19010533