Sex-Related Predisposition to Post-Traumatic Stress Disorder Development—The Role of Neuropeptides
Abstract
1. Introduction
2. Hypothalamic Stress Neuropeptides
2.1. CRF
2.2. Orexin
2.3. Dysfunction of the Orexin System Has Been Reported in PTSD
3. Anti-Stress Hormones
3.1. Oxytocin
3.2. Neuropeptide Y
4. Epigenetic Changes
5. PTSD Therapy in Women
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bangasser, D.A.; Eck, S.R.; Ordoñes Sanchez, E. Sex differences in stress reactivity in arousal and attention systems. Neuropsychopharmacology 2019, 44, 129–139. [Google Scholar] [CrossRef] [PubMed]
- de Vries, G.J.; Olff, M. The lifetime prevalence of traumatic events and posttraumatic stress disorder in the Netherlands. J. Trauma. Stress 2009, 22, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Lanius, R.A.; Rabellino, D.; Boyd, J.E.; Harricharan, S.; Frewen, P.A.; McKinnon, M.C. The innate alarm system in PTSD: Conscious and subconscious processing of threat. Curr. Opin. Psychol. 2017, 14, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Schumacher, T.; Knaevelsrud, C.; Ehlert, U.; Schumacher, S. Genes and hormones of the hypothalamic-pituitary-adrenal axis in posttraumatic stress disorder. What is their role in symptom expression and treatment response? J. Neural Transm. 2021, 128, 1279–1286. [Google Scholar] [CrossRef]
- Bangasser, D.A.; Wiersielis, K.R. Sex differences in stress responses: A critical role for corticotropin-releasing factor. Hormones 2018, 17, 5–13. [Google Scholar] [CrossRef]
- Galovski, T.E.; Blain, L.M.; Chappuis, C.; Fletcher, T. Sex differences in recovery from PTSD in male and female interpersonal assault survivors. Behav. Res. Ther. 2013, 51, 247–255. [Google Scholar] [CrossRef]
- Pooley, A.E.; Benjamin, R.C.; Sreedhar, S.; Eagle, A.L.; Robison, A.J.; Mazei-Robison, M.S.; Breedlove, S.M.; Jordan, C.L. Sex differences in the traumatic stress response: PTSD symptoms in women recapitulated in female rats. Biol. Sex Differ. 2018, 9, 31. [Google Scholar] [CrossRef]
- Rincón-Cortés, M.; Herman, J.P.; Lupien, S.; Maguire, J.; Shansky, R.M. Stress: Influence of sex, reproductive status and gender. Neurobiol. Stress 2019, 10, 100155. [Google Scholar] [CrossRef]
- Tolin, D.F.; Foa, E.B. Sex differences in trauma and posttraumatic stress disorder: A quantitative review of 25 years of research. Psychol. Bull. 2006, 132, 959–992. [Google Scholar] [CrossRef]
- Maeng, L.Y.; Milad, M.R. Sex differences in anxiety disorders: Interactions between fear, stress, and gonadal hormones. Horm. Behav. 2015, 76, 106–117. [Google Scholar] [CrossRef]
- Ravi, M.; Stevens, J.S.; Michopoulos, V. Neuroendocrine pathways underlying risk and resilience to PTSD in women. Front. Neuroendocrinol. 2019, 55, 100790. [Google Scholar] [CrossRef]
- Christiansen, D.M.; Berke, E.T. Gender- and Sex-Based Contributors to Sex Differences in PTSD. Curr. Psychiatry Rep. 2020, 22, 19. [Google Scholar] [CrossRef]
- Filkowski, M.M.; Olsen, R.M.; Duda, B.; Wanger, T.J.; Sabatinelli, D. Sex differences in emotional perception: Meta analysis of divergent activation. Neuroimage 2017, 147, 925–933. [Google Scholar] [CrossRef]
- Shahrokh, D.K.; Zhang, T.Y.; Diorio, J.; Gratton, A.; Meaney, M.J. Oxytocin-dopamine interactions mediate variations in maternal behavior in the rat. Endocrinology 2010, 151, 2276–2286. [Google Scholar] [CrossRef]
- Nahvi, R.J.; Sabban, E.L. Sex Differences in the Neuropeptide Y System and Implications for Stress Related Disorders. Biomolecules 2020, 10, 1248. [Google Scholar] [CrossRef]
- Baker, D.G.; West, S.A.; Nicholson, W.E.; Ekhator, N.N.; Kasckow, J.W.; Hill, K.K.; Bruce, A.B.; Orth, D.N.; Geracioti, T.D., Jr. Serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder. Am. J. Psychiatry 1999, 156, 585–588. [Google Scholar]
- Bremner, J.D.; Licinio, J.; Darnell, A.; Krystal, J.H.; Owens, M.J.; Southwick, S.M.; Nemeroff, C.B.; Charney, D.S. Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am. J. Psychiatry 1997, 154, 624–629. [Google Scholar]
- Sautter, F.J.; Bissette, G.; Wiley, J.; Manguno-Mire, G.; Schoenbachler, B.; Myers, L.; Johnson, J.E.; Cerbone, A.; Malaspina, D. Corticotropin-releasing factor in posttraumatic stress disorder (PTSD) with secondary psychotic symptoms, nonpsychotic PTSD, and healthy control subjects. Biol. Psychiatry 2003, 54, 1382–1388. [Google Scholar] [CrossRef]
- Babb, J.A.; Masini, C.V.; Day, H.E.; Campeau, S. Sex differences in activated corticotropin-releasing factor neurons within stress-related neurocircuitry and hypothalamic-pituitary-adrenocortical axis hormones following restraint in rats. Neuroscience 2013, 234, 40–52. [Google Scholar] [CrossRef]
- Fox, J.H.; Lowry, C.A. Corticotropin-releasing factor-related peptides, serotonergic systems, and emotional behavior. Front. Neurosci. 2013, 7, 169. [Google Scholar] [CrossRef]
- Hupalo, S.; Bryce, C.A.; Bangasser, D.A.; Berridge, C.W.; Valentino, R.J.; Floresco, S.B. Corticotropin-Releasing Factor (CRF) circuit modulation of cognition and motivation. Neurosci. Biobehav. Rev. 2019, 103, 50–59. [Google Scholar] [CrossRef]
- Gallucci, W.T.; Baum, A.; Laue, L.; Rabin, D.S.; Chrousos, G.P.; Gold, P.W.; Kling, M.A. Sex differences in sensitivity of the hypothalamic-pituitary-adrenal axis. Health Psychol. 1993, 12, 420–425. [Google Scholar] [CrossRef]
- Johnson, E.O.; Kamilaris, T.C.; Carter, C.S.; Calogero, A.E.; Gold, P.W.; Chrousos, G.P. The biobehavioral consequences of psychogenic stress in a small, social primate (Callithrix jacchus jacchus). Biol. Psychiatry 1996, 40, 317–337. [Google Scholar] [CrossRef]
- Viau, V.; Bingham, B.; Davis, J.; Lee, P.; Wong, M. Gender and puberty interact on the stress-induced activation of parvocellular neurosecretory neurons and corticotropin-releasing hormone messenger ribonucleic acid expression in the rat. Endocrinology 2005, 146, 137–146. [Google Scholar] [CrossRef]
- Bangasser, D.A.; Curtis, A.; Reyes, B.A.; Bethea, T.T.; Parastatidis, I.; Ischiropoulos, H.; Van Bockstaele, E.J.; Valentino, R.J. Sex differences in corticotropin-releasing factor receptor signaling and trafficking: Potential role in female vulnerability to stress-related psychopathology. Mol. Psychiatry 2010, 877, 896–904. [Google Scholar] [CrossRef]
- Vamvakopoulos, N.C.; Chrousos, G.P. Evidence of direct estrogenic regulation of human corticotropin-releasing hormone gene expression. Potential implications for the sexual dimophism of the stress response and immune/inflammatory reaction. J. Clin. Investig. 1993, 92, 1896–1902. [Google Scholar] [CrossRef]
- Hu, P.; Liu, J.; Yasrebi, A.; Gotthardt, J.D.; Bello, N.T.; Pang, Z.P.; Roepke, T.A. Gq Protein-Coupled Membrane-Initiated Estrogen Signaling Rapidly Excites Corticotropin-Releasing Hormone Neurons in the Hypothalamic Paraventricular Nucleus in Female Mice. Endocrinology 2016, 157, 3604–3620. [Google Scholar] [CrossRef]
- Patchev, V.K.; Hayashi, S.; Orikasa, C.; Almeida, O.F. Ontogeny of gender-specific responsiveness to stress and glucocorticoids in the rat and its determination by the neonatal gonadal steroid environment. Stress 1999, 3, 41–54. [Google Scholar] [CrossRef]
- Weathington, J.M.; Hamki, A.; Cooke, B.M. Sex- and region-specific pubertal maturation of the corticotropin-releasing factor receptor system in the rat. J. Comp. Neurol. 2014, 522, 1284–1298. [Google Scholar] [CrossRef]
- Jasnow, A.M.; Schulkin, J.; Pfaff, D.W. Estrogen facilitates fear conditioning and increases corticotropin-releasing hormone mRNA expression in the central amygdala in female mice. Horm. Behav. 2006, 49, 197–205. [Google Scholar] [CrossRef]
- Lalmansingh, A.S.; Uht, R.M. Estradiol regulates corticotropin-releasing hormone gene (crh) expression in a rapid and phasic manner that parallels estrogen receptor-alpha and -beta recruitment to a 3′,5′-cyclic adenosine 5′-monophosphate regulatory region of the proximal crh promoter. Endocrinology 2008, 149, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Lal, S.; Allan, A.; Markovic, D.; Walker, R.; Macartney, J.; Europe-Finner, N.; Tyson-Capper, A.; Grammatopoulos, D.K. Estrogen alters the splicing of type 1 corticotropin-releasing hormone receptor in breast cancer cells. Sci. Signal. 2013, 6, ra53. [Google Scholar] [CrossRef] [PubMed]
- Uribe, K.P.; Correa, V.L.; Pinales, B.E.; Flores, R.J.; Cruz, B.; Shan, Z.; Bruijnzeel, A.W.; Khan, A.M.; O’Dell, L.E. Overexpression of corticotropin-releasing factor in the nucleus accumbens enhances the reinforcing effects of nicotine in intact female versus male and ovariectomized female rats. Neuropsychopharmacology 2020, 45, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Nicholson, R.C. Steroid hormone mediated regulation of corticotropin-releasing hormone gene expression. Front. Biosci. 2006, 11, 2909–2917. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nappi, R.E.; Bonneau, M.J.; Rivest, S. Influence of the estrous cycle on c-fos and CRH gene transcription in the brain of endotoxin-challenged female rats. Neuroendocrinology 1997, 65, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Ogura, E.; Kageyama, K.; Hanada, K.; Kasckow, J.; Suda, T. Effects of estradiol on regulation of corticotropin-releasing factor gene and interleukin-6 production via estrogen receptor type beta in hypothalamic 4B cells. Peptides 2008, 29, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Oyola, M.G.; Handa, R.J. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: Sex differences in regulation of stress responsivity. Stress 2017, 20, 476–494. [Google Scholar] [CrossRef]
- Bangasser, D.A.; Reyes, B.A.; Piel, D.; Garachh, V.; Zhang, X.Y.; Plona, Z.M.; Van Bockstaele, E.J.; Beck, S.G.; Valentino, R.J. Increased vulnerability of the brain norepinephrine system of females to corticotropin-releasing factor overexpression. Mol. Psychiatry 2013, 18, 166–173. [Google Scholar] [CrossRef]
- Weathington, J.M.; Cooke, B.M. Corticotropin-releasing factor receptor binding in the amygdala changes across puberty in a sex-specific manner. Endocrinology 2012, 153, 5701–5705. [Google Scholar] [CrossRef]
- Howerton, A.R.; Roland, A.V.; Fluharty, J.M.; Marshall, A.; Chen, A.; Daniels, D.; Beck, S.G.; Bale, T.L. Sex differences in corticotropin-releasing factor receptor-1 action within the dorsal raphe nucleus in stress responsivity. Biol. Psychiatry 2014, 75, 873–883. [Google Scholar] [CrossRef]
- Rosinger, Z.J.; Jacobskind, J.S.; Bulanchuk, N.; Malone, M.; Fico, D.; Justice, N.J.; Zuloaga, D.G. Characterization and gonadal hormone regulation of a sexually dimorphic corticotropin-releasing factor receptor 1 cell group. J. Comp. Neurol. 2019, 527, 1056–1069. [Google Scholar] [CrossRef]
- O’Donnell, T.; Hegadoren, K.M.; Coupland, N.C. Noradrenergic mechanisms in the pathophysiology of posttraumatic stress disorder. Neuropsychobiology 2004, 50, 273–283. [Google Scholar] [CrossRef]
- Grafe, L.A.; Bhatnagar, S. Orexins and stress. Front. Neuroendocrinol. 2018, 51, 132–145. [Google Scholar] [CrossRef]
- Porkka-Heiskanen, T.; Kalinchuk, A.; Alanko, L.; Huhtaniemi, I.; Stenberg, D. Orexin A and B levels in the hypothalamus of female rats: The effects of the estrous cycle and age. Eur. J. Endocrinol. 2004, 150, 737–742. [Google Scholar] [CrossRef]
- Messina, G.; Di Bernardo, G.; Viggiano, A.; De Luca, V.; Monda, V.; Messina, A.; Chieffi, S.; Galderisi, U.; Monda, M. Exercise increases the level of plasma orexin A in humans. J. Basic Clin. Physiol. Pharmacol. 2016, 27, 611–616. [Google Scholar] [CrossRef]
- Winsky-Sommerer, R.; Boutrel, B.; de Lecea, L. Stress and arousal: The corticotrophin-releasing factor/hypocretin circuitry. Mol. Neurobiol. 2005, 32, 285–294. [Google Scholar] [CrossRef]
- Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R.M.; Tanaka, H.; Williams, S.C.; Richardson, J.A.; Kozlowski, G.P.; Wilson, S.; et al. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998, 92, 573–585. [Google Scholar] [CrossRef]
- Marcus, J.N.; Aschkenasi, C.J.; Lee, C.E.; Chemelli, R.M.; Saper, C.B.; Yanagisawa, M.; Elmquist, J.K. Differential expression of orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol. 2001, 435, 6–25. [Google Scholar] [CrossRef]
- Choi, D.L.; Davis, J.F.; Fitzgerald, M.E.; Benoit, S.C. The role of orexin-A in food motivation, reward-based feeding behavior and food-induced neuronal activation in rats. Neuroscience 2010, 167, 11–20. [Google Scholar] [CrossRef]
- Mavanji, V.; Butterick, T.A.; Duffy, C.M.; Nixon, J.P.; Billington, C.J.; Kotz, C.M. Orexin/hypocretin treatment restores hippocampal-dependent memory in orexin-deficient mice. Neurobiol. Learn. Mem. 2017, 146, 21–30. [Google Scholar] [CrossRef]
- Johnson, P.L.; Molosh, A.; Fitz, S.D.; Truitt, W.A.; Shekhar, A. Orexin, stress, and anxiety/panic states. Prog. Brain Res. 2012, 198, 133–161. [Google Scholar]
- Shi, L.; Chen, W.; Deng, J.; Chen, S.; Han, Y.; Khan, M.Z.; Liu, J.; Que, J.; Bao, Y.; Lu, L.; et al. Orexin A Differentially Influences the Extinction Retention of Recent and Remote Fear Memory. Front. Neurosci. 2018, 12, 295. [Google Scholar] [CrossRef]
- Flores, Á.; Valls-Comamala, V.; Costa, G.; Saravia, R.; Maldonado, R.; Berrendero, F. The hypocretin/orexin system mediates the extinction of fear memories. Neuropsychopharmacology 2014, 39, 2732–2741. [Google Scholar] [CrossRef]
- Grafe, L.A.; Bhatnagar, S. The contribution of orexins to sex differences in the stress response. Brain Res. 2020, 1731, 145893. [Google Scholar] [CrossRef]
- Grafe, L.A.; Cornfeld, A.; Luz, S.; Valentino, R.; Bhatnagar, S. Orexins Mediate Sex Differences in the Stress Response and in Cognitive Flexibility. Biol. Psychiatry 2017, 81, 683–692. [Google Scholar] [CrossRef]
- Wang, J.B.; Murata, T.; Narita, K.; Honda, K.; Higuchi, T. Variation in the expression of orexin and orexin receptors in the rat hypothalamus during the estrous cycle, pregnancy, parturition, and lactation. Endocrine 2003, 22, 127–134. [Google Scholar] [CrossRef]
- Nixon, J.P.; Mavanji, V.; Butterick, T.A.; Billington, C.J.; Kotz, C.M.; Teske, J.A. Sleep disorders, obesity, and aging: The role of orexin. Ageing Res. Rev. 2015, 20, 63–73. [Google Scholar] [CrossRef]
- Loewen, S.P.; Paterson, A.R.; Loh, S.Y.; Rogers, M.F.; Hindmarch, C.C.T.; Murphy, D.; Ferguson, A.V. Sex-specific differences in cardiovascular and metabolic hormones with integrated signalling in the paraventricular nucleus of the hypothalamus. Exp. Physiol. 2017, 102, 1373–1379. [Google Scholar] [CrossRef]
- López, M.; Señarís, R.; Gallego, R.; García-Caballero, T.; Lago, F.; Seoane, L.; Casanueva, F.; Diéguez, C. Orexin receptors are expressed in the adrenal medulla of the rat. Endocrinology 1999, 140, 5991–5994. [Google Scholar] [CrossRef]
- Mazzocchi, G.; Malendowicz, L.K.; Gottardo, L.; Aragona, F.; Nussdorfer, G.G. Orexin A stimulates cortisol secretion from human adrenocortical cells through activation of the adenylate cyclase-dependent signaling cascade. J. Clin. Endocrinol. Metab. 2001, 86, 778–782. [Google Scholar] [CrossRef]
- Ziolkowska, A.; Spinazzi, R.; Albertin, G.; Nowak, M.; Malendowicz, L.K.; Tortorella, C.; Nussdorfer, G.G. Orexins stimulate glucocorticoid secretion from cultured rat and human adrenocortical cells, exclusively acting via the OX1 receptor. J. Steroid Biochem. Mol. Biol. 2005, 96, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhao, J.; Balesar, R.; Fronczek, R.; Zhu, Q.B.; Wu, X.Y.; Hu, S.H.; Bao, A.M.; Swaab, D.F. Sexually Dimorphic Changes of Hypocretin (Orexin) in Depression. EBioMedicine 2017, 18, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, C.; Kingdon, D.; Ellenbogen, M.A. A meta-analytic review of the impact of intranasal oxytocin administration on cortisol concentrations during laboratory tasks: Moderation by method and mental health. Psychoneuroendocrinology 2014, 49, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Carter, C.; Kenkel, W.M.S.; MacLean, E.L.; Wilson, S.R.; Perkeybile, A.M.; Yee, J.R.; Ferris, C.F.; Nazarloo, H.P.; Porges, S.W.; Davis, J.M.; et al. Is Oxytocin “Nature’s Medicine”? Pharmacol. Rev. 2020, 72, 829–861. [Google Scholar] [CrossRef]
- Dabrowska, J.; Hazra, R.; Ahern, T.H.; Guo, J.D.; McDonald, A.J.; Mascagni, F.; Muller, J.F.; Young, L.J.; Rainnie, D.G. Neuroanatomical evidence for reciprocal regulation of the corticotrophin-releasing factor and oxytocin systems in the hypothalamus and the bed nucleus of the stria terminalis of the rat: Implications for balancing stress and affect. Psychoneuroendocrinology 2011, 36, 1312–1326. [Google Scholar] [CrossRef]
- Huber, D.; Veinante, P.; Stoop, R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 2005, 308, 245–248. [Google Scholar] [CrossRef]
- Viviani, D.; Charlet, A.; van den Burg, E.; Robinet, C.; Hurni, N.; Abatis, M.; Magara, F.; Stoop, R. Oxytocin selectively gates fear responses through distinct outputs from the central amygdala. Science 2011, 333, 104–107. [Google Scholar] [CrossRef]
- Meinlschmidt, G.; Heim, C. Sensitivity to intranasal oxytocin in adult men with early parental separation. Biol. Psychiatry 2007, 61, 1109–1111. [Google Scholar] [CrossRef]
- Ozbay, F.; Fitterling, H.; Charney, D.; Southwick, S. Social support and resilience to stress across the life span: A neurobiologic framework. Curr. Psychiatry Rep. 2008, 10, 304–310. [Google Scholar] [CrossRef]
- Carmassi, C.; Marazziti, D.; Mucci, F.; Della Vecchia, A.; Barberi, F.M.; Baroni, S.; Giannaccini, G.; Palego, L.; Massimetti, G.; Dell’Osso, L. Decreased Plasma Oxytocin Levels in Patients With PTSD. Front. Psychol. 2021, 12, 612338. [Google Scholar] [CrossRef]
- Donadon, M.F.; Martin-Santos, R.; Osório, F.L. The Associations between Oxytocin and Trauma in Humans: A Systematic Review. Front. Pharmacol. 2018, 9, 154. [Google Scholar] [CrossRef]
- Frijling, J.L. Preventing PTSD with oxytocin: Effects of oxytocin administration on fear neurocircuitry and PTSD symptom development in recently trauma-exposed individuals. Eur. J. Psychotraumatol. 2017, 8, 1302652. [Google Scholar] [CrossRef]
- Palgi, S.; Klein, E.; Shamay-Tsoory, S. The role of oxytocin in empathy in PTSD. Psychol. Trauma 2017, 9, 70–75. [Google Scholar] [CrossRef]
- Uhl-Bronner, S.; Waltisperger, E.; Martínez-Lorenzana, G.; Condes, L.M.; Freund-Mercier, M.J. Sexually dimorphic expression of oxytocin binding sites in forebrain and spinal cord of the rat. Neuroscience 2005, 135, 147–154. [Google Scholar] [CrossRef]
- Dumais, K.M.; Veenema, A.H. Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior. Front. Neuroendocrinol. 2016, 40, 1–23. [Google Scholar] [CrossRef]
- Richard, S.; Zingg, H.H. The human oxytocin gene promoter is regulated by estrogens. J. Biol. Chem. 1990, 265, 6098–6103. [Google Scholar] [CrossRef]
- Teicher, M.H.; Andersen, S.L.; Polcari, A.; Anderson, C.M.; Navalta, C.P. Developmental neurobiology of childhood stress and trauma. Psychiatr. Clin. N. Am. 2002, 25, 397–426. [Google Scholar] [CrossRef]
- Wigger, A.; Neumann, I.D. Periodic maternal deprivation induces gender-dependent alterations in behavioral and neuroendocrine responses to emotional stress in adult rats. Physiol. Behav. 1999, 66, 293–302. [Google Scholar] [CrossRef]
- Williams, T.D.; Carter, D.A.; Lightman, S.L. Sexual dimorphism in the posterior pituitary response to stress in the rat. Endocrinology 1985, 116, 738–740. [Google Scholar] [CrossRef]
- Young, L.J.; Muns, S.; Wang, Z.; Insel, T.R. Changes in oxytocin receptor mRNA in rat brain during pregnancy and the effects of estrogen and interleukin 6. J. Neuroendocrinol. 1997, 9, 859–865. [Google Scholar] [CrossRef]
- Britton, K.T.; Akwa, Y.; Spina, M.G.; Koob, G.F. Neuropeptide Y blocks anxiogenic-like behavioral action of corticotropin-releasing factor in an operant conflict test and elevated plus maze. Peptides 2000, 21, 37–44. [Google Scholar] [CrossRef]
- Sabban, E.L.; Laukova, M.; Alaluf, L.G.; Olsson, E.; Serova, L.I. Locus coeruleus response to single-prolonged stress and early intervention with intranasal neuropeptide Y. J. Neurochem. 2015, 135, 975–986. [Google Scholar] [CrossRef]
- Alpár, A.; Harkany, T. Orexin neurons use endocannabinoids to break obesity-induced inhibition. Proc. Natl. Acad. Sci. USA 2013, 110, 9625–9626. [Google Scholar] [CrossRef]
- Shiozaki, K.; Kawabe, M.; Karasuyama, K.; Kurachi, T.; Hayashi, A.; Ataka, K.; Iwai, H.; Takeno, H.; Hayasaka, O.; Kotani, T.; et al. Neuropeptide Y deficiency induces anxiety-like behaviours in zebrafish (Danio rerio). Sci. Rep. 2020, 10, 5913. [Google Scholar] [CrossRef]
- Tural, U.; Iosifescu, D.V. Neuropeptide Y in PTSD, MDD, and chronic stress: A systematic review and meta-analysis. J. Neurosci. Res. 2020, 98, 950–963. [Google Scholar] [CrossRef]
- Lach, G.; de Lima, T.C. Role of NPY Y1 receptor on acquisition, consolidation and extinction on contextual fear conditioning: Dissociation between anxiety, locomotion and non-emotional memory behavior. Neurobiol. Learn. Mem. 2013, 103, 26–33. [Google Scholar] [CrossRef]
- Michel, M.C.; Lewejohann, K.; Farke, W.; Bischoff, A.; Feth, F.; Rascher, W. Regulation of NPY/NPY Y1 receptor/G protein system in rat brain cortex. Am. J. Physiol. 1995, 268, R192–R200. [Google Scholar] [CrossRef] [PubMed]
- Nahvi, R.J.; Nwokafor, C.; Serova, L.I.; Sabban, E.L. Single Prolonged Stress as a Prospective Model for Posttraumatic Stress Disorder in Females. Front. Behav. Neurosci. 2019, 13, 17. [Google Scholar] [CrossRef] [PubMed]
- Eva, C.; Serra, M.; Mele, P.; Panzica, G.; Oberto, A. Physiology and gene regulation of the brain NPY Y1 receptor. Front. Neuroendocrinol. 2006, 27, 308–339. [Google Scholar] [CrossRef] [PubMed]
- Martini, M.; Sica, M.; Gotti, S.; Eva, C.; Panzica, G.C. Effects of estrous cycle and sex on the expression of neuropeptide Y Y1 receptor in discrete hypothalamic and limbic nuclei of transgenic mice. Peptides 2011, 32, 1330–1334. [Google Scholar] [CrossRef] [PubMed]
- Ditlevsen, D.N.; Elklit, A. The combined effect of gender and age on post-traumatic stress disorder: Do men and women show differences in the lifespan distribution of the disorder? Ann. Gen. Psychiatry 2010, 9, 32. [Google Scholar] [CrossRef]
- Acosta-Martinez, M.; Horton, T.; Levine, J.E. Estrogen receptors in neuropeptide Y neurons: At the crossroads of feeding and reproduction. Trends Endocrinol. Metab. 2007, 18, 48–50. [Google Scholar] [CrossRef]
- Skórzewska, A.; Lehner, M.; Wisłowska-Stanek, A.; Turzyńska, D.; Sobolewska, A.; Krząścik, P.; Szyndler, J.; Maciejak, P.; Chmielewska, N.; Kołosowska, K.; et al. Individual susceptibility or resistance to posttraumatic stress disorder-like behaviours. Behav. Brain Res. 2020, 386, 112591. [Google Scholar] [CrossRef]
- De Souza, E.B. Corticotropin-releasing factor receptors: Physiology, pharmacology, biochemistry and role in central nervous system and immune disorders. Psychoneuroendocrinology 1995, 20, 789–819. [Google Scholar] [CrossRef]
- Matchett, B.J.; Grinberg, L.T.; Theofilas, P.; Murray, M.E. The mechanistic link between selective vulnerability of the locus coeruleus and neurodegeneration in Alzheimer’s disease. Acta Neuropathol. 2021, 141, 631–650. [Google Scholar] [CrossRef]
- Haas, D.A.; George, S.R. Neuropeptide Y-induced effects on hypothalamic corticotropin-releasing factor content and release are dependent on noradrenergic/adrenergic neurotransmission. Brain Res. 1989, 498, 333–338. [Google Scholar] [CrossRef]
- Maejima, Y.; Takahashi, S.; Takasu, K.; Takenoshita, S.; Ueta, Y.; Shimomura, K. Orexin action on oxytocin neurons in the paraventricular nucleus of the hypothalamus. Neuroreport 2017, 28, 360–366. [Google Scholar] [CrossRef]
- Wang, C.; Han, X.; Sun, X.; Guo, F.; Luan, X.; Xu, L. Orexin-A signaling in the paraventricular nucleus promote gastric acid secretion and gastric motility through the activation neuropeptide Y Y1 receptors and modulated by the hypothalamic lateral area. Neuropeptides 2019, 74, 24–33. [Google Scholar] [CrossRef]
- Parker, S.L.; Crowley, W.R. Central stimulation of oxytocin release in the lactating rat: Interaction of neuropeptide Y with alpha-1-adrenergic mechanisms. Endocrinology 1993, 132, 658–666. [Google Scholar] [CrossRef]
- Smith, D. Epigenetics. In Encyclopedia of Clinical Neuropsychology; Kreutzer, J., DeLuca, J., Caplan, B., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Gray, J.D.; Kogan, J.F.; Marrocco, J.; McEwen, B.S. Genomic and epigenomic mechanisms of glucocorticoids in the brain. Nat. Rev. Endocrinol. 2017, 13, 661–673. [Google Scholar] [CrossRef]
- Uddin, M.; Sipahi, L.; Li, J.; Koenen, K.C. Sex differences in DNA methylation may contribute to risk of PTSD and depression: A review of existing evidence. Depress. Anxiety 2013, 30, 1151–1160. [Google Scholar] [CrossRef]
- Yehuda, R.; Bell, A.; Bierer, L.M.; Schmeidler, J. Maternal, not paternal, PTSD is related to increased risk for PTSD in offspring of Holocaust survivors. J. Psychiatr. Res. 2008, 42, 1104–1111. [Google Scholar] [CrossRef]
- Pizzimenti, C.L.; Lattal, K.M. Epigenetics and memory: Causes, consequences and treatments for posttraumatic stress disorder and addiction. Genes Brain Behav. 2015, 14, 73–84. [Google Scholar] [CrossRef]
- Murphy, C.P.; Singewald, N. Role of MicroRNAs in Anxiety and Anxiety-Related Disorders. Curr. Top Behav. Neurosci. 2019, 42, 185–219. [Google Scholar]
- Higuchi, F.; Uchida, S.; Yamagata, H.; Abe-Higuchi, N.; Hobara, T.; Hara, K.; Kobayashi, A.; Shintaku, T.; Itoh, Y.; Suzuki, T.; et al. Hippocampal MicroRNA-124 Enhances Chronic Stress Resilience in Mice. J. Neurosci. 2016, 36, 7253–7267. [Google Scholar] [CrossRef]
- Wang, S.S.; Mu, R.H.; Li, C.F.; Dong, S.Q.; Geng, D.; Liu, Q.; Yi, L.T. microRNA-124 targets glucocorticoid receptor and is involved in depression-like behaviors. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 79, 417–425. [Google Scholar] [CrossRef]
- Balakathiresan, N.S.; Chandran, R.; Bhomia, M.; Jia, M.; Li, H.; Maheshwari, R.K. Serum and amygdala microRNA signatures of posttraumatic stress: Fear correlation and biomarker potential. J. Psychiatr. Res. 2014, 57, 65–73. [Google Scholar] [CrossRef]
- Linnstaedt, S.D.; Rueckeis, C.A.; Riker, K.D.; Pan, Y.; Wu, A.; Yu, S.; Wanstrath, B.; Gonzalez, M.; Harmon, E.; Green, P.; et al. MicroRNA-19b predicts widespread pain and posttraumatic stress symptom risk in a sex-dependent manner following trauma exposure. Pain 2020, 161, 47–60. [Google Scholar] [CrossRef]
- Wang, X.; Sundquist, K.; Hedelius, A.; Palmér, K.; Memon, A.A.; Sundquist, J. Circulating microRNA-144-5p is associated with depressive disorders. Clin. Epigenet. 2015, 7, 69. [Google Scholar] [CrossRef]
- Snijders, C.; de Nijs, L.; Baker, D.G.; Hauger, R.L.; van den Hove, D.; Kenis, G.; Nievergelt, C.M.; Boks, M.P.; Vermetten, E.; Gage, F.H.; et al. MicroRNAs in Post-traumatic Stress Disorder. Curr. Top Behav. Neurosci. 2018, 38, 23–46. [Google Scholar]
- Myers, K.M.; Davis, M. Mechanisms of fear extinction. Mol. Psychiatry 2007, 12, 120–150. [Google Scholar] [CrossRef] [PubMed]
- Myers, K.M.; Ressler, K.J.; Davis, M. Different mechanisms of fear extinction dependent on length of time since fear acquisition. Learn. Mem. 2006, 13, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Bangasser, D.A.; Valentino, R.J. Sex differences in stress-related psychiatric disorders: Neurobiological perspectives. Front. Neuroendocrinol. 2014, 35, 303–319. [Google Scholar] [CrossRef] [PubMed]
- Milligan-Saville, J.S.; Graham, B.M. Mothers do it differently: Reproductive experience alters fear extinction in female rats and women. Transl. Psychiatry 2016, 6, e928. [Google Scholar] [CrossRef]
- Tang, S.; Graham, B.M. Hormonal, reproductive, and behavioural predictors of fear extinction recall in female rats. Horm. Behav. 2020, 121, 104693. [Google Scholar] [CrossRef]
- Goldstein, J.M.; Jerram, M.; Abbs, B.; Whitfield-Gabrieli, S.; Makris, N. Sex differences in stress response circuitry activation dependent on female hormonal cycle. J. Neurosci. 2010, 30, 431–438. [Google Scholar] [CrossRef]
- Chang, Y.J.; Yang, C.H.; Liang, Y.C.; Yeh, C.M.; Huang, C.C.; Hsu, K.S. Estrogen modulates sexually dimorphic contextual fear extinction in rats through estrogen receptor beta. Hippocampus 2009, 19, 1142–1150. [Google Scholar] [CrossRef]
- Glover, E.M.; Jovanovic, T.; Mercer, K.B.; Kerley, K.; Bradley, B.; Ressler, K.J.; Norrholm, S.D. Estrogen levels are associated with extinction deficits in women with posttraumatic stress disorder. Biol. Psychiatry 2012, 72, 19–24. [Google Scholar] [CrossRef]
- Parrish, J.N.; Bertholomey, M.L.; Pang, H.W.; Speth, R.C.; Torregrossa, M.M. Estradiol modulation of the renin-angiotensin system and the regulation of fear extinction. Transl. Psychiatry 2019, 9, 36. [Google Scholar] [CrossRef]
- Akiki, T.J.; Abdallah, C.G. Are There Effective Psychopharmacologic Treatments for PTSD? J. Clin. Psychiatry 2018, 80, 18ac12473. [Google Scholar] [CrossRef]
- Tural, U.; Iosifescu, D.V. The Prevalence of Mitral Valve Prolapse in Panic Disorder: A Meta-Analysis. Psychosomatics 2019, 60, 393–401. [Google Scholar] [CrossRef]
- Sayed, S.; Van Dam, N.T.; Horn, S.R.; Kautz, M.M.; Parides, M.; Costi, S.; Collins, K.A.; Iacoviello, B.; Iosifescu, D.V.; Mathé, A.A.; et al. A Randomised Dose-Ranging Study of Neuropeptide Y in Patients with Posttraumatic Stress Disorder. Int. J. Neuropsychopharmacol. 2018, 21, 3–11. [Google Scholar] [CrossRef]
- Itani, O.; Jike, M.; Watanabe, N.; Kaneita, Y. Short sleep duration and health outcomes: A systematic review, meta-analysis, and meta-regression. Sleep Med. 2017, 32, 246–256. [Google Scholar] [CrossRef]
- Kobayashi, I.; Howell, M.K. Impact of Traumatic Stress on Sleep and Management Options in Women. Sleep Med. Clin. 2018, 13, 419–431. [Google Scholar] [CrossRef]
- Difede, J.; Cukor, J.; Wyka, K.; Olden, M.; Hoffman, H.; Lee, F.S.; Altemus, M. D-cycloserine augmentation of exposure therapy for posttraumatic stress disorder: A pilot randomised clinical trial. Neuropsychopharmacology 2014, 39, 1052–1058. [Google Scholar] [CrossRef]
Hypothalamic Peptide | Estrogen Influence | HPA Axis Influence |
---|---|---|
CRF | Increases expression of CRF via interaction with ERE [45] | Glucocorticosteroids via GR receptors inhibit CRF expression [93] |
CRF1 and CRF2 receptors | Increases expression [33] | High CRF level decreases expression of CRF receptors (down-regulation) [94] |
Prepro-orexin | No data | Increases expression by GR [55] |
Oxytocin | Increases expression through action on oxytocin gene promoter [76] | No data |
Neuropeptide Y | Decreases expression via estrogen receptors [92] | No data |
Neupopeptide Y receptors Y1R | Increases expression via interaction with ERE [89] | No data |
CRF | Orexin | Oxytocin | Neuropeptide Y |
---|---|---|---|
Activates orexin neurons in hypothalamus [46] | Increases ACTH release in pituitary. Increases glucocorticoid in adrenal gland [59,60,61] | Inhibits HPA axis [65] | Contradictory data decreases CRF release [81], activates CRF [96] |
Inhibits oxytocin release [69] | Inhibits oxytocin neurons [97] | No data | Inhibits orexin neurons [83] |
No data | Activates NPY neurons in the hypothalamus [98] | No data | Increase of oxytocin release [99] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lehner, M.; Skórzewska, A.; Wisłowska-Stanek, A. Sex-Related Predisposition to Post-Traumatic Stress Disorder Development—The Role of Neuropeptides. Int. J. Environ. Res. Public Health 2022, 19, 314. https://doi.org/10.3390/ijerph19010314
Lehner M, Skórzewska A, Wisłowska-Stanek A. Sex-Related Predisposition to Post-Traumatic Stress Disorder Development—The Role of Neuropeptides. International Journal of Environmental Research and Public Health. 2022; 19(1):314. https://doi.org/10.3390/ijerph19010314
Chicago/Turabian StyleLehner, Małgorzata, Anna Skórzewska, and Aleksandra Wisłowska-Stanek. 2022. "Sex-Related Predisposition to Post-Traumatic Stress Disorder Development—The Role of Neuropeptides" International Journal of Environmental Research and Public Health 19, no. 1: 314. https://doi.org/10.3390/ijerph19010314
APA StyleLehner, M., Skórzewska, A., & Wisłowska-Stanek, A. (2022). Sex-Related Predisposition to Post-Traumatic Stress Disorder Development—The Role of Neuropeptides. International Journal of Environmental Research and Public Health, 19(1), 314. https://doi.org/10.3390/ijerph19010314