Extreme Precipitation Events and Infectious Disease Risk: A Scoping Review and Framework for Infectious Respiratory Viruses
Abstract
:1. Introduction
2. Extreme Precipitation Events (EPEs)
3. Effects of EPEs on Infection Dynamics
3.1. Enteric Illnesses
3.2. Vector-Borne Illnesses
3.3. Allergic Illnesses
4. A Framework to Evaluate How EPEs Influence Infectious Respiratory Disease
- Outdoor environmental risk factors: Cloud coverage during EPEs decreases environmental deactivation of microbes, particularly viruses, via ultraviolet (UV) irradiation
- Indoor environmental risk factors: HVAC use during EPEs decreases indoor humidity
- Host behavioral risk factors: Individuals exhibit indoor-seeking behavior during EPEs
4.1. Outdoor and Indoor Environmental Risk Factors
4.2. Behavioral Risk Factors
4.3. Support in Seasonal Patterns of Infectious Respiratory Disease
4.4. Existing Evidence and Remaining Unknowns
5. Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change: The IPCC Scientific Assessment. In Contribution of Working Group I to the First Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Jenkins, G.J., Ephraums, J.J., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1990; p. 365. [Google Scholar]
- IPCC. Climate Change 1995: The Science of Climate Change. In Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A., Maskell, K., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1995; p. 572. [Google Scholar]
- IPCC. Climate Change 2001: The Scientific Basis. In Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Linden, P.J.v.d., Dai, X., Maskell, K., Johnso, C.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001; p. 881. [Google Scholar]
- IPCC. Climate Change 2007: The Physical Science Basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Maruis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 996. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Smith, K.R.; Woodward, A.; Campbell-Lendru, D.; Chadee, D.D.; Honda, Y.; Liu, Q.; Olwoch, J.M.; Revich, B.; Sauerborn, R. Human Health: Impacts, Adaptation, and Co-Benefits. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- McMichael, A.J.; Campbell-Lendrum, D.; Kovats, S.; Edwards, S.; Wilkinson, P.; Wilson, T.; Nicholls, R.; Hales, S.; Tanser, F.; Le Sueur, D.; et al. Compartive Quantification of Health Risks, Global and Regional Rubden of Disease Attributable to Selected Major Rik Factors; World Health Organization: Geneva, Switzerland, 2004; pp. 1543–1650. [Google Scholar]
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.-M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Clouds and Aerosols. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 571–658. [Google Scholar] [CrossRef]
- Easterling, D.R.; Kunkel, K.E.; Arnold, J.R.; Knutson, T.; LeGrand, A.N.; Leung, L.R.; Rose, R.S.; Waliser, D.E.; Wehner, M.F. Precipitation change in the United States. In Climate Science Special Report: Fourth National Climate Assessment; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; US Global Change Research Program: Washington, DC, USA, 2017; Volume I, pp. 207–230. [Google Scholar]
- Boer, G.J. Climate change and the regulation of the surface moisture and energy budgets. Clim. Dyn. 1993, 8, 225–239. [Google Scholar] [CrossRef]
- Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.; Cox, P.; Driouech, F.; Emori, S.; Eyring, V.; et al. Evaluation of Climate Models. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 741–866. [Google Scholar] [CrossRef]
- Kossin, J.P.; Hall, T.; Knutson, T.; Kunkel, K.E.; Trapp, R.J.; Waliser, D.E.; Wehner, M.F. Extreme Storms. In Climate Science Special Report: Fourth National Climate Assessment; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; US Global Change Research Program: Washington, DC, USA, 2017; Volume I, pp. 257–276. [Google Scholar]
- Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Tank, A.K.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M.; et al. Observations: Surface and Atmospheric Climate Change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 235–336. [Google Scholar]
- Kunkel, K.E.; Andsager, K.; Easterling, D.R. Long-term trends in extreme precipitation events over the conterminous United States and Canada. J. Clim. 1999, 12, 2515–2527. [Google Scholar] [CrossRef] [Green Version]
- Douville, H.; Raghavan, K.; Renwick, J.A.; Allan, R.; Arias, P.A.; Barlow, M.; Crerezo Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; et al. Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Agel, L.; Barlow, M.; Qian, J.-H.; Colby, F.; Douglas, E.; Eichler, T. Climatology of Daily Precipitation and Extreme Precipitation Events in the Northeast United States. J. Hydrometeorol. 2015, 16, 2537–2557. [Google Scholar] [CrossRef]
- Douglas, E.M.; Fairbank, C.A. Is Precipitation in Northern New England Becoming More Extreme? Statistical Analysis of Extreme Rainfall in Massachusetts, New Hampshire, and Maine and Updated Estimates of the 100-Year Storm. J. Hydrol. Eng. 2011, 16, 203–217. [Google Scholar] [CrossRef] [Green Version]
- Skeeter, W.J.; Senkbeil, J.C.; Keellings, D.J. Spatial and temporal changes in the frequency and magnitude of intense precipitation events in the southeastern United States. Int. J. Climatol. 2019, 39, 768–782. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskander, I.; Kossin, J.; Lewis, S.; et al. 2021: Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Kunkel, K.E.; Karl, T.R.; Brooks, H.; Kossin, J.; Lawrimore, J.H.; Arndt, D.; Bosart, L.; Changnon, D.; Cutter, S.L.; Doesken, N.; et al. Monitoring and Understanding Trends in Extreme Storms: State of Knowledge. Bull. Am. Meteorol. Soc. 2013, 94, 499–514. [Google Scholar] [CrossRef]
- Smith, K.; Ward, R. Floods: Physical Processes and Human Impacts; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 1998. [Google Scholar]
- Green, D.; Alexander, L.; McLnnes, K.; Church, J.; Nicholls, N.; White, N. An assessment of climate change impacts and adaptation for the Torres Strait Islands, Australia. Clim. Change 2009, 102, 405–433. [Google Scholar] [CrossRef]
- McInnes, K.L.; Macadam, I.; Hubbert, G.D.; O’Grady, J.G. A modelling approach for estimating the frequency of sea level extremes and the impact of climate change in southeast Australia. Nat. Hazards 2009, 51, 115–137. [Google Scholar] [CrossRef]
- Ashley, W.S.; Ashley, S.T. Flood Fatalities in the United States. J. Appl. Meteorol. Climatol. 2008, 47, 805–818. [Google Scholar] [CrossRef]
- Stewart, S.R.; Rhome, J.R.; Pasch, R.J.; Knabb, R.D.; Franklin, J.L.; Brown, D.P.; Blake, E.S.; Avila, L.A.; Beven, J.L. Atlantic Hurricane Season of 2005. Mon. Weather. Rev. 2008, 136, 1109–1173. [Google Scholar] [CrossRef]
- Doocy, S.; Daniels, A.; Murray, S.; Kirsch, T.D. The human impact of floods: A historical review of events 1980-2009 and systematic literature review. PLoS Curr. 2013, 5. [Google Scholar] [CrossRef]
- CRED. Human Cost of Disasters: An overview of the last 20 years. In Centre for Research on the Epidemiology of Disasters; United Nations Office for Disaster Risk Reduction: New York, NY, USA, 2020; pp. 1–30. [Google Scholar]
- Stanke, C.; Murray, V.; Amlot, R.; Nurse, J.; Williams, R. The effects of flooding on mental health: Outcomes and recommendations from a review of the literature. PLoS Curr. 2012, 4, e4f9f1fa9c3cae. [Google Scholar] [CrossRef]
- Alderman, K.; Turner, L.R.; Tong, S. Floods and human health: A systematic review. Environ. Int. 2012, 47, 37–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pielke, R. Economic ‘normalisation’ of disaster losses 1998–2020: A literature review and assessment. Environ. Hazards 2020, 10. [Google Scholar] [CrossRef]
- NWS. NWS Annual Flood Loss Summary Reports To U.S. Army Corps of Engineers. Available online: https://www.weather.gov/water/ (accessed on 1 November 2021).
- EPA. Combined Sewer Overflows (CSOs)—National Pollutant Discharge Elimination System (NPDES). Available online: https://www.epa.gov/npdes/combined-sewer-overflows-csos (accessed on 1 November 2021).
- Knapp, A.K.; Beier, C.; Briske, D.D.; Classen, A.T.; Luo, Y.; Reichstein, M.; Smith, M.D.; Smith, S.D.; Bell, J.E.; Fay, P.A.; et al. Consequences of More Extreme Precipitation Regimes for Terrestrial Ecosystems. BioScience 2008, 58, 811–821. [Google Scholar] [CrossRef]
- Mikolajczyk, R.T.; Akmatov, M.K.; Rastin, S.; Kretzschmar, M. Social contacts of school children and the transmission of respiratory-spread pathogens. Epidemiol. Infect. 2008, 136, 813–822. [Google Scholar] [CrossRef]
- Willem, L.; Van Kerckhove, K.; Chao, D.L.; Hens, N.; Beutels, P. A nice day for an infection? Weather conditions and social contact patterns relevant to influenza transmission. PLoS ONE 2012, 7, e48695. [Google Scholar] [CrossRef] [Green Version]
- Steele, A.T. Weather’s Effect on the Sales of a Department Store. J. Mark. 1951, 15, 436–443. [Google Scholar] [CrossRef]
- Eisenberg, M.C.; Kujbida, G.; Tuite, A.R.; Fisman, D.N.; Tien, J.H. Examining rainfall and cholera dynamics in Haiti using statistical and dynamic modeling approaches. Epidemics 2013, 5, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Kelly-Hope, L.A.; Alonsa, W.J.; Thiem, V.D.; Anh, D.D.; Canh, D.G.; Lee, H.; Smith, D.S.; Miller, M.A. Geographical distribution and risk factors associated with enteric diseases in Vietnam. Am. J. Trop. Med. Hyg. 2007, 76, 706–712. [Google Scholar] [CrossRef]
- Sasaki, S.; Suzuki, H.; Fujino, Y.; Kimura, Y.; Cheelo, M. Impact of drainage networks on cholera outbreaks in Lusaka, Zambia. Am. J. Public Health 2009, 99, 1982–1987. [Google Scholar] [CrossRef]
- Wang, L.X.; Li, X.J.; Fang, L.Q.; Wang, D.C.; Cao, W.C.; Kan, B. Association between the incidence of typhoid and paratyphoid fever and meteorological variables in Guizhou, China. Chin. Med. J. 2012, 125, 455–460. [Google Scholar] [CrossRef]
- Chen, M.J.; Lin, C.Y.; Wu, Y.T.; Wu, P.C.; Lung, S.C.; Su, H.J. Effects of extreme precipitation to the distribution of infectious diseases in Taiwan, 1994–2008. PLoS ONE 2012, 7, e34651. [Google Scholar] [CrossRef] [PubMed]
- Britton, E.; Hales, S.; Venugopal, K.; Baker, M.G. The impact of climate variability and change on cryptosporidiosis and giardiasis rates in New Zealand. J. Water Health 2010, 8, 561–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soneja, S.; Jiang, C.; Romeo Upperman, C.; Murtugudde, R.; Mitchell, C.S.; Blythe, D.; Sapkota, A.R.; Sapkota, A. Extreme precipitation events and increased risk of campylobacteriosis in Maryland, USA. Environ. Res. 2016, 149, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Shaw, K.S.; Upperman, C.R.; Blythe, D.; Mitchell, C.; Murtugudde, R.; Sapkota, A.R.; Sapkota, A. Climate change, extreme events and increased risk of salmonellosis in Maryland, USA: Evidence for coastal vulnerability. Environ. Int. 2015, 83, 58–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, L.; Morton, L.C.; Liu, Q. Climate change and mosquito-borne diseases in China: A review. Glob. Health 2013, 9, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, L.W. Influence of environmental conditions on asynchronous outbreaks of dengue disease and increasing vector population in Kaohsiung, Taiwan. Int. J. Environ. Health Res. 2011, 21, 133–146. [Google Scholar] [CrossRef]
- Chen, S.C.; Liao, C.M.; Chio, C.P.; Chou, H.H.; You, S.H.; Cheng, Y.H. Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: Insights from a statistical analysis. Sci. Total Environ. 2010, 408, 4069–4075. [Google Scholar] [CrossRef]
- Depradine, C.; Lovell, E. Climatological variables and the incidence of Dengue fever in Barbados. Int. J. Environ. Health Res. 2004, 14, 429–441. [Google Scholar] [CrossRef]
- Chowell, G.; Sanchez, F. Climate-Based Descriptive Models of Dengue Fever: The 2002 Epidemic in Colima, Mexico. J. Environ. Health 2006, 68, 40–44. [Google Scholar]
- Hui, F.-M.; Xu, B.; Chen, Z.-W.; Cheng, X.; Liang, L.; Huang, H.-B.; Fang, L.-Q.; Yang, H.; Zhou, H.-N.; Yang, H.-L.; et al. Spatio-Temporal Distribution of Malaria in Yunnan Province, China. Am. J. Trop. Med. Hyg. 2009, 81, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.M.; Park, J.W.; Cheong, H.K. Estimated effect of climatic variables on the transmission of Plasmodium vivax malaria in the Republic of Korea. Environ. Health Perspect. 2012, 120, 1314–1319. [Google Scholar] [CrossRef] [Green Version]
- Soverow, J.E.; Wellenius, G.A.; Fisman, D.N.; Mittleman, M.A. Infectious disease in a warming world: How weather influenced West Nile virus in the United States (2001–2005). Environ. Health Perspect. 2009, 117, 1049–1052. [Google Scholar] [CrossRef] [PubMed]
- Bi, P.; Zhang, Y.; Parton, K.A. Weather variables and Japanese encephalitis in the metropolitan area of Jinan city, China. J. Infect. 2007, 55, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.M.; Yen, A.M.; Chen, T.H. The impact of climate on Japanese encephalitis. Epidemiol. Infect. 2008, 136, 980–987. [Google Scholar] [CrossRef]
- Subak, S. Effects of climate on variability in Lyme disease incidence in the northeastern United States. Am. J. Epidemiol. 2003, 157, 531–538. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, Q.A.; Memish, Z.A. The public health planners’ perfect storm: Hurricane Matthew and Zika virus. Travel Med. Infect. Dis. 2017, 15, 63–66. [Google Scholar] [CrossRef]
- Waring, S.C.; Brown, B.J. The threat of communicable diseases following natural disasters: A public health response. Disaster Manag. Response 2005, 3, 41–47. [Google Scholar] [CrossRef]
- D’Amato, G.; Cecchi, L.; D’Amato, M.; Annesi-Maesano, I. Climate change and respiratory diseases. Eur. Respir. Rev. 2014, 23, 161–169. [Google Scholar] [CrossRef]
- Knox, R.B. Grass pollen, thunderstorms and asthma. Clin. Exp. Allergy 1993, 23, 354–359. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, G.; Cecchi, L.; Annesi-Maesano, I. A trans-disciplinary overview of case reports of thunderstorm-related asthma outbreaks and relapse. Eur. Respir. Rev. 2012, 21, 82–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venables, K.; Allitt, U.; Collier, C.; Emberlin, J.; Greig, J.; Hardaker, P.; Highham, J.; Laing-Morton, T.; Maynard, R.; Murray, V.; et al. Thunderstorm-related asthma—The epidemic of 24/25 June 1994. Clin. Exp. Allergy 1997, 27, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Marks, G.; Colquhoun, J.; Girgis, S.; Koski, M.; Treloar, A.; Hansen, P.; Downs, S.; Car, N. Thunderstorm outflows preceding epidemics of asthma during spring and summer. Thorax 2001, 56, 468–471. [Google Scholar] [CrossRef]
- Pulimood, T.B.; Corden, J.M.; Bryden, C.; Sharples, L.; Nasser, S.M. Epidemic asthma and the role of the fungal mold Alternaria alternata. J. Allergy Clin. Immunol. 2007, 120, 610–617. [Google Scholar] [CrossRef]
- Dales, R.E.; Cakmak, S.; Judek, S.; Dann, T.; Coates, F.; Brook, J.R.; Burnett, R.T. The role of fungal spores in thunderstorm asthma. Chest 2003, 123, 745–750. [Google Scholar] [CrossRef] [Green Version]
- Ayres, J.G.; Forsberg, B.; Annesi-Maesano, I.; Dey, R.; Ebi, K.L.; Helms, P.J.; Medina-Ramón, M.; Windt, M.; Forastiere, F. Climate change and respiratory disease: European Respiratory Society position statement. Eur. Respir. J. 2008, 34, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Mendell, M.J.; Mirer, A.G.; Cheung, K.; Tong, M.; Douwes, J. Respiratory and allergic health effects of dampness, mold, and dampness-related agents: A review of the epidemiologic evidence. Environ. Health Perspect. 2011, 119, 748–756. [Google Scholar] [CrossRef]
- Brankston, G.; Gitterman, L.; Hirji, Z.; Lemieux, C.; Gardam, M. Transmission of influenza A in human beings. Lancet Infect. Dis. 2007, 7, 257–265. [Google Scholar] [CrossRef]
- Weber, T.P.; Stilianakis, N.I. Inactivation of influenza A viruses in the environment and modes of transmission: A critical review. J. Infect. 2008, 57, 361–373. [Google Scholar] [CrossRef]
- Morawska, L. Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air 2006, 16, 335–347. [Google Scholar] [CrossRef] [Green Version]
- Shaman, J.; Kohn, M. Absolute humidity modulates influenza survival, transmission, and seasonality. Proc. Natl. Acad. Sci. USA 2009, 106, 3243–3248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipsitch, M.; Viboud, C. Influenza seasonality: Lifting the fog. Proc. Natl. Acad. Sci. USA 2009, 106, 3645–3646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowen, A.C.; Mubareka, S.; Steel, J.; Palese, P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog. 2007, 3, 1470–1476. [Google Scholar] [CrossRef]
- Lofgren, E.; Fefferman, N.H.; Naumova, E.N.; Gorski, J.; Naumov, Y.N. Influenza Seasonality: Underlying Causes and Modeling Theories. J. Virol. 2006, 81, 5429–5436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ASHRAE. ASHRAE Position Document on Infectious Aerosols; Ashrae: Atlanta, GA, USA, 2020; pp. 1–24. [Google Scholar]
- Blumberg, D.L.M.; Jeffrey, B. Factors influencing the seasonal patterns of infectious diseases. Int. J. Prev. Med. 2013, 4, 128–132. [Google Scholar] [CrossRef]
- Sagripanti, J.L.; Lytle, C.D. Estimated Inactivation of Coronaviruses by Solar Radiation With Special Reference to COVID-19. Photochem. Photobiol. 2020, 96, 731–737. [Google Scholar] [CrossRef]
- Lytle, C.D.; Sagripanti, J.L. Predicted inactivation of viruses of relevance to biodefense by solar radiation. J. Virol. 2005, 79, 14244–14252. [Google Scholar] [CrossRef] [Green Version]
- Kermack, W.O.; McKendrick, A.G. Contributions to the Mathematical Theory of Epidemics. Proc. R. Soc. B Biol. Sci. 1927, 115A, 700–721. [Google Scholar]
- Oxford, J.; Sefton, A.; Jackson, R.; Innes, W.; Daniels, R.; Johnson, N. World war I may have allowed the emergence of “Spanish” influenza. Lancet Infect. Dis. 2002, 2, 111–114. [Google Scholar] [CrossRef]
- Altizer, S.; Dobson, A.; Hosseini, P.; Hudson, P.; Pascual, M.; Rohani, P. Seasonality and the dynamics of infectious diseases. Ecol. Lett. 2006, 9, 467–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, M.; McNicholas, A.; Garrett, N.; Jones, N.; Stewart, J.; Koberstein, V.; Lennon, D. Household crowding a major risk factor for epidemic meningicoccal disease in Auckland children. Pediatr. Infect. Dis. J. 2000, 19, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, E.A.; Dao, C.N.; Nasreen, S.; Bhuiyan, M.U.; Mah-E-Muneer, S.; Mamun, A.A.; Sharker, M.A.Y.; Zaman, R.U.; Cheng, P.Y.; Klimov, A.I.; et al. Seasonality, timing, and climate drivers of influenza activity worldwide. J. Infect. Dis. 2012, 206, 838–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manfredi, P.; Cleur, E.M.; Williams, J.R.; Salmaso, S.; Atti, M.C. The pre-vaccination regional epidemiological landscape of measles in Italy: Contact patterns, effort needed for eradication, and comparison with other regions of Europe. Popul. Health Metr. 2005, 3, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moriyama, M.; Hugentobler, W.J.; Iwasaki, A. Seasonality of Respiratory Viral Infections. Annu. Rev. Virol. 2020, 7, 83–101. [Google Scholar] [CrossRef]
- Qian, H.; Miao, T.; Liu, L.; Zheng, X.; Luo, D.; Li, Y. Indoor transmission of SARS-CoV-2. Indoor Air 2021, 31, 639–645. [Google Scholar] [CrossRef]
- Tamerius, J.; Nelson, M.I.; Zhou, S.Z.; Viboud, C.; Miller, M.A.; Alonso, W.J. Global influenza seasonality: Reconciling patterns across temperate and tropical regions. Environ. Health Perspect. 2011, 119, 439–445. [Google Scholar] [CrossRef] [Green Version]
- White, L.J.; Waris, M.; Cane, P.A.; Nokes, D.J.; Medley, G.F. The transmission dynamics of groups A and B human respiratory syncytial virus (hRSV) in England & Wales and Finland: Seasonality and cross-protection. Epidemiol. Infect. 2005, 133, 279–289. [Google Scholar] [CrossRef]
- Matrajt, L.; Leung, T. Evaluating the Effectiveness of Social Distancing Interventions to Delay or Flatten the Epidemic Curve of Coronavirus Disease. Emerg. Infect. Dis. 2020, 26, 1740–1748. [Google Scholar] [CrossRef]
- Chung, P.C.; Chan, T.C. Impact of physical distancing policy on reducing transmission of SARS-CoV-2 globally: Perspective from government’s response and residents’ compliance. PLoS ONE 2021, 16, e0255873. [Google Scholar] [CrossRef]
- Brownlee, J. An Investigation into the Periodicity of Measles Epidemics in London from 1703 to the Present Day by the Method of the Periodogram. Philos. Trans. R. Soc. B Biol. Sci. 1918, 208, 225–250. [Google Scholar] [CrossRef]
- Hope-simpson, R.E. The role of season in the epidemiology of influenza. J. Hyg. 1981, 86, 35–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowell, S.F. Seasonal variation in host susceptibility and cycles of certain infectious diseases. Emerg. Infect. Dis. 2001, 7, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.K.; Sung, R.Y.; Fung, K.S.; Hui, M.; Chik, K.W.; Adeyemi-Doro, F.A.; Cheng, A.F. Epidemiology of respiratory syncytial virus infection among paediatric patients in Hong Kong: Seasonality and disease impact. Epidemiol. Infect. 1999, 123, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Checkley, W.; Epstein, L.D.; Gilman, R.H.; Figueroa, D.; Cama, R.I.; Patz, J.A.; Black, R.E. Effects of EI Niño and ambient temperature on hospital admissions for diarrhoeal diseases in Peruvian children. Lancet 2000, 355, 442–450. [Google Scholar] [CrossRef]
- Chew, F.T.; Doraisingham, S.; Ling, A.E.; Kumarasinghe, G.; Lee, B.W. Seasonal trends of viral respiratory tract infections in the tropics. Epidemiol. Infect. 1998, 121, 121–128. [Google Scholar] [CrossRef]
- Kim, P.E.; Musher, D.M.; Glezen, W.P.; Rodriguez-Barradas, M.C.; Nahm, W.K.; Wright, C.E. Association of invasive pneumococcal disease with season, atmospheric conditions, air pollution, and the isolation of respiratory viruses. Clin. Infect. Dis. 1996, 22, 100–106. [Google Scholar] [CrossRef] [Green Version]
- van Noort, S.P.; Águas, R.; Ballesteros, S.; Gomes, M.G.M. The role of weather on the relation between influenza and influenza-like illness. J. Theor. Biol. 2012, 298, 131–137. [Google Scholar] [CrossRef]
- Murray, E.L.; Klein, M.; Brondi, L.; McGowan, J.E., Jr.; Van Mels, C.; Brooks, W.A.; Kleinbaum, D.; Goswami, D.; Ryan, P.B.; Bridges, C.B. Rainfall, household crowding, and acute respiratory infections in the tropics. Epidemiol. Infect. 2012, 140, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.S.; Messier, K.P.; Crooks, J.L.; Wade, T.J.; Lin, C.J.; Hilborn, E.D. Extreme precipitation and emergency room visits for influenza in Massachusetts: A case-crossover analysis. Environ. Health 2017, 16, 93–111. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, A.S.; Sarkar, M.; Chakrabarti, S.; Rajendran, K.; Kaur, H.; Mishra, A.C.; Chatterjee, M.K.; Naik, T.N.; Chadha, M.S.; Chawla-Sarkar, M. Comparative evaluation of real-time PCR and conventional RT-PCR during a 2 year surveillance for influenza and respiratory syncytial virus among children with acute respiratory infections in Kolkata, India, reveals a distinct seasonality of infection. J. Med. Microbiol. 2009, 58, 1616–1622. [Google Scholar] [CrossRef]
- Gomez-Barroso, D.; Leon-Gomez, I.; Delgado-Sanz, C.; Larrauri, A. Climatic Factors and Influenza Transmission, Spain, 2010-2015. Int. J. Environ. Res. Public Health 2017, 14, 1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nisar, N.; Badar, N.; Aamir, U.B.; Yaqoob, A.; Tripathy, J.P.; Laxmeshwar, C.; Munir, F.; Zaidi, S.S.Z. Seasonality of influenza and its association with meteorological parameters in two cities of Pakistan: A time series analysis. PLoS ONE 2019, 14, e0219376. [Google Scholar] [CrossRef] [Green Version]
- Rao, B.L.; Banerjee, K. Influenza surveillance in Pune, India, 1978–1990. Bull. World Health Organ. 1993, 71, 177–181. [Google Scholar] [PubMed]
- Stark, J.H.; Sharma, R.; Ostroff, S.; Cummings, D.A.; Ermentrout, B.; Stebbins, S.; Burke, D.S.; Wisniewski, S.R. Local spatial and temporal processes of influenza in Pennsylvania, USA: 2003–2009. PLoS ONE 2012, 7, e34245. [Google Scholar] [CrossRef] [Green Version]
- Spark, W. Climate and Average Weather Year Round in Boston. Available online: https://weatherspark.com/y/26197/Average-Weather-in-Boston-Massachusetts-United-States-Year-Round (accessed on 12 July 2021).
- Anastasiou, O.E.; Husing, A.; Korth, J.; Theodoropoulos, F.; Taube, C.; Jockel, K.H.; Stang, A.; Dittmer, U. Seasonality of Non-SARS, Non-MERS Coronaviruses and the Impact of Meteorological Factors. Pathogens 2021, 10, 187. [Google Scholar] [CrossRef] [PubMed]
- Bashir, M.F.; Ma, B.; Bilal; Komal, B.; Bashir, M.A.; Tan, D.; Bashir, M. Correlation between climate indicators and COVID-19 pandemic in New York, USA. Sci. Total Environ. 2020, 728, 138835. [Google Scholar] [CrossRef] [PubMed]
- To, T.; Zhang, K.; Maguire, B.; Terebessy, E.; Fong, I.; Parikh, S.; Zhu, J. Correlation of ambient temperature and COVID-19 incidence in Canada. Sci. Total Environ. 2021, 750, 141484. [Google Scholar] [CrossRef]
- Tosepu, R.; Gunawan, J.; Effendy, D.S.; Ahmad, O.A.I.; Lestari, H.; Bahar, H.; Asfian, P. Correlation between weather and Covid-19 pandemic in Jakarta, Indonesia. Sci. Total Environ. 2020, 725, 138436. [Google Scholar] [CrossRef]
- Ward, M.P.; Xiao, S.; Zhang, Z. The role of climate during the COVID-19 epidemic in New South Wales, Australia. Transbound Emerg. Dis. 2020, 67, 2313–2317. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Owusu, P.A. Impact of meteorological factors on COVID-19 pandemic: Evidence from top 20 countries with confirmed cases. Environ. Res. 2020, 191, 110101. [Google Scholar] [CrossRef] [PubMed]
- Chien, L.C.; Chen, L.W. Meteorological impacts on the incidence of COVID-19 in the US. Stoch. Environ. Res. Risk Assess. 2020, 34, 1675–1680. [Google Scholar] [CrossRef] [PubMed]
- Menebo, M.M. Temperature and precipitation associate with Covid-19 new daily cases: A correlation study between weather and Covid-19 pandemic in Oslo, Norway. Sci. Total Environ. 2020, 737, 139659. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann. Intern. Med. 2020, 172, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- WHO. Influenza Updates. Available online: https://www.who.int/influenza/surveillance_monitoring/updates/en/ (accessed on 6 August 2021).
- Laurie, K.L.; Rockman, S. Which Influenza Viruses will Emerge Following the SARS-CoV-2 Pandemic? Influenza Other Respir. Viruses 2021, 15, 573–576. [Google Scholar] [CrossRef]
- CDC. People at High Risk For Flu Complications. 2018. Available online: https://www.cdc.gov/flu/highrisk/index.htm (accessed on 1 December 2021).
- CDC. COVID-19: Different Groups of People. Available online: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/index.html (accessed on 9 October 2021).
- Sommer, C.; Resch, B.; Simões, E.A.F. Risk Factors for Severe Respiratory Syncytial Virus Lower Respiratory Tract Infection. Open Microbiol. J. 2011, 5, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Cobb, J.M.T.; Steptoe, A. Psychosocial Stress and Susceptibility to Upper Respiratory Tract Illness in an Adult Population Sample. Psychosom. Med. 1996, 58, 404–412. [Google Scholar] [CrossRef]
- Portier, C.J.; Thigpen Tart, K.; Carter, S.R.; Dilworth, C.H.; Grambsch, A.E.; Gohlke, J.; Hess, J.; Howard, S.N.; Luber, G.; Lutz, J.T.; et al. A Human Health Perspective On Climate Change: A Report Outlining the Research Needs on the Human Health Effects of Climate Change. J. Curr. Issues Glob. 2010, 6, 621. [Google Scholar] [CrossRef]
- Quan, X.W.; Hoerling, M.P.; Perlwitz, J.; Diaz, H.F.; Xu, T. How fast are the tropics expanding? J. Clim. 2014, 27, 1999–2013. [Google Scholar] [CrossRef]
Study | Pathogen | Setting | Time Period | Precipitation Measure | Finding |
---|---|---|---|---|---|
Smith et al., 2017 | Influenza | Massachusetts, USA | 7 years (2002–2008) | Daily extreme events (top 1%) by city | Positive association OR = 1.20 (1.14–1.26) |
Chew et al., 1998 | Influenza | Singapore, Singapore | 5 years (1990–1994) | Daily city total (mm) | Positive association ρ = 0.08 (p < 0.05) |
Murray et al., 2012 | Influenza | Kamalapur, Bangladesh | 92 days (2005) | Weekly city total (inch) | Positive association OR = 2.97 (1.87–4.70) |
Gomez-Barroso et al., 2017 | Influenza | Spain | 6 years (2010–2015) | Weekly total by city (per 50 mm) | Positive association RR = 1.37 (1.20–1.56) |
Agrawal et al., 2009 | Influenza | Kolkata, India | 2 years (2007–2008) | Monthly city total (mm) | Positive association r = 0.90 (p < 0.001) |
Rao and Banerjee, 1993 | Influenza | Pune, India | 13 years (1978–1990) | Monthly city total (mm) | Positive association r = 0.70 (p < 0.05) |
Nisar et al., 2019 | Influenza | Islamabad and Multan, Pakistan | 5 years (2012–2016) | Monthly total by city (mm) | Negative association r = −0.3 (p = 0.02) |
Stark et al., 2012 | Influenza | Pennsylvania, USA | 7 years (2003–2009) | Mean monthly total by county (inch) | Negative association OR = 0.52 (0.28–0.94) |
Anastasiou et al., 2021 | Non-SARS, non-MERS coronaviruses | Essen, Germany | 7 years (2013–2019) | Daily city total (per 5 mm) | Positive association OR = 1.21 (1.07–1.36) |
Sarkodie et al., 2020 | SARS-CoV-2 | 20 countries worldwide | 97 days (2020) | Daily mean total by country (mm) | Positive association β = 1.01 (p < 0.001) |
Bashir et al., 2020 | SARS-CoV-2 | New York City, USA | 43 days (2020) | Daily city total (mm) | No association τ = −0.22 (p > 0.1) |
To et al., 2020 | SARS-CoV-2 | 4 Canadian provinces | 114 days (2020) | Daily total by region (mm) | No association β = −27.1 (p = 0.38) |
Tosepu et al., 2020 | SARS-CoV-2 | Jakarta, Indonesia | 89 days (2020) | Daily city total (mm) | No association ρ = 0.14 (p > 0.05) |
Ward et al., 2020 | SARS-CoV-2 | New South Wales, Australia | 49 days (2020) | Median daily total by postal code (mm) | No association r = −0.03 (p = 0.66) |
Chien et al., 2020 | SARS-CoV-2 | 50 counties in the USA | 37 days (2020) | Daily total by county (inch) | Negative association RR = 0.93 (0.92–0.94) |
Menobo, 2020 | SARS-CoV-2 | Oslo, Norway | 64 days (2020) | Daily city total (mm) | Negative association r = −0.285 (p = 0.022) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aune, K.T.; Davis, M.F.; Smith, G.S. Extreme Precipitation Events and Infectious Disease Risk: A Scoping Review and Framework for Infectious Respiratory Viruses. Int. J. Environ. Res. Public Health 2022, 19, 165. https://doi.org/10.3390/ijerph19010165
Aune KT, Davis MF, Smith GS. Extreme Precipitation Events and Infectious Disease Risk: A Scoping Review and Framework for Infectious Respiratory Viruses. International Journal of Environmental Research and Public Health. 2022; 19(1):165. https://doi.org/10.3390/ijerph19010165
Chicago/Turabian StyleAune, Kyle T., Meghan F. Davis, and Genee S. Smith. 2022. "Extreme Precipitation Events and Infectious Disease Risk: A Scoping Review and Framework for Infectious Respiratory Viruses" International Journal of Environmental Research and Public Health 19, no. 1: 165. https://doi.org/10.3390/ijerph19010165
APA StyleAune, K. T., Davis, M. F., & Smith, G. S. (2022). Extreme Precipitation Events and Infectious Disease Risk: A Scoping Review and Framework for Infectious Respiratory Viruses. International Journal of Environmental Research and Public Health, 19(1), 165. https://doi.org/10.3390/ijerph19010165