Physical Activity Regulates TNFα and IL-6 Expression to Counteract Inflammation in Cystic Fibrosis Patients
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Goldstein, D.Y.; Prystowsky, M. Autosomal Recessive Inheritance: Cystic Fibrosis. Acad. Pathol. 2017, 4. [Google Scholar] [CrossRef]
- Terlizzi, V.; Di Lullo, A.M.; Comegna, M.; Centrone, C.; Pelo, E.; Castaldo, G.; Raia, V.; Braggion, C. S737F is a new CFTR mutation typical of patients originally from the Tuscany region in Italy. Ital. J. Pediatr. 2018, 44, 2. [Google Scholar] [CrossRef] [PubMed]
- Gruet, M.; Troosters, T.; Verges, S. Peripheral muscle abnormalities in cystic fibrosis: Etiology, clinical implications and response to therapeutic interventions. J. Cyst. Fibros. 2017, 16, 538–552. [Google Scholar] [CrossRef] [PubMed]
- Roesch, E.A.; Nichols, D.P.; Chmiel, J.F. Inflammation in cystic fibrosis: An update. Pediatr. Pulmonol. 2018, 53, S30–S50. [Google Scholar] [CrossRef] [PubMed]
- De Rose, V.; Molloy, K.; Gohy, S.; Pilette, C.; Greene, C.M. Airway Epithelium Dysfunction in Cystic Fibrosis and COPD. Mediat. Inflamm. 2018, 2018, 1309746. [Google Scholar] [CrossRef] [PubMed]
- Giacalone, V.D.; Dobosh, B.S.; Gaggar, A.; Tirouvanziam, R.; Margaroli, C. Immunomodulation in Cystic Fibrosis: Why and How? Int. J. Mol. Sci. 2020, 21, 3331. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Cymberknoh, M.; Kerem, E.; Ferkol, T.; Elizur, A. Airway inflammation in cystic fibrosis: Molecular mechanisms and clinical implications. Thorax 2013, 68, 1157–1162. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Hayashida, H. Effect of Exercise Intensity on Cell-Mediated Immunity. Sports 2021, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, A.; Iacotucci, P.; Carnovale, V.; Cimino, R.; Liguori, R.; Comegna, M.; Raia, V.; Corso, G.; Castaldo, G.; Gelzo, M. Salivary Cytokines and Airways Disease Severity in Patients with Cystic Fibrosis. Diagnostics 2020, 10, 222. [Google Scholar] [CrossRef] [PubMed]
- Nichols, D.P.; Chmiel, J.F. Inflammation and its genesis in cystic fibrosis. Pediatr. Pulmonol. 2015, 50 (Suppl. 4), S39–S56. [Google Scholar] [CrossRef]
- Da Luz Scheffer, D.; Latini, A. Exercise-induced immune system response: Anti-inflammatory status on peripheral and central organs. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165823. [Google Scholar] [CrossRef]
- Taylor, D.; Jenkins, A.R.; Parrott, K.; Benham, A.; Targett, S.; Jones, A.W. Efficacy of unsupervised exercise in adults with obstructive lung disease: A systematic review and meta-analysis. Thorax 2021, 216007. [Google Scholar] [CrossRef]
- Pedersen, B.K. Anti-inflammatory effects of exercise: Role in diabetes and cardiovascular disease. Eur. J. Clin. Investig. 2017, 47, 600–611. [Google Scholar] [CrossRef]
- Leal, L.G.; Lopes, M.A.; Batista, M.L., Jr. Physical Exercise-Induced Myokines and Muscle-Adipose Tissue Crosstalk: A Review of Current Knowledge and the Implications for Health and Metabolic Diseases. Front. Physiol. 2018, 9, 1307. [Google Scholar] [CrossRef]
- Pedersen, B.K. Muscular interleukin-6 and its role as an energy sensor. Med. Sci. Sports Exerc. 2012, 44, 392–396. [Google Scholar] [CrossRef]
- Booth, F.W.; Roberts, C.K.; Laye, M.J. Lack of exercise is a major cause of chronic diseases. Compr. Physiol. 2012, 2, 1143–1211. [Google Scholar]
- Elce, A.; Nigro, E.; Gelzo, M.; Iacotucci, P.; Carnovale, V.; Liguori, R.; Izzo, V.; Corso, G.; Castaldo, G.; Daniele, A.; et al. Supervised physical exercise improves clinical, anthropometric and biochemical parameters in adult cystic fibrosis patients: A 2-year evaluation. Clin. Respir. J. 2018, 12, 2228–2234. [Google Scholar] [CrossRef]
- Polito, R.; Nigro, E.; Elce, A.; Monaco, M.L.; Iacotucci, P.; Carnovale, V.; Comegna, M.; Gelzo, M.; Zarrilli, F.; Corso, G.; et al. Adiponectin Expression Is Modulated by Long-Term Physical Activity in Adult Patients Affected by Cystic Fibrosis. Mediat. Inflamm. 2019, 2019, 2153934. [Google Scholar] [CrossRef]
- Severinsen, M.C.K.; Pedersen, B.K. Muscle-Organ Crosstalk: The Emerging Roles of Myokines. Endocr. Rev. 2020, 41, 594–609. [Google Scholar] [CrossRef]
- Cardoso, G.H.; Petry, D.M.; Probst, J.J.; de Souza, L.F.; Ganguilhet, G.; Bobinski, F.; Santos, A.R.S.; Martins, D.F.; Bonorino, K.C.; Dafre, A.L.; et al. High-Intensity Exercise Prevents Disturbances in Lung Inflammatory Cytokines and Antioxidant Defenses Induced by Lipopolysaccharide. Inflammation 2018, 41, 2060–2067. [Google Scholar] [CrossRef]
- Suzuki, K. Chronic Inflammation as an Immunological Abnormality and Effectiveness of Exercise. Biomolecules 2019, 9, 223. [Google Scholar] [CrossRef]
- Farrell, P.M.; White, T.B.; Ren, C.L.; Hempstead, S.E.; Accurso, F.; Derichs, N.; Howenstine, M.; McColley, S.A.; Rock, M.; Rosenfeld, M.; et al. Diagnosis of Cystic Fibrosis: Consensus Guidelines from the Cystic Fibrosis Foundation. J. Pediatr. 2017, 181, S4–S15.e1. [Google Scholar] [CrossRef]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.M.; Zheng, J.; et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef]
- Nieman, D.C.; Wentz, L.M. The compelling link between physical activity and the body’s defense system. J. Sport Health Sci. 2019, 8, 201–217. [Google Scholar] [CrossRef]
- Bird, S.R.; Hawley, J.A. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc. Med. 2017, 2, e000143. [Google Scholar] [CrossRef]
- Lundblad, L.K.A.; Thompson-Figueroa, J.; Leclair, T.; Sullivan, M.J.; Poynter, M.E.; Irvin, C.G.; Bates, J.H.T. Tumor necrosis factor-alpha overexpression in lung disease: A single cause behind a complex phenotype. Am. J. Respir. Crit. Care Med. 2005, 171, 1363–1370. [Google Scholar] [CrossRef]
- Malaviya, R.; Laskin, J.D.; Laskin, D.L. Anti-TNFα therapy in inflammatory lung diseases. Pharmacol. Ther. 2017, 180, 90–98. [Google Scholar] [CrossRef]
- Steensberg, A.; van Hall, G.; Osada, T.; Sacchetti, M.; Saltin, B.; Pedersen, P.K. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J. Physiol. 2000, 529 Pt 1, 237–242. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Febbraio, M.A. Muscle as an endocrine organ: Focus on muscle-derived interleukin-6. Physiol. Rev. 2008, 88, 1379–1406. [Google Scholar] [CrossRef]
- Nimmo, M.A.; Leggate, M.; Viana, J.L.; King, J.A. The effect of physical activity on mediators of inflammation. Diabetes Obes. Metab. 2013, 15 (Suppl. 3), 51–60. [Google Scholar] [CrossRef]
- Van de Weert-van Leeuwen, P.B.; Slieker, M.G.; Hulzebos, H.J.; Kruitwagen, C.L.J.J.; Van der Ent, C.K.; Arets, H.G.M. Chronic infection and inflammation affect exercise capacity in cystic fibrosis. Eur. Respir. J. 2012, 39, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Van de Weert-van Leeuwen, P.B. Chronic inflammation and infection associate with a lower exercise training response in cystic fibrosis adolescents. Respir. Med. 2014, 108, 445–452. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pedersen, B.K.; Fischer, C.P. Beneficial health effects of exercise—The role of IL-6 as a myokine. Trends Pharmacol. Sci. 2007, 28, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Ostrowski, K.; Schjerling, P.; Pedersen, B.K. Physical activity and plasma interleukin-6 in humans—Effect of intensity of exercise. Eur. J. Appl. Physiol. 2000, 83, 512–515. [Google Scholar] [CrossRef]
- Chowdhury, S.; Schulz, L.; Palmisano, B.; Singh, P.; Berger, J.M.; Yadav, V.K.; Mera, P.; Ellingsgaard, H.; Hidalgo, J.; Brüning, J.; et al. Muscle-derived interleukin 6 increases exercise capacity by signaling in osteoblasts. J. Clin. Investig. 2020, 130, 2888–2902. [Google Scholar] [CrossRef]
- Muñoz-Cánoves, P.; Scheele, C.; Pedersen, B.K.; Serrano, A.L. Interleukin-6 myokine signaling in skeletal muscle: A double-edged sword? FEBS J. 2013, 280, 4131–4148. [Google Scholar] [CrossRef]
- Downey, D.G.; Bell, S.C.; Elborn, J.S. Neutrophils in cystic fibrosis. Thorax 2007, 64, 81–88. [Google Scholar] [CrossRef]
- Turton, K.B.; Ingram, R.J.; Valvano, M.A. Macrophage dysfunction in cystic fibrosis: Nature or nurture? J. Leukoc. Biol. 2021, 109, 573–582. [Google Scholar] [CrossRef]
- Adib-Conquy, M.; Pedron, T.; Petit-Bertron, A.F.; Tabary, O.; Corvol, H.; Jacquot, J.; Clément, A.; Cavaillon, J.M. Neutrophils in Cystic Fibrosis Display a Distinct Gene Expression Pattern. Mol. Med. 2008, 14, 36–44. [Google Scholar] [CrossRef]
- Laval, J.; Ralhan, A.; Hartl, D. Neutrophils in cystic fibrosis. Biol. Chem. 2016, 397, 485–496. [Google Scholar] [CrossRef]
PA CFGroup (n = 42) | NPA CFGroup (n = 43) | p Value | |
---|---|---|---|
Age (years) | 29.8 (8.4) | 31.1 (9.1) | n.s. |
Sex male/female | 20/22 | 22/21 | n.s. ** |
FEV1% decrease/year | 0.60 (3.91) | 1.65 (4.76) | n.s. |
FEV1% decrease (%) | 0.91 (4.80) | 2.10 (6.79) | n.s. |
Colonisation (n, %) | |||
by P. aeruginosa | 28 (66.7) | 28 (65.1) | n.s. ** |
by S. maltophilia | 2 (4.8) | 2 (4.7) | n.s. ** |
by B. cepacia | 2 (4.8) | 1 (2.3) | n.s. ** |
Hospitalisations (n, %) | 4 (10.3) | 11 (25.6) | n.s. ** |
CF-PI (n, %) | 33 (78.6) | 32 (74.4) | n.s. ** |
CF-LD (n, %) | 7 (18.4) | 5 (13.2) | n.s. ** |
CF-RD (n, %) | 18 (42.9) | 10 (23.3) | n.s. ** |
Body mass index (kg/m2) | 22.5 (3.2) | 22.1 (4.0) | n.s. |
Serum fasting glucose (mg/dL) | 86.3 (13.7) | 91.9 (12.6) | n.s. |
Insulinemia (mg/dL) | 6.92 (5.82) | 10.03 (9.77) | n.s. * |
HOMA-IR | 1.46 (1.13) | 2.24 (2.05) | 0.043 * |
Adiponectin (µg/mL) | 12.9 (2.0) | 13.8 (2.2) | 0.049 |
Leptin (ng/mL) | 10.6 (11.8) | 7.7 (8.1) | n.s. * |
C-reactive protein (mg/L) | 3.07 (3.79) | 5.04 (6.26) | n.s. * |
TNFα (pg/mL) | 10.6 (1.8) | 12.6 (5.1) | 0.043 |
IL-6 (pg/mL) | 50.8 (17.4) | 44.7 (12.4) | n.s. |
PA CF Group (n = 31) | NPA CF Group (n = 33) | |
---|---|---|
TNFα | ||
IL-6 | +0.563 (0.001) | |
Adiponectin | −0.594 (<0.0001) | |
FEV1% decrease/year | −0.408 (0.023) | |
FEV1% decrease (%) | −0.417 (0.020) | |
Serum fasting glucose | +0.420 (0.019) * | |
IL-6 | ||
Leptin | −0.460 (0.008) * |
OR | 95% CI per OR | p Value | ||
---|---|---|---|---|
Lower | Higher | |||
Sex (M vs. F) | 7.60 | 0.49 | 117.24 | 0.15 |
Age | 0.97 | 0.85 | 1.12 | 0.70 |
Adiponectin | 0.74 | 0.46 | 1.21 | 0.24 |
Leptin | 1.07 | 0.96 | 1.18 | 0.24 |
IL6 | 1.03 | 0.94 | 1.14 | 0.49 |
TNFα | 0.59 | 0.36 | 0.98 | 0.04 |
BMI (kg/m2) | 1.32 | 0.81 | 2.14 | 0.26 |
LD (yes vs. no) | 0.01 | 0.00 | 2.67 | 0.11 |
RD (yes vs. no) | 50.87 | 1.87 | 1382.79 | 0.02 |
HOMA-IR | 0.50 | 0.25 | 0.98 | 0.05 |
Glycaemia mg/dL | 0.96 | 0.87 | 1.05 | 0.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nigro, E.; Polito, R.; Elce, A.; Signoriello, G.; Iacotucci, P.; Carnovale, V.; Gelzo, M.; Zarrilli, F.; Castaldo, G.; Daniele, A. Physical Activity Regulates TNFα and IL-6 Expression to Counteract Inflammation in Cystic Fibrosis Patients. Int. J. Environ. Res. Public Health 2021, 18, 4691. https://doi.org/10.3390/ijerph18094691
Nigro E, Polito R, Elce A, Signoriello G, Iacotucci P, Carnovale V, Gelzo M, Zarrilli F, Castaldo G, Daniele A. Physical Activity Regulates TNFα and IL-6 Expression to Counteract Inflammation in Cystic Fibrosis Patients. International Journal of Environmental Research and Public Health. 2021; 18(9):4691. https://doi.org/10.3390/ijerph18094691
Chicago/Turabian StyleNigro, Ersilia, Rita Polito, Ausilia Elce, Giuseppe Signoriello, Paola Iacotucci, Vincenzo Carnovale, Monica Gelzo, Federica Zarrilli, Giuseppe Castaldo, and Aurora Daniele. 2021. "Physical Activity Regulates TNFα and IL-6 Expression to Counteract Inflammation in Cystic Fibrosis Patients" International Journal of Environmental Research and Public Health 18, no. 9: 4691. https://doi.org/10.3390/ijerph18094691
APA StyleNigro, E., Polito, R., Elce, A., Signoriello, G., Iacotucci, P., Carnovale, V., Gelzo, M., Zarrilli, F., Castaldo, G., & Daniele, A. (2021). Physical Activity Regulates TNFα and IL-6 Expression to Counteract Inflammation in Cystic Fibrosis Patients. International Journal of Environmental Research and Public Health, 18(9), 4691. https://doi.org/10.3390/ijerph18094691