Feasibility Analysis on the Adoption of Decentralized Anaerobic Co-Digestion for the Treatment of Municipal Organic Waste with Energy Recovery in Urban Districts of Metropolitan Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scenario Definition
2.2. Urban Model
2.3. Substrates
2.4. AD Reactor
2.5. CHP
2.6. The LCOW
3. Results
3.1. Scenario 1
3.2. Scenario 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ISPRA, Urban Waste Report. Available online: https://www.isprambiente.gov.it/files2020/pubblicazioni/rapporti/rapportorifiutiurbani_ed-2020_n-331-1.pdf (accessed on 25 January 2021).
- Bong, C.P.C.; Lim, L.Y.; Lee, C.T.; Klemeš, J.J.; Ho, C.S.; Ho, W.S. The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion: A review. J. Clean. Prod. 2018, 172, 1545–1558. [Google Scholar] [CrossRef]
- Owens, J.M.; Chynoweth, D.P. Biochemical Methane Potential of Municipal Solid Waste (MSW) Components. Water Sci. Technol. 1993, 27, 1–14. [Google Scholar] [CrossRef]
- Lin, L.; Xu, F.; Ge, X.; Li, Y. Improving the sustainability of organic waste management practices in the food-energy-water nexus: A comparative review of anaerobic digestion and composting. Renew. Sustain. Energy Rev. 2018, 89, 151–167. [Google Scholar] [CrossRef]
- Dalpaz, R.; Konrad, O.; Cyrne, C.C.D.S.; Barzotto, H.P.; Hasan, C.; Filho, M.G. Using biogas for energy cogeneration: An analysis of electric and thermal energy generation from agro-industrial waste. Sustain. Energy Technol. Assess. 2020, 40, 100774. [Google Scholar] [CrossRef]
- Raposo, F.; De La Rubia Ángeles, M.; Fernández-Cegrí, V.; Borja, R. Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renew. Sustain. Energy Rev. 2012, 16, 861–877. [Google Scholar] [CrossRef]
- Panigrahi, S.; Sharma, H.B.; Dubey, B.K. Anaerobic co-digestion of food waste with pretreated yard waste: A comparative study of methane production, kinetic modeling and energy balance. J. Clean. Prod. 2020, 243, 118480. [Google Scholar] [CrossRef]
- Di Foggia, G.; Beccarello, M. Improving efficiency in the MSW collection and disposal service combining price cap and yardstick regulation: The Italian case. Waste Manag. 2018, 79, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Peri, G.; Ferrante, P.; La Gennusa, M.; Pianello, C.; Rizzo, G. Greening MSW management systems by saving footprint: The contribution of the waste transportation. J. Environ. Manag. 2018, 219, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Lamnatou, C.; Nicolaï, R.; Chemisana, D.; Cristofari, C.; Cancellieri, D. Biogas production by means of an anaerobic-digestion plant in France: LCA of greenhouse-gas emissions and other environmental indicators. Sci. Total Environ. 2019, 670, 1226–1239. [Google Scholar] [CrossRef] [PubMed]
- Taşkın, A.; Demir, N. Life cycle environmental and energy impact assessment of sustainable urban municipal solid waste collection and transportation strategies. Sustain. Cities Soc. 2020, 61, 102339. [Google Scholar] [CrossRef]
- Mu, L.; Zhang, L.; Zhu, K.; Ma, J.; Ifran, M.; Li, A. Anaerobic co-digestion of sewage sludge, food waste and yard waste: Synergistic enhancement on process stability and biogas production. Sci. Total Environ. 2020, 704, 135429. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.; Theaker, H.; Yaman, R.; Poggio, D.; Nimmo, W.; Bywater, A.; Blanch, G.; Pourkashanian, M. Assessment of micro-scale anaerobic digestion for management of urban organic waste: A case study in London, UK. Waste Manag. 2017, 61, 258–268. [Google Scholar] [CrossRef]
- Di Matteo, U.; Nastasi, B.; Albo, A.; Garcia, D.A. Energy Contribution of OFMSW (Organic Fraction of Municipal Solid Waste) to Energy-Environmental Sustainability in Urban Areas at Small Scale. Energies 2017, 10, 229. [Google Scholar] [CrossRef] [Green Version]
- Grosso, M.; Nava, C.; Testori, R.; Viganò, F.; Rigamonti, L. The implementation of anaerobic digestion of food waste in a highly populated urban area: An LCA evaluation. Waste Manag. Res. 2012, 30, 78–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mainardis, M.; Flaibani, S.; Mazzolini, F.; Peressotti, A.; Goi, D. Techno-economic analysis of anaerobic digestion implementation in small Italian breweries and evaluation of biochar and granular activated carbon addition effect on methane yield. J. Environ. Chem. Eng. 2019, 7. [Google Scholar] [CrossRef]
- Lin, L.; Shah, A.; Keener, H.; Li, Y. Techno-economic analyses of solid-state anaerobic digestion and composting of yard trimmings. Waste Manag. 2019, 85, 405–416. [Google Scholar] [CrossRef]
- Chanakya, H.N.; Ramachandra, T.V.; Guruprasad, M.; Devi, V. Micro-treatment options for components of organic fraction of MSW in residential areas. Environ. Monit. Assess. 2007, 135, 129–139. [Google Scholar] [CrossRef] [PubMed]
- ISTAT, Italian Population Housing Censuses. Available online: http://dati-censimentopopolazione.istat.it/Index.aspx?DataSetCode=DICA_FAM_CARATT4 (accessed on 5 January 2020).
- Lopes, W.S. Influence of inoculum on performance of anaerobic reactors for treating municipal solid waste. Bioresour. Technol. 2004, 94, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, B.K.; Barrington, S.; Martinez, J.; King, S. Characterization of food waste and bulking agents for composting. Waste Manag. 2008, 28, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Burnley, S.J.; Ellis, J.C.; Flowerdew, R.; Poll, A.J.; Prosser, H. Assessing the composition of municipal solid waste in Wales. Resour. Conserv. Recycl. 2007, 49, 264–283. [Google Scholar] [CrossRef]
- Kamran, A.; Chaudhry, M.N.; Batool, S.A. Effects of socio-economic status and seasonal variation on municipal solid waste composition: A baseline study for future planning and development. Environ. Sci. Eur. 2015, 27, 2615. [Google Scholar] [CrossRef] [Green Version]
- De Feo, G.; De Gisi, S.; Galasso, M. Wastewater Planning and Management of the Treatment and Disposal Plants; Dario Flaccovio Editore: Palermo, Italy, 2012. (In Italian) [Google Scholar]
- Wang, M.; Park, C. Investigation of anaerobic digestion of Chlorella sp. and Micractinium sp. grown in high-nitrogen wastewater and their co-digestion with waste activated sludge. Biomass Bioenergy 2015, 80, 30–37. [Google Scholar] [CrossRef]
- Kim, J.; Kang, C.-M. Increased anaerobic production of methane by co-digestion of sludge with microalgal biomass and food waste leachate. Bioresour. Technol. 2015, 189, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Bolzonella, D.; Battistoni, P.; Susini, C.; Cecchi, F. Anaerobic codigestion of waste activated sludge and OFMSW: The experiences of Viareggio and Treviso plants (Italy). Water Sci. Technol. 2006, 53, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhan, L.; Wilson, W. Experimental investigation on shear strength and permeability of a deeply dewatered sewage sludge for use in landfill covers. Environ. Earth Sci. 2013, 71, 4593–4602. [Google Scholar] [CrossRef]
- Cabbai, V.; Ballico, M.; Aneggi, E.; Goi, D. BMP tests of source selected OFMSW to evaluate anaerobic codigestion with sewage sludge. Waste Manag. 2013, 33, 1626–1632. [Google Scholar] [CrossRef]
- Abad, V.; Avila, R.; Vicent, T.; Font, X. Promoting circular economy in the surroundings of an organic fraction of municipal solid waste anaerobic digestion treatment plant: Biogas production impact and economic factors. Bioresour. Technol. 2019, 283, 10–17. [Google Scholar] [CrossRef]
- Davidsson, Å.; Gruvberger, C.; Christensen, T.H.; Hansen, T.L.; Jansen, J.L.C. Methane yield in source-sorted organic fraction of municipal solid waste. Waste Manag. 2007, 27, 406–414. [Google Scholar] [CrossRef] [PubMed]
- El-Mashad, H.M.; Zhang, R. Biogas production from co-digestion of dairy manure and food waste. Bioresour. Technol. 2010, 101, 4021–4028. [Google Scholar] [CrossRef] [PubMed]
- Mu, L.; Zhang, L.; Zhu, K.; Ma, J.; Li, A. Semi-continuous anaerobic digestion of extruded OFMSW: Process performance and energetics evaluation. Bioresour. Technol. 2018, 247, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Arango-Osorio, S.; Vasco-Echeverri, O.; López-Jiménez, G.; González-Sanchez, J.; Isaac-Millán, I. Methodology for the design and economic assessment of anaerobic digestion plants to produce energy and biofertilizer from livestock waste. Sci. Total. Environ. 2019, 685, 1169–1180. [Google Scholar] [CrossRef]
- Siddiqui, Z.; Horan, N.; Anaman, K. Optimisation of C:N Ratio for Co-Digested Processed Industrial Food Waste and Sewage Sludge Using the BMP Test. Int. J. Chem. React. Eng. 2011, 9, 1–12. [Google Scholar] [CrossRef]
- Grosser, A. Determination of methane potential of mixtures composed of sewage sludge, organic fraction of municipal waste and grease trap sludge using biochemical methane potential assays. A comparison of BMP tests and semi-continuous trial results. Energy 2018, 143, 488–499. [Google Scholar] [CrossRef]
- Zhang, J.; Lv, C.; Tong, J.; Liu, J.; Liu, J.; Yu, D.; Wang, Y.; Chen, M.; Wei, Y. Optimization and microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment. Bioresour. Technol. 2016, 200, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wei, Q.; Wu, S.; Qi, D.; Li, W.; Zuo, Z.; Dong, R. Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions. Appl. Energy 2014, 128, 175–183. [Google Scholar] [CrossRef]
- Shin, S.-R.; Lee, M.-K.; Im, S.; Kim, D.-H. Effect of seaweed addition on enhanced anaerobic digestion of food waste and sewage sludge. Environ. Eng. Res. 2018, 24, 449–455. [Google Scholar] [CrossRef]
- Thorin, E.; Olsson, J.; Schwede, S.; Nehrenheim, E. Co-digestion of sewage sludge and microalgae. Biogas production investigations. Appl. Energy 2018, 227, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Mahdy, A.; Mendez, L.; Ballesteros, M.; González-Fernández, C. Algaculture integration in conventional wastewater treatment plants: Anaerobic digestion comparison of primary and secondary sludge with microalgae biomass. Bioresour. Technol. 2015, 184, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Varol, A.; Ugurlu, A. Biogas Production from Microalgae (Spirulina platensis) in a Two Stage Anaerobic System. Waste Biomass Valorization 2015, 7, 193–200. [Google Scholar] [CrossRef]
- Gu, J.; Liu, R.; Cheng, Y.; Stanisavljevic, N.; Li, L.; Djatkov, D.; Peng, X.; Wang, X. Anaerobic co-digestion of food waste and sewage sludge under mesophilic and thermophilic conditions: Focusing on synergistic effects on methane production. Bioresour. Technol. 2020, 301, 122765. [Google Scholar] [CrossRef] [PubMed]
- Liew, L.N.; Shi, J.; Li, Y. Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass Bioenergy 2012, 46, 125–132. [Google Scholar] [CrossRef]
- Chen, G.; Yue, P.L.; Mujumdar, A.S. Sludge Dewatering and Drying. Dry. Technol. 2002, 20, 883–916. [Google Scholar] [CrossRef]
- Cecchi, P.F.; Battistoni, P.; Pavan, D.; Bolzonella, L. Anaerobic digestion of the solid waste organic fraction. In Fun-Damental, Design, Management, of Environmental Impact and Integration aspects for the Wastewater Treatment, APAT—Manuali e Linee Guida; APAT: Rome, Italy, 2005; Volume 13. [Google Scholar]
- Schmit, K.H.; Ellis, T.G. Comparison of temperature-phased and two-phase anaerobic co-digestion of primary sludge and municipal solid waste. Water Environ. Res. 2001, 73, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Molino, A.; De Gisi, S.; Petta, L.; Franzese, A.; Casella, P.; Marino, T.; Notarnicola, M. Experimental and theoretical investigation on the recovery of green chemicals and energy from mixed agricultural wastes by coupling anaerobic digestion and supercritical water gasification. Chem. Eng. J. 2019, 370, 1101–1110. [Google Scholar] [CrossRef]
- Pöschl, M.; Ward, S.; Owende, P. Evaluation of energy efficiency of various biogas production and utilization pathways. Appl. Energy 2010, 87, 3305–3321. [Google Scholar] [CrossRef]
- Lam, C.-M.; Yu, I.K.; Medel, F.; Tsang, D.C.; Hsu, S.-C.; Poon, C.S. Life-cycle cost-benefit analysis on sustainable food waste management: The case of Hong Kong International Airport. J. Clean. Prod. 2018, 187, 751–762. [Google Scholar] [CrossRef]
- Ghosh, P.; Shah, G.; Chandra, R.; Sahota, S.; Kumar, H.; Vijay, V.K.; Thakur, I.S. Assessment of methane emissions and energy recovery potential from the municipal solid waste landfills of Delhi, India. Bioresour. Technol. 2019, 272, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Carlini, M.; Mosconi, E.M.; Castellucci, S.; Villarini, M.; Colantoni, A. An Economical Evaluation of Anaerobic Digestion Plants Fed with Organic Agro-Industrial Waste. Energies 2017, 10, 1165. [Google Scholar] [CrossRef]
- Akbulut, A. Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdağı case study. Energy 2012, 44, 381–390. [Google Scholar] [CrossRef]
- Wang, J.; Chai, Y.; Shao, Y.; Qian, X. Techno-economic Assessment of Biogas Project: A Longitudinal Case Study from Japan. Resour. Conserv. Recycl. 2021, 164, 105174. [Google Scholar] [CrossRef]
- Piccinini, S.; Bonazzi, G. New ways to dispose livestock effluents. L’Informatore Agrar. 2005, 61, 55–60. (In Italian). Available online: https://www.researchgate.net/profile/Sergio_Piccinini/publication/238762479_Nuove_strade_per_smaltire_gli_effluenti_zootezoote/links/53fb20fd0cf2e3cbf565ff27/Nuove-strade-per-smaltire-gli-effluenti-zootecnici.pdf (accessed on 25 January 2021).
- Gadaleta, G.; De Gisi, S.; Binetti, S.M.; Notarnicola, M. Outlining a comprehensive techno-economic approach to evaluate the performance of an advanced sorting plant for plastic waste recovery. Process. Saf. Environ. Prot. 2020, 143, 248–261. [Google Scholar] [CrossRef]
- Legge 28 Dicembre 1995, n. 549 (G.U. n. 302 del 29 December 1995). Misure di Razionalizzazione Della Finanza Pubblica (In Italian). Available online: https://www.gazzettaufficiale.it/eli/id/1995/12/29/095G0612/sg (accessed on 6 February 2021).
Parameter | Symbol | Value |
---|---|---|
Number of units per condominium | Nu | 24 |
Number of floors per unit | Nf | 6 |
Number of apartments per floor | Na | 3 |
Number of people per apartment | Np | 2.6 |
SS | Xi | SSdai | TS | VS | Bulk Density | BMP | Methane Content |
---|---|---|---|---|---|---|---|
Units | adim. | kg/capita/d | [%] | [%TS] | [kg/l] | [mL CH4/g VS] | [%] |
NpTOT < 10,000 | |||||||
PS | 1 | 0.050 | 7.5 | 70 | 1.1 | 300 | 62 |
Ref. | 0.050 | 7.4 | 72.9 | 243 | 62.2 | ||
[23] | [24] | [24] | [24] | [24] | |||
WAS | 0 | ||||||
NpTOT > 10,000 | |||||||
PS | 1 | 0.050 | 25 | 70 | 1.6 | 125 | 62 |
Ref. | 0.050 | 18.5 | 60.5 | 127 | 61.8 | ||
[23] | [25] | [25] | [25] | [25] | |||
WAS | 1 | 0.025 | 15 | 75 | 1.3 | 250 | 67 |
Ref. | 0.025 | 14.3 | 56.7 | 1.28 | 248.8 | 65.7 | |
[23] | [26] | [26] | [27] | [28] | [26] |
Substrate | Description | TS [%] | VS [%TS] | Biogas Yield [mL Biogas/gVS] | CH4 Content [%] | BMP [mL CH4/gVS] | Ref. |
---|---|---|---|---|---|---|---|
OFMSW | 8.6 | 73.5 | 454.3 | 58 | 261.4 | [29] | |
FW | From UK kitchen | 27.7 | 88.1 | 1035.5 | 62 | 642 | [2] |
OFMSW | Source sorted from house, paper wrapping, screened | 26–31 | 87–91 | 496.7–801.6 | 60–61 | 298–489 | [30] |
OFMSW | Source sorted from apartment, paper wrapping, screened | 28 | 87 | 781.3 | 64 | 500 | [30] |
OFMSW | Source sorted from apartment, plastic wrapping, screened | 30–34 | 80–87 | 651.6–858.3 | 60–62 | 404–515 | [30] |
OFMSW | Source sorted from house, plastic wrapping, screened | 30–33 | 81–84 | 669.0–924.2 | 58–62 | 388–573 | [30] |
OFMSW | Source sorted from house, paper wrapping, shredded | 28 | 92 | 785.7 | 63 | 495 | [30] |
FW | 28 | 86.1 | 657 | 67 | 353 | [31] | |
YW | Blend of grass, leaves and branches | 50.4 | 92 | - | - | 143 | [3] |
FW | 26.6 | 93.4 | - | - | 560 | [32] | |
YW | 97.3 | 91.1 | 228.9 | 50.9 | 116.5 | [12] | |
FW | 23.9 | 91.3 | 862.2 | 61.1 | 526.8 | [12] | |
OFMSW | YW + FW (3:1) | 79.0 | 91.2 | 271.2 | 61 | 165.4 | [12] |
OFMSW | YW + FW (2:2) | 60.6 | 91.2 | 466.1 | 63.5 | 296.0 | [12] |
OFMSW | YW + FW (1:3) | 42.2 | 91.3 | 561.6 | 64.1 | 360.0 | [12] |
Mixture | YW + FW + SS (9:3:4) | 63.4 | 82.8 | 268.7 | 61.3 | 164.7 | [12] |
Mixture | YW + FW + SS (6:6:4) | 49.7 | 82.8 | 363.7 | 63.9 | 232.4 | [12] |
SS | 30.1 | 90.1 | 518.2 | 66 | 342 | [33] | |
SS | Dewatered | 16.9 | 57.6 | - | - | 254.6 | [12] |
SS | Undewatered mixture of PS and WAS | 3.5 | 65.7 | - | - | 248.8 | [28] |
PS | Undewatered | 4.8 | 66.2 | - | - | [34] | |
WAS | Undewatered | 2.6 | 65.2 | - | - | [34] | |
SS | Undewatered | 3.0–3.1 | 70–74 | - | - | 260–460 | [35] |
SS | Dewatered | 12.6 | 67.4 | - | - | 142 | [36] |
SS | Dewatered | 17.7 | 67.2 | - | - | 173.1 | [37] |
SS | Dewatered mixture of PS and WAS | 24.2 | 78.1 | - | - | 169 | [38] |
SS | Undewatered mixture of PS and WAS | 3.3 | 84 | 514.8–643.9 | 64.3 | 331–414 | [39] |
WAS | Dewatered | 4 | 72 | 120 | 66.6 | 80 | [40] |
WAS | Undewatered | 0.7 | 73 | 390.7 | 62.2 | 243 | [24] |
WAS | Undewatered | 1.5 | 67 | 536.1 | 72 | 386 | [41] |
WAS | Undewatered | 1 | 72 | 585.8–726.5 | 61.8 | 363–449 | [39] |
PS | Undewatered | 4.8–5.5 | 77–78 | 458.3 | 72 | 330 | [39] |
SS | 20.6 | 51.5 | 280.4 | [42] | |||
PS | Undewatered | 3 | 67 | 394.1 | 67.5 | 266 | [40] |
OFMSW | TS | VS | Bulk Density | BMP | Methane Content |
---|---|---|---|---|---|
Units | [%] | [%TS] | [kg/L] | [mL CH4/g VS] | [%] |
OFMSW | 40.3 | 88.6 | 0.43 | 362.7 | 61.4 |
Ref. | 42.2 | 91.3 | 0.27–0.55 | 360.0 | 60–61 |
[12] | [12] | [21] | [12] | [30] |
Parameters | Units | Value | Ref. | |
---|---|---|---|---|
co-AD Plant | ||||
HRT | d | 30 | 22 | [26] |
T | °C | 35 | 35 | [4] |
VS removal | %VS | 90 | 92 | [42] |
Electrical self-consumption | kWh/t | 60 | 60 | [48] |
Thermal self-consumption | kWh/t | 40 | 37.6 | [32] |
Dewatering System | ||||
H2O removal | %H2O | 30 | 25–30 | [44] |
Electrical self-consumption | kWh/t | 10 | 8.85 | [49] |
CHP Unit | ||||
LHV CH4 | MJ/m3 | 35.25 | 35 | [50] |
Power | kW | 200 | 100–500 | [51] |
ηel | % | 35 | 39 | [52] |
ηth | % | 50 | 45 | [52] |
Electrical self-consumption | kWh/t | 8 | 7.5 | [32] |
Parameters | Units | Value | Ref. | |
---|---|---|---|---|
Discount rate r | % | 4 | 6 | [51] |
Lifetime t | y | 20 | 20 | [53] |
Capital cost C | €/kW | 4000 | 3789 | [33] |
Operative cost O | €/t | 105 | 100 | [29] |
Treatement cost T | €/t | 75 | 80 | [55] |
€/capita | 10 | 9.8 | [1] | |
Electrical revenue Re | €/kWh | 0.2 | 0.17–0.22 | [51] |
Thermal revenue Rt | €/kWh | 0.045 | 0.12 | [33] |
Nc | OFMSW [%] | TS [%] | VS [%TS] | Density [kg/l] | BMP [mL CH4/gVS] | CH4 Content [%] | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | |
5 | 100 | 92.3 | 40.3 | 37.8 | 88.6 | 87.2 | 0.43 | 0.48 | 362.7 | 357.9 | 61.4 | 61.5 |
10 | 100 | 92.3 | 40.3 | 39.2 | 88.6 | 87.2 | 0.43 | 0.52 | 362.7 | 344.4 | 61.4 | 61.5 |
15 | 100 | 88.9 | 40.3 | 38.3 | 88.6 | 86.7 | 0.43 | 0.55 | 362.7 | 340.9 | 61.4 | 61.7 |
20 | 100 | 88.9 | 40.3 | 38.3 | 88.6 | 86.7 | 0.43 | 0.55 | 362.7 | 340.9 | 61.4 | 61.7 |
30 | 100 | 88.9 | 40.3 | 38.3 | 88.6 | 86.7 | 0.43 | 0.55 | 362.7 | 340.9 | 61.4 | 61.7 |
Nc | Win [kg/d] | Wout [kg/d] | Bout [m3/d] | V [m3] | ||||
---|---|---|---|---|---|---|---|---|
S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | |
5 | 3370 | 3650 | 1683 | 1887 | 711 | 700 | 284 | 274 |
10 | 6739 | 7301 | 3366 | 3727 | 1422 | 1396 | 568 | 508 |
15 | 10,109 | 11,372 | 5049 | 5889 | 2133 | 2085 | 852 | 749 |
20 | 13,478 | 15,163 | 6732 | 7852 | 2844 | 2781 | 1136 | 999 |
30 | 20,218 | 22,745 | 10,098 | 11,779 | 4266 | 4171 | 1704 | 1498 |
Nc | nEel [kWh/d] | nEth [kWh/d] | gEloss [kWh/d] | Self-Consumption [kWh/d] | ||||
---|---|---|---|---|---|---|---|---|
S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | |
5 | 1232 | 1189 | 2001 | 1960 | 641 | 632 | 398 | 431 |
10 | 2465 | 2369 | 4002 | 3905 | 1282 | 1259 | 795 | 861 |
15 | 3697 | 3517 | 6003 | 5836 | 1922 | 1887 | 1193 | 1342 |
20 | 4929 | 4689 | 8005 | 7782 | 2563 | 2516 | 1590 | 1789 |
30 | 7394 | 7033 | 12,007 | 11,672 | 3845 | 3775 | 2386 | 2684 |
Nc | Nh [h] | NCHP [–] | PBT [y] | |||
---|---|---|---|---|---|---|
S1 | S2 | S1 | S2 | S1 | S2 | |
5 | 7 | 7 | 1 | 1 | 17 | 19 |
10 | 15 | 15 | 1 | 1 | 9 | 10 |
15 | 22 | 22 | 1 | 1 | 6 | 7 |
20 | 15 | 15 | 2 | 2 | 9 | 11 |
30 | 22 | 22 | 2 | 2 | 6 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gadaleta, G.; De Gisi, S.; Notarnicola, M. Feasibility Analysis on the Adoption of Decentralized Anaerobic Co-Digestion for the Treatment of Municipal Organic Waste with Energy Recovery in Urban Districts of Metropolitan Areas. Int. J. Environ. Res. Public Health 2021, 18, 1820. https://doi.org/10.3390/ijerph18041820
Gadaleta G, De Gisi S, Notarnicola M. Feasibility Analysis on the Adoption of Decentralized Anaerobic Co-Digestion for the Treatment of Municipal Organic Waste with Energy Recovery in Urban Districts of Metropolitan Areas. International Journal of Environmental Research and Public Health. 2021; 18(4):1820. https://doi.org/10.3390/ijerph18041820
Chicago/Turabian StyleGadaleta, Giovanni, Sabino De Gisi, and Michele Notarnicola. 2021. "Feasibility Analysis on the Adoption of Decentralized Anaerobic Co-Digestion for the Treatment of Municipal Organic Waste with Energy Recovery in Urban Districts of Metropolitan Areas" International Journal of Environmental Research and Public Health 18, no. 4: 1820. https://doi.org/10.3390/ijerph18041820
APA StyleGadaleta, G., De Gisi, S., & Notarnicola, M. (2021). Feasibility Analysis on the Adoption of Decentralized Anaerobic Co-Digestion for the Treatment of Municipal Organic Waste with Energy Recovery in Urban Districts of Metropolitan Areas. International Journal of Environmental Research and Public Health, 18(4), 1820. https://doi.org/10.3390/ijerph18041820