Feasibility Analysis on the Adoption of Decentralized Anaerobic Co-Digestion for the Treatment of Municipal Organic Waste with Energy Recovery in Urban Districts of Metropolitan Areas
Abstract
1. Introduction
2. Materials and Methods
2.1. Scenario Definition
2.2. Urban Model
2.3. Substrates
2.4. AD Reactor
2.5. CHP
2.6. The LCOW
3. Results
3.1. Scenario 1
3.2. Scenario 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ISPRA, Urban Waste Report. Available online: https://www.isprambiente.gov.it/files2020/pubblicazioni/rapporti/rapportorifiutiurbani_ed-2020_n-331-1.pdf (accessed on 25 January 2021).
- Bong, C.P.C.; Lim, L.Y.; Lee, C.T.; Klemeš, J.J.; Ho, C.S.; Ho, W.S. The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion: A review. J. Clean. Prod. 2018, 172, 1545–1558. [Google Scholar] [CrossRef]
- Owens, J.M.; Chynoweth, D.P. Biochemical Methane Potential of Municipal Solid Waste (MSW) Components. Water Sci. Technol. 1993, 27, 1–14. [Google Scholar] [CrossRef]
- Lin, L.; Xu, F.; Ge, X.; Li, Y. Improving the sustainability of organic waste management practices in the food-energy-water nexus: A comparative review of anaerobic digestion and composting. Renew. Sustain. Energy Rev. 2018, 89, 151–167. [Google Scholar] [CrossRef]
- Dalpaz, R.; Konrad, O.; Cyrne, C.C.D.S.; Barzotto, H.P.; Hasan, C.; Filho, M.G. Using biogas for energy cogeneration: An analysis of electric and thermal energy generation from agro-industrial waste. Sustain. Energy Technol. Assess. 2020, 40, 100774. [Google Scholar] [CrossRef]
- Raposo, F.; De La Rubia Ángeles, M.; Fernández-Cegrí, V.; Borja, R. Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renew. Sustain. Energy Rev. 2012, 16, 861–877. [Google Scholar] [CrossRef]
- Panigrahi, S.; Sharma, H.B.; Dubey, B.K. Anaerobic co-digestion of food waste with pretreated yard waste: A comparative study of methane production, kinetic modeling and energy balance. J. Clean. Prod. 2020, 243, 118480. [Google Scholar] [CrossRef]
- Di Foggia, G.; Beccarello, M. Improving efficiency in the MSW collection and disposal service combining price cap and yardstick regulation: The Italian case. Waste Manag. 2018, 79, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Peri, G.; Ferrante, P.; La Gennusa, M.; Pianello, C.; Rizzo, G. Greening MSW management systems by saving footprint: The contribution of the waste transportation. J. Environ. Manag. 2018, 219, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Lamnatou, C.; Nicolaï, R.; Chemisana, D.; Cristofari, C.; Cancellieri, D. Biogas production by means of an anaerobic-digestion plant in France: LCA of greenhouse-gas emissions and other environmental indicators. Sci. Total Environ. 2019, 670, 1226–1239. [Google Scholar] [CrossRef] [PubMed]
- Taşkın, A.; Demir, N. Life cycle environmental and energy impact assessment of sustainable urban municipal solid waste collection and transportation strategies. Sustain. Cities Soc. 2020, 61, 102339. [Google Scholar] [CrossRef]
- Mu, L.; Zhang, L.; Zhu, K.; Ma, J.; Ifran, M.; Li, A. Anaerobic co-digestion of sewage sludge, food waste and yard waste: Synergistic enhancement on process stability and biogas production. Sci. Total Environ. 2020, 704, 135429. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.; Theaker, H.; Yaman, R.; Poggio, D.; Nimmo, W.; Bywater, A.; Blanch, G.; Pourkashanian, M. Assessment of micro-scale anaerobic digestion for management of urban organic waste: A case study in London, UK. Waste Manag. 2017, 61, 258–268. [Google Scholar] [CrossRef]
- Di Matteo, U.; Nastasi, B.; Albo, A.; Garcia, D.A. Energy Contribution of OFMSW (Organic Fraction of Municipal Solid Waste) to Energy-Environmental Sustainability in Urban Areas at Small Scale. Energies 2017, 10, 229. [Google Scholar] [CrossRef]
- Grosso, M.; Nava, C.; Testori, R.; Viganò, F.; Rigamonti, L. The implementation of anaerobic digestion of food waste in a highly populated urban area: An LCA evaluation. Waste Manag. Res. 2012, 30, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Mainardis, M.; Flaibani, S.; Mazzolini, F.; Peressotti, A.; Goi, D. Techno-economic analysis of anaerobic digestion implementation in small Italian breweries and evaluation of biochar and granular activated carbon addition effect on methane yield. J. Environ. Chem. Eng. 2019, 7. [Google Scholar] [CrossRef]
- Lin, L.; Shah, A.; Keener, H.; Li, Y. Techno-economic analyses of solid-state anaerobic digestion and composting of yard trimmings. Waste Manag. 2019, 85, 405–416. [Google Scholar] [CrossRef]
- Chanakya, H.N.; Ramachandra, T.V.; Guruprasad, M.; Devi, V. Micro-treatment options for components of organic fraction of MSW in residential areas. Environ. Monit. Assess. 2007, 135, 129–139. [Google Scholar] [CrossRef] [PubMed]
- ISTAT, Italian Population Housing Censuses. Available online: http://dati-censimentopopolazione.istat.it/Index.aspx?DataSetCode=DICA_FAM_CARATT4 (accessed on 5 January 2020).
- Lopes, W.S. Influence of inoculum on performance of anaerobic reactors for treating municipal solid waste. Bioresour. Technol. 2004, 94, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, B.K.; Barrington, S.; Martinez, J.; King, S. Characterization of food waste and bulking agents for composting. Waste Manag. 2008, 28, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Burnley, S.J.; Ellis, J.C.; Flowerdew, R.; Poll, A.J.; Prosser, H. Assessing the composition of municipal solid waste in Wales. Resour. Conserv. Recycl. 2007, 49, 264–283. [Google Scholar] [CrossRef]
- Kamran, A.; Chaudhry, M.N.; Batool, S.A. Effects of socio-economic status and seasonal variation on municipal solid waste composition: A baseline study for future planning and development. Environ. Sci. Eur. 2015, 27, 2615. [Google Scholar] [CrossRef]
- De Feo, G.; De Gisi, S.; Galasso, M. Wastewater Planning and Management of the Treatment and Disposal Plants; Dario Flaccovio Editore: Palermo, Italy, 2012. (In Italian) [Google Scholar]
- Wang, M.; Park, C. Investigation of anaerobic digestion of Chlorella sp. and Micractinium sp. grown in high-nitrogen wastewater and their co-digestion with waste activated sludge. Biomass Bioenergy 2015, 80, 30–37. [Google Scholar] [CrossRef]
- Kim, J.; Kang, C.-M. Increased anaerobic production of methane by co-digestion of sludge with microalgal biomass and food waste leachate. Bioresour. Technol. 2015, 189, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Bolzonella, D.; Battistoni, P.; Susini, C.; Cecchi, F. Anaerobic codigestion of waste activated sludge and OFMSW: The experiences of Viareggio and Treviso plants (Italy). Water Sci. Technol. 2006, 53, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhan, L.; Wilson, W. Experimental investigation on shear strength and permeability of a deeply dewatered sewage sludge for use in landfill covers. Environ. Earth Sci. 2013, 71, 4593–4602. [Google Scholar] [CrossRef]
- Cabbai, V.; Ballico, M.; Aneggi, E.; Goi, D. BMP tests of source selected OFMSW to evaluate anaerobic codigestion with sewage sludge. Waste Manag. 2013, 33, 1626–1632. [Google Scholar] [CrossRef]
- Abad, V.; Avila, R.; Vicent, T.; Font, X. Promoting circular economy in the surroundings of an organic fraction of municipal solid waste anaerobic digestion treatment plant: Biogas production impact and economic factors. Bioresour. Technol. 2019, 283, 10–17. [Google Scholar] [CrossRef]
- Davidsson, Å.; Gruvberger, C.; Christensen, T.H.; Hansen, T.L.; Jansen, J.L.C. Methane yield in source-sorted organic fraction of municipal solid waste. Waste Manag. 2007, 27, 406–414. [Google Scholar] [CrossRef] [PubMed]
- El-Mashad, H.M.; Zhang, R. Biogas production from co-digestion of dairy manure and food waste. Bioresour. Technol. 2010, 101, 4021–4028. [Google Scholar] [CrossRef] [PubMed]
- Mu, L.; Zhang, L.; Zhu, K.; Ma, J.; Li, A. Semi-continuous anaerobic digestion of extruded OFMSW: Process performance and energetics evaluation. Bioresour. Technol. 2018, 247, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Arango-Osorio, S.; Vasco-Echeverri, O.; López-Jiménez, G.; González-Sanchez, J.; Isaac-Millán, I. Methodology for the design and economic assessment of anaerobic digestion plants to produce energy and biofertilizer from livestock waste. Sci. Total. Environ. 2019, 685, 1169–1180. [Google Scholar] [CrossRef]
- Siddiqui, Z.; Horan, N.; Anaman, K. Optimisation of C:N Ratio for Co-Digested Processed Industrial Food Waste and Sewage Sludge Using the BMP Test. Int. J. Chem. React. Eng. 2011, 9, 1–12. [Google Scholar] [CrossRef]
- Grosser, A. Determination of methane potential of mixtures composed of sewage sludge, organic fraction of municipal waste and grease trap sludge using biochemical methane potential assays. A comparison of BMP tests and semi-continuous trial results. Energy 2018, 143, 488–499. [Google Scholar] [CrossRef]
- Zhang, J.; Lv, C.; Tong, J.; Liu, J.; Liu, J.; Yu, D.; Wang, Y.; Chen, M.; Wei, Y. Optimization and microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment. Bioresour. Technol. 2016, 200, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wei, Q.; Wu, S.; Qi, D.; Li, W.; Zuo, Z.; Dong, R. Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions. Appl. Energy 2014, 128, 175–183. [Google Scholar] [CrossRef]
- Shin, S.-R.; Lee, M.-K.; Im, S.; Kim, D.-H. Effect of seaweed addition on enhanced anaerobic digestion of food waste and sewage sludge. Environ. Eng. Res. 2018, 24, 449–455. [Google Scholar] [CrossRef]
- Thorin, E.; Olsson, J.; Schwede, S.; Nehrenheim, E. Co-digestion of sewage sludge and microalgae. Biogas production investigations. Appl. Energy 2018, 227, 64–72. [Google Scholar] [CrossRef]
- Mahdy, A.; Mendez, L.; Ballesteros, M.; González-Fernández, C. Algaculture integration in conventional wastewater treatment plants: Anaerobic digestion comparison of primary and secondary sludge with microalgae biomass. Bioresour. Technol. 2015, 184, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Varol, A.; Ugurlu, A. Biogas Production from Microalgae (Spirulina platensis) in a Two Stage Anaerobic System. Waste Biomass Valorization 2015, 7, 193–200. [Google Scholar] [CrossRef]
- Gu, J.; Liu, R.; Cheng, Y.; Stanisavljevic, N.; Li, L.; Djatkov, D.; Peng, X.; Wang, X. Anaerobic co-digestion of food waste and sewage sludge under mesophilic and thermophilic conditions: Focusing on synergistic effects on methane production. Bioresour. Technol. 2020, 301, 122765. [Google Scholar] [CrossRef] [PubMed]
- Liew, L.N.; Shi, J.; Li, Y. Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass Bioenergy 2012, 46, 125–132. [Google Scholar] [CrossRef]
- Chen, G.; Yue, P.L.; Mujumdar, A.S. Sludge Dewatering and Drying. Dry. Technol. 2002, 20, 883–916. [Google Scholar] [CrossRef]
- Cecchi, P.F.; Battistoni, P.; Pavan, D.; Bolzonella, L. Anaerobic digestion of the solid waste organic fraction. In Fun-Damental, Design, Management, of Environmental Impact and Integration aspects for the Wastewater Treatment, APAT—Manuali e Linee Guida; APAT: Rome, Italy, 2005; Volume 13. [Google Scholar]
- Schmit, K.H.; Ellis, T.G. Comparison of temperature-phased and two-phase anaerobic co-digestion of primary sludge and municipal solid waste. Water Environ. Res. 2001, 73, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Molino, A.; De Gisi, S.; Petta, L.; Franzese, A.; Casella, P.; Marino, T.; Notarnicola, M. Experimental and theoretical investigation on the recovery of green chemicals and energy from mixed agricultural wastes by coupling anaerobic digestion and supercritical water gasification. Chem. Eng. J. 2019, 370, 1101–1110. [Google Scholar] [CrossRef]
- Pöschl, M.; Ward, S.; Owende, P. Evaluation of energy efficiency of various biogas production and utilization pathways. Appl. Energy 2010, 87, 3305–3321. [Google Scholar] [CrossRef]
- Lam, C.-M.; Yu, I.K.; Medel, F.; Tsang, D.C.; Hsu, S.-C.; Poon, C.S. Life-cycle cost-benefit analysis on sustainable food waste management: The case of Hong Kong International Airport. J. Clean. Prod. 2018, 187, 751–762. [Google Scholar] [CrossRef]
- Ghosh, P.; Shah, G.; Chandra, R.; Sahota, S.; Kumar, H.; Vijay, V.K.; Thakur, I.S. Assessment of methane emissions and energy recovery potential from the municipal solid waste landfills of Delhi, India. Bioresour. Technol. 2019, 272, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Carlini, M.; Mosconi, E.M.; Castellucci, S.; Villarini, M.; Colantoni, A. An Economical Evaluation of Anaerobic Digestion Plants Fed with Organic Agro-Industrial Waste. Energies 2017, 10, 1165. [Google Scholar] [CrossRef]
- Akbulut, A. Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdağı case study. Energy 2012, 44, 381–390. [Google Scholar] [CrossRef]
- Wang, J.; Chai, Y.; Shao, Y.; Qian, X. Techno-economic Assessment of Biogas Project: A Longitudinal Case Study from Japan. Resour. Conserv. Recycl. 2021, 164, 105174. [Google Scholar] [CrossRef]
- Piccinini, S.; Bonazzi, G. New ways to dispose livestock effluents. L’Informatore Agrar. 2005, 61, 55–60. (In Italian). Available online: https://www.researchgate.net/profile/Sergio_Piccinini/publication/238762479_Nuove_strade_per_smaltire_gli_effluenti_zootezoote/links/53fb20fd0cf2e3cbf565ff27/Nuove-strade-per-smaltire-gli-effluenti-zootecnici.pdf (accessed on 25 January 2021).
- Gadaleta, G.; De Gisi, S.; Binetti, S.M.; Notarnicola, M. Outlining a comprehensive techno-economic approach to evaluate the performance of an advanced sorting plant for plastic waste recovery. Process. Saf. Environ. Prot. 2020, 143, 248–261. [Google Scholar] [CrossRef]
- Legge 28 Dicembre 1995, n. 549 (G.U. n. 302 del 29 December 1995). Misure di Razionalizzazione Della Finanza Pubblica (In Italian). Available online: https://www.gazzettaufficiale.it/eli/id/1995/12/29/095G0612/sg (accessed on 6 February 2021).
Parameter | Symbol | Value |
---|---|---|
Number of units per condominium | Nu | 24 |
Number of floors per unit | Nf | 6 |
Number of apartments per floor | Na | 3 |
Number of people per apartment | Np | 2.6 |
SS | Xi | SSdai | TS | VS | Bulk Density | BMP | Methane Content |
---|---|---|---|---|---|---|---|
Units | adim. | kg/capita/d | [%] | [%TS] | [kg/l] | [mL CH4/g VS] | [%] |
NpTOT < 10,000 | |||||||
PS | 1 | 0.050 | 7.5 | 70 | 1.1 | 300 | 62 |
Ref. | 0.050 | 7.4 | 72.9 | 243 | 62.2 | ||
[23] | [24] | [24] | [24] | [24] | |||
WAS | 0 | ||||||
NpTOT > 10,000 | |||||||
PS | 1 | 0.050 | 25 | 70 | 1.6 | 125 | 62 |
Ref. | 0.050 | 18.5 | 60.5 | 127 | 61.8 | ||
[23] | [25] | [25] | [25] | [25] | |||
WAS | 1 | 0.025 | 15 | 75 | 1.3 | 250 | 67 |
Ref. | 0.025 | 14.3 | 56.7 | 1.28 | 248.8 | 65.7 | |
[23] | [26] | [26] | [27] | [28] | [26] |
Substrate | Description | TS [%] | VS [%TS] | Biogas Yield [mL Biogas/gVS] | CH4 Content [%] | BMP [mL CH4/gVS] | Ref. |
---|---|---|---|---|---|---|---|
OFMSW | 8.6 | 73.5 | 454.3 | 58 | 261.4 | [29] | |
FW | From UK kitchen | 27.7 | 88.1 | 1035.5 | 62 | 642 | [2] |
OFMSW | Source sorted from house, paper wrapping, screened | 26–31 | 87–91 | 496.7–801.6 | 60–61 | 298–489 | [30] |
OFMSW | Source sorted from apartment, paper wrapping, screened | 28 | 87 | 781.3 | 64 | 500 | [30] |
OFMSW | Source sorted from apartment, plastic wrapping, screened | 30–34 | 80–87 | 651.6–858.3 | 60–62 | 404–515 | [30] |
OFMSW | Source sorted from house, plastic wrapping, screened | 30–33 | 81–84 | 669.0–924.2 | 58–62 | 388–573 | [30] |
OFMSW | Source sorted from house, paper wrapping, shredded | 28 | 92 | 785.7 | 63 | 495 | [30] |
FW | 28 | 86.1 | 657 | 67 | 353 | [31] | |
YW | Blend of grass, leaves and branches | 50.4 | 92 | - | - | 143 | [3] |
FW | 26.6 | 93.4 | - | - | 560 | [32] | |
YW | 97.3 | 91.1 | 228.9 | 50.9 | 116.5 | [12] | |
FW | 23.9 | 91.3 | 862.2 | 61.1 | 526.8 | [12] | |
OFMSW | YW + FW (3:1) | 79.0 | 91.2 | 271.2 | 61 | 165.4 | [12] |
OFMSW | YW + FW (2:2) | 60.6 | 91.2 | 466.1 | 63.5 | 296.0 | [12] |
OFMSW | YW + FW (1:3) | 42.2 | 91.3 | 561.6 | 64.1 | 360.0 | [12] |
Mixture | YW + FW + SS (9:3:4) | 63.4 | 82.8 | 268.7 | 61.3 | 164.7 | [12] |
Mixture | YW + FW + SS (6:6:4) | 49.7 | 82.8 | 363.7 | 63.9 | 232.4 | [12] |
SS | 30.1 | 90.1 | 518.2 | 66 | 342 | [33] | |
SS | Dewatered | 16.9 | 57.6 | - | - | 254.6 | [12] |
SS | Undewatered mixture of PS and WAS | 3.5 | 65.7 | - | - | 248.8 | [28] |
PS | Undewatered | 4.8 | 66.2 | - | - | [34] | |
WAS | Undewatered | 2.6 | 65.2 | - | - | [34] | |
SS | Undewatered | 3.0–3.1 | 70–74 | - | - | 260–460 | [35] |
SS | Dewatered | 12.6 | 67.4 | - | - | 142 | [36] |
SS | Dewatered | 17.7 | 67.2 | - | - | 173.1 | [37] |
SS | Dewatered mixture of PS and WAS | 24.2 | 78.1 | - | - | 169 | [38] |
SS | Undewatered mixture of PS and WAS | 3.3 | 84 | 514.8–643.9 | 64.3 | 331–414 | [39] |
WAS | Dewatered | 4 | 72 | 120 | 66.6 | 80 | [40] |
WAS | Undewatered | 0.7 | 73 | 390.7 | 62.2 | 243 | [24] |
WAS | Undewatered | 1.5 | 67 | 536.1 | 72 | 386 | [41] |
WAS | Undewatered | 1 | 72 | 585.8–726.5 | 61.8 | 363–449 | [39] |
PS | Undewatered | 4.8–5.5 | 77–78 | 458.3 | 72 | 330 | [39] |
SS | 20.6 | 51.5 | 280.4 | [42] | |||
PS | Undewatered | 3 | 67 | 394.1 | 67.5 | 266 | [40] |
OFMSW | TS | VS | Bulk Density | BMP | Methane Content |
---|---|---|---|---|---|
Units | [%] | [%TS] | [kg/L] | [mL CH4/g VS] | [%] |
OFMSW | 40.3 | 88.6 | 0.43 | 362.7 | 61.4 |
Ref. | 42.2 | 91.3 | 0.27–0.55 | 360.0 | 60–61 |
[12] | [12] | [21] | [12] | [30] |
Parameters | Units | Value | Ref. | |
---|---|---|---|---|
co-AD Plant | ||||
HRT | d | 30 | 22 | [26] |
T | °C | 35 | 35 | [4] |
VS removal | %VS | 90 | 92 | [42] |
Electrical self-consumption | kWh/t | 60 | 60 | [48] |
Thermal self-consumption | kWh/t | 40 | 37.6 | [32] |
Dewatering System | ||||
H2O removal | %H2O | 30 | 25–30 | [44] |
Electrical self-consumption | kWh/t | 10 | 8.85 | [49] |
CHP Unit | ||||
LHV CH4 | MJ/m3 | 35.25 | 35 | [50] |
Power | kW | 200 | 100–500 | [51] |
ηel | % | 35 | 39 | [52] |
ηth | % | 50 | 45 | [52] |
Electrical self-consumption | kWh/t | 8 | 7.5 | [32] |
Parameters | Units | Value | Ref. | |
---|---|---|---|---|
Discount rate r | % | 4 | 6 | [51] |
Lifetime t | y | 20 | 20 | [53] |
Capital cost C | €/kW | 4000 | 3789 | [33] |
Operative cost O | €/t | 105 | 100 | [29] |
Treatement cost T | €/t | 75 | 80 | [55] |
€/capita | 10 | 9.8 | [1] | |
Electrical revenue Re | €/kWh | 0.2 | 0.17–0.22 | [51] |
Thermal revenue Rt | €/kWh | 0.045 | 0.12 | [33] |
Nc | OFMSW [%] | TS [%] | VS [%TS] | Density [kg/l] | BMP [mL CH4/gVS] | CH4 Content [%] | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | |
5 | 100 | 92.3 | 40.3 | 37.8 | 88.6 | 87.2 | 0.43 | 0.48 | 362.7 | 357.9 | 61.4 | 61.5 |
10 | 100 | 92.3 | 40.3 | 39.2 | 88.6 | 87.2 | 0.43 | 0.52 | 362.7 | 344.4 | 61.4 | 61.5 |
15 | 100 | 88.9 | 40.3 | 38.3 | 88.6 | 86.7 | 0.43 | 0.55 | 362.7 | 340.9 | 61.4 | 61.7 |
20 | 100 | 88.9 | 40.3 | 38.3 | 88.6 | 86.7 | 0.43 | 0.55 | 362.7 | 340.9 | 61.4 | 61.7 |
30 | 100 | 88.9 | 40.3 | 38.3 | 88.6 | 86.7 | 0.43 | 0.55 | 362.7 | 340.9 | 61.4 | 61.7 |
Nc | Win [kg/d] | Wout [kg/d] | Bout [m3/d] | V [m3] | ||||
---|---|---|---|---|---|---|---|---|
S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | |
5 | 3370 | 3650 | 1683 | 1887 | 711 | 700 | 284 | 274 |
10 | 6739 | 7301 | 3366 | 3727 | 1422 | 1396 | 568 | 508 |
15 | 10,109 | 11,372 | 5049 | 5889 | 2133 | 2085 | 852 | 749 |
20 | 13,478 | 15,163 | 6732 | 7852 | 2844 | 2781 | 1136 | 999 |
30 | 20,218 | 22,745 | 10,098 | 11,779 | 4266 | 4171 | 1704 | 1498 |
Nc | nEel [kWh/d] | nEth [kWh/d] | gEloss [kWh/d] | Self-Consumption [kWh/d] | ||||
---|---|---|---|---|---|---|---|---|
S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | |
5 | 1232 | 1189 | 2001 | 1960 | 641 | 632 | 398 | 431 |
10 | 2465 | 2369 | 4002 | 3905 | 1282 | 1259 | 795 | 861 |
15 | 3697 | 3517 | 6003 | 5836 | 1922 | 1887 | 1193 | 1342 |
20 | 4929 | 4689 | 8005 | 7782 | 2563 | 2516 | 1590 | 1789 |
30 | 7394 | 7033 | 12,007 | 11,672 | 3845 | 3775 | 2386 | 2684 |
Nc | Nh [h] | NCHP [–] | PBT [y] | |||
---|---|---|---|---|---|---|
S1 | S2 | S1 | S2 | S1 | S2 | |
5 | 7 | 7 | 1 | 1 | 17 | 19 |
10 | 15 | 15 | 1 | 1 | 9 | 10 |
15 | 22 | 22 | 1 | 1 | 6 | 7 |
20 | 15 | 15 | 2 | 2 | 9 | 11 |
30 | 22 | 22 | 2 | 2 | 6 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gadaleta, G.; De Gisi, S.; Notarnicola, M. Feasibility Analysis on the Adoption of Decentralized Anaerobic Co-Digestion for the Treatment of Municipal Organic Waste with Energy Recovery in Urban Districts of Metropolitan Areas. Int. J. Environ. Res. Public Health 2021, 18, 1820. https://doi.org/10.3390/ijerph18041820
Gadaleta G, De Gisi S, Notarnicola M. Feasibility Analysis on the Adoption of Decentralized Anaerobic Co-Digestion for the Treatment of Municipal Organic Waste with Energy Recovery in Urban Districts of Metropolitan Areas. International Journal of Environmental Research and Public Health. 2021; 18(4):1820. https://doi.org/10.3390/ijerph18041820
Chicago/Turabian StyleGadaleta, Giovanni, Sabino De Gisi, and Michele Notarnicola. 2021. "Feasibility Analysis on the Adoption of Decentralized Anaerobic Co-Digestion for the Treatment of Municipal Organic Waste with Energy Recovery in Urban Districts of Metropolitan Areas" International Journal of Environmental Research and Public Health 18, no. 4: 1820. https://doi.org/10.3390/ijerph18041820
APA StyleGadaleta, G., De Gisi, S., & Notarnicola, M. (2021). Feasibility Analysis on the Adoption of Decentralized Anaerobic Co-Digestion for the Treatment of Municipal Organic Waste with Energy Recovery in Urban Districts of Metropolitan Areas. International Journal of Environmental Research and Public Health, 18(4), 1820. https://doi.org/10.3390/ijerph18041820