Thermal Conditions and Hospital Admissions: Analysis of Longitudinal Data from Cyprus (2009–2018)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hospital Admission Data
2.2. Meteorological Data
2.3. Data Process
2.4. Statistical Analysis
3. Results
3.1. Hospital Admissions
3.2. Meteorological and Air Quality Conditions
3.3. Hospital Admissions and Thermal Environment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Intergovernmental Panel on Climate Change (IPCC). Climate Change Widespread, Rapid, and Intensifying—IPCC. Available online: https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr/ (accessed on 30 September 2021).
- World Health Organization (WHO). Climate Change and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health (accessed on 30 September 2021).
- Ebi, K.L.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R.S.; Ma, W.; Malik, A.; et al. Hot weather and heat extremes: Health risks. Lancet 2021, 398, 698–708. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). 2020 Closes a Decade of Exceptional Heat. World Meteorological Organization. Available online: https://public.wmo.int/en/media/news/2020-closes-decade-of-exceptional-heat (accessed on 1 October 2021).
- United States Environmental Protection Agency Climate Change Indicators: Heat-Related Deaths. US EPA. Available online: https://www.epa.gov/climate-indicators/climate-change-indicators-heat-related-deaths (accessed on 1 October 2021).
- World Meteorological Organization (WMO). The Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2019); World Meteorological Organization (WMO): Geneva, Switzerland, 2021. [Google Scholar]
- Pantavou, K.G.; Lykoudis, S.P.; Nikolopoulos, G.K. Milder form of heat-related symptoms and thermal sensation: A study in a Mediterranean climate. Int. J. Biometeorol. 2016, 60, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Pantavou, K.; Giallouros, G.; Lykoudis, S.; Markozannes, G.; Constantinou, E.; Panagi, A.; Economou, M.; Georgiou, A.; Pilavas, A.; Theodoridou, M.; et al. Impact of heat exposure on health during a warm period in Cyprus. Euro-Mediterr. J. Environ. Integr. 2020, 5, 27. [Google Scholar] [CrossRef]
- Cui, Y.; Ai, S.; Liu, Y.; Qian, Z.; Wang, C.; Sun, J.; Sun, X.; Zhang, S.; Syberg, K.M.; Howard, S.; et al. Hourly associations between ambient temperature and emergency ambulance calls in one central Chinese city: Call for an immediate emergency plan. Sci. Total Environ. 2020, 711, 135046. [Google Scholar] [CrossRef]
- Phosri, A.; Ueda, K.; Phung, V.L.H.; Tawatsupa, B.; Honda, A.; Takano, H. Effects of ambient air pollution on daily hospital admissions for respiratory and cardiovascular diseases in Bangkok, Thailand. Sci. Total Environ. 2019, 651, 1144–1153. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Sarnat, S.E.; Grundstein, A.J.; Winquist, A.; Chang, H.H. Time-series analysis of heat waves and emergency department visits in Atlanta, 1993 to 2012. Environ. Health Perspect. 2017, 125, 057009. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Odame, E.; Silver, K.; Zheng, S. Comparing urban and rural vulnerability to heat-related mortality: A systematic review and meta-analysis. J. Glob. Epidemiol. Environ. Health 2017, 1, 9–15. [Google Scholar]
- Schaffer, A.; Muscatello, D.; Broome, R.; Corbett, S.; Smith, W. Emergency department visits, ambulance calls, and mortality associated with an exceptional heat wave in Sydney, Australia, 2011: A time-series analysis. Environ. Health 2012, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Son, J.-Y.; Lee, J.-T.; Anderson, G.B.; Bell, M.L. The Impact of Heat Waves on Mortality in Seven Major Cities in Korea. Environ. Health Perspect. 2012, 120, 566–571. [Google Scholar] [CrossRef] [Green Version]
- Näyhä, S.; Rintamäki, H.; Donaldson, G.; Hassi, J.; Jousilahti, P.; Laatikainen, T.; Jaakkola, J.J.K.; Ikäheimo, T.M. The prevalence of heat-related cardiorespiratory symptoms: The vulnerable groups identified from the National FINRISK 2007 Study. Int. J. Biometeorol. 2017, 61, 657–668. [Google Scholar] [CrossRef] [Green Version]
- Petkova, E.P.; Morita, H.; Kinney, P.L. Health impacts of heat in a changing climate: How can emerging science inform urban adaptation planning? Curr. Epidemiol. Rep. 2014, 1, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Guo, Y.; Ye, T.; Gasparrini, A.; Tong, S.; Overcenco, A.; Urban, A.; Schneider, A.; Entezari, A.; Vicedo-Cabrera, A.M.; et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: A three-stage modelling study. Lancet Planet. Health 2021, 5, e415–e425. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Mediterranean Gripped by Extreme Heat, with New Reported Temperature Record. World Meteorological Organization. Available online: https://public.wmo.int/en/media/news/mediterranean-gripped-extreme-heat-new-reported-temperature-record (accessed on 1 October 2021).
- EM-DAT. The International Disasters Database. Available online: https://www.emdat.be/ (accessed on 1 October 2021).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Heaviside, C.; Tsangari, H.; Paschalidou, A.; Vardoulakis, S.; Kassomenos, P.; Georgiou, K.E.; Yamasaki, E.N. Heat-related mortality in Cyprus for current and future climate scenarios. Sci. Total Environ. 2016, 569–570, 627–633. [Google Scholar] [CrossRef]
- Statistical Service of the Republic of Cyprus. Population and Social Conditions—Population Census. Available online: https://www.mof.gov.cy/mof/cystat/statistics.nsf/populationcondition_22main_en/populationcondition_22main_en?OpenForm&sub=2&sel=2 (accessed on 16 September 2021).
- Achilleos, S.; Mouzourides, P.; Kalivitis, N.; Katra, I.; Kloog, I.; Kouis, P.; Middleton, N.; Mihalopoulos, N.; Neophytou, M.; Panayiotou, A.; et al. Spatio-temporal variability of desert dust storms in Eastern Mediterranean (Crete, Cyprus, Israel) between 2006 and 2017 using a uniform methodology. Sci. Total Environ. 2020, 714, 136693. [Google Scholar] [CrossRef]
- Tsangari, H.; Paschalidou, A.; Vardoulakis, S.; Heaviside, C.; Konsoula, Z.; Christou, S.; Georgiou, K.E.; Ioannou, K.; Mesimeris, T.; Kleanthous, S.; et al. Human mortality in Cyprus: The role of temperature and particulate air pollution. Reg. Environ. Chang. 2015, 16, 1905–1913. [Google Scholar] [CrossRef]
- Middleton, N.; Yiallouros, P.; Kleanthous, S.; Kolokotroni, O.; Schwartz, J.; Dockery, D.; Demokritou, P.; Koutrakis, P. A 10-year time-series analysis of respiratory and cardiovascular morbidity in Nicosia, Cyprus: The effect of short-term changes in air pollution and dust storms. Environ. Health 2008, 22, 39. [Google Scholar] [CrossRef] [Green Version]
- Tsangari, H.; Paschalidou, A.K.; Kassomenos, A.P.; Vardoulakis, S.; Heaviside, C.; Georgiou, K.E.; Yamasaki, E.N. Extreme weather and air pollution effects on cardiovascular and respiratory hospital admissions in Cyprus. Sci. Total Environ. 2016, 542, 247–253. [Google Scholar] [CrossRef]
- Statistical Service of the Republic of Cyprus. Available online: https://www.mof.gov.cy/mof/cystat/statistics.nsf/ (accessed on 16 September 2021).
- Muñoz Sabater, J. ERA5-Land Hourly Data from 1981 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/ (accessed on 14 April 2021).
- Alduchov, O.A.; Eskridge, R.E. Improved Magnus form approximation of saturation vapor pressure. J. Appl. Meteorol. 1996, 35, 601–609. [Google Scholar] [CrossRef]
- August, E.F. Ueber die Berechnung der Expansivkraft des Wasserdunstes. Ann. Phys. Chem. 1828, 89, 122–137. [Google Scholar] [CrossRef] [Green Version]
- Magnus, G. Versuche über die Spannkräfte des Wasserdampfs. Ann. Phys. Chem. 1844, 137, 225–247. [Google Scholar] [CrossRef] [Green Version]
- Stull, R. Atmospheric boundary layer. In Meteorology for Scientists and Engineers; Brooks Cole: Vancouver, BC, Canada, 2011; pp. 687–722. [Google Scholar]
- Mayer, H.; Höppe, P. Thermal comfort of man in different urban environments. Theor. Appl. Climatol. 1987, 38, 43–49. [Google Scholar] [CrossRef]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Fiala, D.; Havenith, G.; Bröde, P.; Kampmann, B.; Jendritzky, G. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int. J. Biometeorol. 2012, 56, 429–441. [Google Scholar] [CrossRef] [Green Version]
- Matzarakis, A.; Mayer, H. Another Kind of Environmental Stress: Thermal Stress. WHO Newsl. 1996, 18, 7–10. [Google Scholar]
- UTCI Universal Thermal Climate Index Documents, UTCI Program Code. Available online: http://www.utci.org (accessed on 16 October 2021).
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. Int. J. Biometeorol. 2010, 54, 131–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—Application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef]
- Yirga, A.A.; Melesse, S.F.; Mwambi, H.G.; Ayele, D.G. Negative binomial mixed models for analyzing longitudinal CD4 count data. Sci. Rep. 2020, 10, 16742. [Google Scholar] [CrossRef]
- Dieleman, J.L.; Templin, T. Random-Effects, Fixed-Effects and the within-between Specification for Clustered Data in Observational Health Studies: A Simulation Study. PLoS ONE 2014, 9, e110257. [Google Scholar] [CrossRef]
- Bell, A.; Jones, K. Explaining Fixed Effects: Random Effects Modeling of Time-Series Cross-Sectional and Panel Data. Polit. Sci. Res. Methods 2015, 3, 133–153. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-J.; Yu, B.; Feuer, E.J. Selecting the number of change-points in segmented line regression. Stat. Sin. 2009, 19, 597. [Google Scholar]
- European Commission Standards—Air Quality—Environment—European Commission. Available online: https://ec.europa.eu/environment/air/quality/standards.htm (accessed on 29 September 2021).
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Braga, A.; Zanobetti, A.; Schwartz, J. The time course of weather-related deaths. Epidemiology 2001, 12, 662–667. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, Y.; Zhang, W.; Li, S.; Chen, G.; Wu, Y.; Qiu, C.; Ying, K.; Tang, H.; Huang, J.-a.; et al. Ambient temperature and emergency department visits: Time-series analysis in 12 Chinese cities. Environ. Pollut. 2017, 224, 310–316. [Google Scholar] [CrossRef]
- Lubczyńska, M.J.; Christophi, C.A.; Lelieveld, J. Heat-related cardiovascular mortality risk in Cyprus: A case-crossover study using a distributed lag non-linear model. Environ. Health A Glob. Access Sci. Source 2015, 14, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouis, P.; Kakkoura, M.; Ziogas, K.; Paschalidou, A.; Papatheodorou, S.I. The effect of ambient air temperature on cardiovascular and respiratory mortality in Thessaloniki, Greece. Sci. Total Environ. 2019, 647, 1351–1358. [Google Scholar] [CrossRef]
- Pantavou, K.; Theoharatos, G.; Nikolopoulos, G.; Katavoutas, G.; Asimakopoulos, D. Evaluation of thermal discomfort in Athens territory and its effect on the daily number of recorded patients at hospitals’ emergency rooms. Int. J. Biometeorol. 2008, 52, 773–778. [Google Scholar] [CrossRef]
- Bartzokas, A.; Kassomenos, P.; Petrakis, M.; Celessides, C. The effect of meteorological and pollution parameters on the frequency of hospital admissions for cardiovascular and respiratory problems in Athens. Indoor Built Environ. 2004, 13, 271–275. [Google Scholar] [CrossRef]
- Wang, Y.; Eliot, M.; Wellenius, G. Short-term changes in ambient particulate matter and risk of stroke: A systematic review and meta-analysis. J. Am. Heart Assoc. 2014, 3, e000983. [Google Scholar] [CrossRef] [Green Version]
District | Population | Hospital | Βeds 1 | Hospital Admissions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Daily Mean (±SD) | Daily Mean per 100,000 (±SD) | ||||||||||
Total | +64 Years | Cardiovascular | Respiratory | Total | +64 Years | Cardiovascular | Respiratory | |||||
Total | 840,407 | All | 792,984 | 307,615 | 67,382 | 58,389 | 29.3 ± 26.1 | 16.7 ± 11.3 | 4 ± 2.8 | 2.1 ± 2 | 2 ± 1.8 | |
Nicosia | 326,980 | Nicosia | 539 | 246,281 (31.1%) | 111,991 (36.4%) | 30,502 (45.3%) | 14,388 (24.6%) | 67.4 ± 27.6 | 20.6 ± 8.5 | 9.4 ± 3.9 | 2.6 ± 1.5 | 1.3 ± 0.9 |
Makario | 217 | 102,054 (12.9%) | 16,375 (5.3%) | 419 (0.6%) | 4968 (8.5%) | 27.9 ± 12 | 8.5 ± 3.7 | 1.9 ± 1 | 0.1 ± 0.3 | 0.6 ± 0.6 | ||
Limassol | 235,330 | Limassol | 399 | 213,221 (26.9%) | 90,097 (29.3%) | 18,175 (27%) | 16,421 (28.1%) | 58.4 ± 16.8 | 24.8 ± 7.1 | 10.5 ± 3.8 | 2.2 ± 1.2 | 2.1 ± 1.5 |
Kyperounta | ΝA | 9998 (1.3%) | 7321 (2.4%) | 1599 (2.4%) | 1220 (2.1%) | 3.1 ± 1.8 | 1.2 ± 0.9 | 0.9 ± 0.8 | 0.2 ± 0.4 | 0.3 ± 0.5 | ||
Larnaca | 143,192 | Larnaca | 191 | 93,931 (11.9%) | 34,601 (11.3%) | 7219 (10.7%) | 9386 (16.1%) | 25.7 ± 9.4 | 17.9 ± 6.6 | 6.5 ± 2.9 | 1.7 ± 1 | 2.2 ± 1.7 |
Pafos | 88,276 | Pafos | 158 | 83,661 (10.6%) | 31,894 (10.4%) | 7258 (10.8%) | 9319 (16%) | 22.9 ± 6.9 | 26 ± 7.8 | 9.9 ± 3.9 | 2.8 ± 1.9 | 3.2 ± 2.3 |
Polis Chrysochous | ΝA | 3354 (0.4%) | 2605 (0.8%) | 432 (0.6%) | 3319 (16%) | 1.7 ± 1 | 1.8 ± 1.1 | 1.6 ± 1 | 1.2 ± 0.4 | 1.1 ± 0.4 | ||
Ammochostos | 46,629 | Ammochostos | 97 | 40,484 (5.1%) | 12,797 (4.2%) | 1778 (2.6%) | 2322 (4%) | 11.1 ± 4.5 | 23.8 ± 9.6 | 7.8 ± 4.4 | 3 ± 1.7 | 3.3 ± 2 |
Mean | Standard Deviation | Median | Interquartile Range | Minimum | Maximum | |
---|---|---|---|---|---|---|
Tair (°C) | 19.9 | 6.3 | 19.6 | 14.5–25.5 | −1.0 | 34.8 |
RH (%) | 68 | 11 | 69 | 61–76 | 18 | 97 |
WS (m/s) | 0.9 | 0.4 | 0.8 | 0.6–1.0 | 0.1 | 3.5 |
SR (W/m2) | 225.2 | 82.0 | 232.1 | 147.9–302.7 | 24.7 | 352.4 |
PET (°C) | 20.5 | 8.6 | 20.5 | 12.9–28.2 | −5.5 | 39.6 |
UTCI (°C) | 21.7 | 7.8 | 21.8 | 15.0–28.6 | −4.5 | 42.5 |
NO (μg/m3) | 14.4 | 15.6 | 8.8 | 4.9–17.5 | 0.1 | 137.9 |
NO2 (μg/m3) | 28.7 | 12.0 | 27.3 | 19.9–36.7 | 1.0 | 84.7 |
NOx (μg/m3) | 50.6 | 34.0 | 40.8 | 27.7–63.4 | 1.2 | 277.9 |
SO2 (μg/m3) | 3.0 | 2.1 | 2.5 | 1.5–4.0 | 0.0 | 27.2 |
CO (μg/m3) | 462.8 | 237.4 | 405.6 | 314.6–546.9 | 10.5 | 2130.1 |
O3 (μg/m3) | 57.5 | 19.8 | 58.3 | 42.5–72.2 | 2.8 | 134.2 |
PM2.5 (μg/m3) | 20.2 | 11.0 | 18.2 | 13.8–24.3 | 4.8 | 347.4 |
PM10 (μg/m3) | 42.7 | 39.3 | 36.9 | 29.2–47.4 | 5.4 | 2868.2 |
Benzene (μg/m3) | 1.2 | 0.9 | 1.0 | 0.6–1.6 | 0.0 | 29.4 |
Models | Population | Independent Variable | Coefficient | IRR | p-Value | Lower CI | Upper CI |
---|---|---|---|---|---|---|---|
1 | All-cause | Tair | 0.006 | 1.006 | <0.0001 | 1.005 | 1.006 |
O3 | 0.001 | 1.001 | <0.0001 | 1.001 | 1.002 | ||
NO | 0.002 | 1.002 | <0.0001 | 1.001 | 1.002 | ||
NO2 | 0.010 | 1.009 | <0.0001 | 1.009 | 1.010 | ||
2 | PET | 0.004 | 1.004 | <0.0001 | 1.003 | 1.005 | |
O3 | 0.001 | 1.001 | <0.0001 | 1.001 | 1.002 | ||
NO | 0.002 | 1.002 | <0.0001 | 1.001 | 1.002 | ||
NO2 | 0.009 | 1.009 | <0.0001 | 1.009 | 1.010 | ||
3 | UTCI | 0.004 | 1.004 | <0.0001 | 1.003 | 1.005 | |
O3 | 0.001 | 1.001 | <0.0001 | 1.001 | 1.002 | ||
NO | 0.002 | 1.002 | <0.0001 | 1.001 | 1.002 | ||
NO2 | 0.010 | 1.010 | <0.0001 | 1.009 | 1.010 | ||
4 | +64 years | Tair | 0.002 | 1.002 | 0.001 | 1.001 | 1.003 |
O3 | 0.001 | 1.001 | 0.000 | 1.001 | 1.002 | ||
NO | 0.001 | 1.001 | 0.028 | 1.000 | 1.001 | ||
NO2 | 0.010 | 1.010 | 0.000 | 1.009 | 1.011 | ||
5 | PET | 0.001 | 1.001 | 0.001 | 1.001 | 1.002 | |
O3 | 0.001 | 1.001 | 0.000 | 1.001 | 1.002 | ||
NO | 0.001 | 1.001 | 0.029 | 1.000 | 1.001 | ||
NO2 | 0.010 | 1.010 | 0.000 | 1.009 | 1.011 | ||
6 | UTCI | 0.002 | 1.002 | 0.002 | 1.001 | 1.002 | |
O3 | 0.001 | 1.001 | 0.000 | 1.001 | 1.002 | ||
NO | 0.001 | 1.001 | 0.033 | 1.000 | 1.001 | ||
NO2 | 0.010 | 1.010 | 0.000 | 1.009 | 1.011 | ||
7 | Cardiovascular diseases | Tair | −0.003 | 0.997 | 0.005 | 0.995 | 0.999 |
O3 | −0.002 | 0.998 | <0.0001 | 0.997 | 0.999 | ||
8 | Respiratory diseases | Tair | −0.025 | 0.975 | <0.0001 | 0.973 | 0.978 |
O3 | 0.002 | 1.001 | <0.0001 | 1.001 | 1.003 | ||
NO2 | 0.009 | 1.009 | <0.0001 | 1.008 | 1.003 | ||
9 | PET | −0.018 | 0.982 | <0.0001 | 0.981 | 0.984 | |
O3 | 0.002 | 1.002 | <0.0001 | 1.001 | 1.003 | ||
NO2 | 0.010 | 1.010 | <0.0001 | 1.008 | 1.011 | ||
10 | UTCI | −0.018 | 0.982 | <0.0001 | 0.980 | 0.983 | |
O3 | 0.017 | 1.002 | <0.0001 | 1.001 | 1.003 | ||
NO2 | 0.010 | 1.010 | <0.0001 | 1.001 | 1.011 |
Population | Independent Variable | Model | Warm Period | Model | Cool Period | ||||
---|---|---|---|---|---|---|---|---|---|
Coefficient | IRR | p-Value | Coefficient | IRR | p-Value | ||||
All-cause | Tair | 11 | 0.007 | 1.007 | <0.0001 | ||||
O3 | 0.001 | 1.001 | 0.009 | ||||||
NO | 0.004 | 1.004 | <0.0001 | ||||||
NO2 | 0.008 | 1.008 | <0.0001 | ||||||
PET | 12 | 0.006 | 1.006 | <0.0001 | 20 | −0.005 | 0.995 | 0.002 | |
O3 | 0.005 | 1.005 | <0.0001 | ||||||
NO | 0.003 | 1.003 | <0.0001 | 0.002 | 1.002 | <0.0001 | |||
NO2 | 0.008 | 1.008 | <0.0001 | 0.012 | 1.012 | <0.0001 | |||
UTCI | 13 | 0.006 | 1.006 | <0.0001 | 21 | −0.005 | 0.995 | 0.002 | |
O3 | 0.001 | 1.001 | 0.009 | 0.005 | 1.005 | <0.0001 | |||
NO | 0.004 | 1.004 | <0.0001 | 0.002 | 1.002 | <0.0001 | |||
NO2 | 0.008 | 1.008 | <0.0001 | 0.012 | 1.012 | <0.0001 | |||
+64 years | Tair | 14 | 0.002 | 1.002 | 0.013 | ||||
O3 | 0.001 | 1.001 | 0.008 | ||||||
NO | 0.002 | 1.002 | <0.0001 | ||||||
NO2 | 0.009 | 1.009 | <0.0001 | ||||||
PET | 15 | 0.002 | 1.002 | 0.001 | 22 | −0.004 | 0.996 | 0.050 | |
O3 | 0.001 | 1.001 | 0.018 | 0.004 | 1.004 | 0.000 | |||
NO | 0.002 | 1.002 | <0.0001 | 0.001 | 1.001 | 0.023 | |||
NO2 | 0.009 | 1.009 | <0.0001 | 0.012 | 1.012 | 0.000 | |||
UTCI | 16 | 0.003 | 1.003 | 0.001 | 23 | −0.004 | 0.996 | 0.036 | |
O3 | 0.001 | 1.001 | 0.008 | 0.004 | 1.004 | 0.000 | |||
NO | 0.002 | 1.002 | 0.000 | 0.001 | 1.001 | 0.023 | |||
NO2 | 0.009 | 1.009 | 0.000 | 0.011 | 1.012 | <0.0001 | |||
Respiratory diseases | Tair | 17 | −0.016 | 0.984 | <0.0001 | 24 | −0.016 | 0.984 | <0.0001 |
NO2 | 0.008 | 1.008 | <0.0001 | 0.006 | 1.006 | <0.0001 | |||
PET | 18 | −0.011 | 0.989 | <0.0001 | |||||
NO2 | 0.008 | 1.008 | <0.0001 | ||||||
UTCI | 19 | −0.012 | 0.988 | <0.0001 | |||||
NO2 | 0.008 | 1.008 | <0.0001 |
Models | Population | Independent Variable | Coefficient | IRR | p-Value | Lower CI | Upper CI |
---|---|---|---|---|---|---|---|
25 | All-cause | Tair | 0.007 | 1.007 | <0.0001 | 1.005 | 1.009 |
PM10 | 0.001 | 1.001 | 0.004 | 1.000 | 1.001 | ||
NO | 0.028 | 1.028 | <0.0001 | 1.025 | 1.031 | ||
NO2 | 0.002 | 1.002 | 0.022 | 1.000 | 1.004 | ||
26 | PET | 0.005 | 1.005 | <0.0001 | 1.004 | 1.007 | |
PM10 | 0.001 | 1.001 | 0.002 | 1.000 | 1.001 | ||
NO | 0.008 | 1.028 | <0.0001 | 1.025 | 1.031 | ||
NO2 | 0.002 | 1.002 | 0.029 | 1.000 | 1.004 | ||
27 | UTCI | 0.006 | 1.006 | <0.0001 | 1.005 | 1.008 | |
PM10 | 0.001 | 1.001 | 0.002 | 1.000 | 1.001 | ||
NO | 0.028 | 1.028 | <0.0001 | 1.025 | 1.031 | ||
NO2 | 0.002 | 1.002 | 0.009 | 1.001 | 1.004 | ||
28 | +64 years | Tair | 0.003 | 1.003 | 0.006 | 1.001 | 1.005 |
NO | 0.023 | 1.023 | <0.0001 | 1.019 | 1.027 | ||
NO2 | 0.003 | 1.003 | 0.001 | 1.001 | 1.005 | ||
28 | PET | 0.002 | 1.002 | 0.050 | 1.000 | 1.004 | |
PM10 | 0.001 | 1.001 | 0.049 | 1.000 | 1.001 | ||
NO | 0.022 | 1.023 | <0.0001 | 1.019 | 1.027 | ||
NO2 | 0.004 | 1.004 | <0.0001 | 1.002 | 1.006 | ||
29 | UTCI | 0.003 | 1.003 | 0.002 | 1.001 | 1.005 | |
NO | 0.023 | 1.023 | <0.0001 | 1.019 | 1.027 | ||
NO2 | 0.003 | 1.003 | 0.001 | 1.001 | 1.005 | ||
30 | Respiratory diseases | Tair | −0.019 | 0.981 | <0.0001 | 0.977 | 0.985 |
NO | 0.015 | 1.016 | <0.0001 | 1.008 | 1.023 | ||
NO2 | 0.007 | 1.007 | 0.001 | 1.003 | 1.011 | ||
31 | PET | −0.015 | 0.985 | <0.0001 | 0.982 | 0.988 | |
NO | 0.007 | 1.016 | <0.0001 | 1.001 | 1.023 | ||
NO2 | 0.153 | 1.007 | <0.0001 | 1.003 | 1.011 | ||
32 | UTCI | −0.016 | 0.984 | <0.0001 | 0.981 | 0.988 | |
NO | 0.016 | 1.006 | <0.0001 | 1.009 | 1.024 | ||
NO2 | 0.006 | 1.016 | 0.003 | 1.002 | 1.010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantavou, K.; Giallouros, G.; Philippopoulos, K.; Piovani, D.; Cartalis, C.; Bonovas, S.; Nikolopoulos, G.K. Thermal Conditions and Hospital Admissions: Analysis of Longitudinal Data from Cyprus (2009–2018). Int. J. Environ. Res. Public Health 2021, 18, 13361. https://doi.org/10.3390/ijerph182413361
Pantavou K, Giallouros G, Philippopoulos K, Piovani D, Cartalis C, Bonovas S, Nikolopoulos GK. Thermal Conditions and Hospital Admissions: Analysis of Longitudinal Data from Cyprus (2009–2018). International Journal of Environmental Research and Public Health. 2021; 18(24):13361. https://doi.org/10.3390/ijerph182413361
Chicago/Turabian StylePantavou, Katerina, George Giallouros, Kostas Philippopoulos, Daniele Piovani, Constantinos Cartalis, Stefanos Bonovas, and Georgios K. Nikolopoulos. 2021. "Thermal Conditions and Hospital Admissions: Analysis of Longitudinal Data from Cyprus (2009–2018)" International Journal of Environmental Research and Public Health 18, no. 24: 13361. https://doi.org/10.3390/ijerph182413361