Not All Remote Workers Are Similar: Technology Acceptance, Remote Work Beliefs, and Wellbeing of Remote Workers during the Second Wave of the COVID-19 Pandemic
Abstract
:1. Introduction
1.1. Work from Home (WFH) during the COVID-19 Pandemic
1.2. Work and Organizational Conditions and Workers’ Profiles
1.3. Work from Home (WFH), Technology Acceptance Model (TAM), and Beliefs about Remote Work
1.4. WFH Workers’ Motivation and Well-Being: Worker Self-Efficacy, Coping Strategies, and Organizational Effectiveness
2. Materials and Methods
2.1. Sample and Procedure
2.2. Measures
2.3. Data Analysis
3. Results
3.1. Cluster Analysis and Remote Workers’ Profile Descriptions
3.2. Remote Workers’ Cluster Profile Comparisons
4. Discussion
4.1. Strength, Limitations, and Future Directions
4.2. Practical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scheid, J.L.; Lupien, S.P.; Ford, G.S.; West, S.L. Commentary: Physiological and psychological impact of face mask usage during the COVID-19 pandemic. Int. J. Environ. Res. Public Health 2020, 17, 6655. [Google Scholar] [CrossRef]
- International Labour Organization an Employers’ Guide on Working from Home in Response to the Outbreak of COVID-19. 2020. Available online: https://www.ilo.org/wcmsp5/groups/public/---ed_dialogue/---act_emp/documents/publication/wcms_745024.pdf (accessed on 8 October 2021).
- Di Tecco, C.; Ronchetti, M.; Russo, S.; Ghelli, M.; Rondinone, B.M.; Persechino, B.; Iavicoli, S. Implementing Smart Working in Public Administration: A follow up study. Med. Lav. 2021, 112, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Bonacini, L.; Gallo, G.; Scicchitano, S. Working from home and income inequality: Risks of a ‘new normal’ with COVID-19. J. Popul. Econ. 2021, 34, 303–360. [Google Scholar] [CrossRef]
- Toscano, F.; Zappalà, S. Smart working in Italy: Origin, diffusion and potential outcomes. Psicol. Soc. 2020, 15, 203–223. [Google Scholar] [CrossRef]
- Caronia, D. Lo Smart Working oltre il COVID-19: Qual è il futuro del lavoro dopo l’emergenza sanitaria? Available online: https://blog.osservatori.net/it_it/smart-working-emergenza-covid (accessed on 29 October 2021).
- Guler, M.A.; Guler, K.; Guneser Gulec, M.; Ozdoglar, E. Working from Home During A Pandemic: Investigation of the Impact of COVID-19 on Employee Health and Productivity. J. Occup. Environ. Med. 2021, 63, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Moretti, A.; Menna, F.; Aulicino, M.; Paoletta, M.; Liguori, S.; Iolascon, G. Characterization of home working population during COVID-19 emergency: A cross-sectional analysis. Int. J. Environ. Res. Public Health 2020, 17, 6284. [Google Scholar] [CrossRef]
- Toscano, F.; Zappalà, S. Social Isolation and Stress as Predictors of Productivity Perception and Remote Work Satisfaction during the COVID-19 Pandemic: The Role of Concern about the Virus in a Moderated Double Mediation. Sustainability 2020, 12, 9804. [Google Scholar] [CrossRef]
- Galanti, T.; Guidetti, G.; Mazzei, E.E.; Zappalà, S.; Toscano, F. Work from Home During the COVID-19 Outbreak: The Impact on Employees’ Remote Work Productivity, Engagement, and Stress. J. Occup. Environ. Med. 2021, 63, e426–e432. [Google Scholar] [CrossRef]
- Graham, M.; Weale, V.; Lambert, K.; Kinsman, N.; Stuckey, R.; Oakman, J. Working at home: The impacts of COVID 19 on health, family-work-life conflict, gender, and parental responsibilities. J. Occup. Environ. Med. 2021, 63, 938–943. [Google Scholar] [CrossRef]
- Molino, M.; Ingusci, E.; Signore, F.; Manuti, A.; Giancaspro, M.L.; Russo, V.; Zito, M.; Cortese, C.G. Wellbeing Costs of Technology Use during COVID-19 Remote Working: An Investigation Using the Italian Translation of the Technostress Creators Scale. Sustainability 2020, 12, 5911. [Google Scholar] [CrossRef]
- Sanchez-Gomez, M.; Giorgi, G.; Finstad, G.L.; Urbini, F.; Foti, G.; Mucci, N.; Zaffina, S.; León-Perez, J.M. COVID-19 pandemic as a traumatic event and its associations with fear and mental health: A cognitive-activation approach. Int. J. Environ. Res. Public Health 2021, 18, 7422. [Google Scholar] [CrossRef] [PubMed]
- King, W.R.; He, J. A meta-analysis of the technology acceptance model. Inf. Manag. 2006, 43, 740–755. [Google Scholar] [CrossRef]
- Allen, T.D.; Golden, T.D.; Shockley, K.M. How effective is telecommuting? Assessing the status of our scientific findings. Psychol. Sci. Public Interest 2015, 16, 40–68. [Google Scholar] [CrossRef] [PubMed]
- Bellotti, L.; Zaniboni, S.; Balducci, C.; Grote, G. Rapid Review on COVID-19, Work-Related Aspects, and Age Differences. Int. J. Environ. Res. Public Health 2021, 18, 5166. [Google Scholar] [CrossRef] [PubMed]
- Zito, M.; Ingusci, E.; Cortese, C.G.; Giancaspro, M.L.; Manuti, A.; Molino, M.; Signore, F.; Russo, V. Does the end justify the means? The role of organizational communication among work-from-home employees during the covid-19 pandemic. Int. J. Environ. Res. Public Health 2021, 18, 3933. [Google Scholar] [CrossRef]
- Kniffin, K.M.; Narayanan, J.; Anseel, F.; Antonakis, J.; Ashford, S.P.; Bakker, A.B.; Bamberger, P.; Bapuji, H.; Bhave, D.P.; Choi, V.K.; et al. COVID-19 and the workplace: Implications, issues, and insights for future research and action. Am. Psychol. 2021, 76, 63–77. [Google Scholar] [CrossRef]
- Ollo-López, A.; Goñi-Legaz, S.; Erro-Garcés, A. Home-based telework: Usefulness and facilitators. Int. J. Manpow. 2020, 42, 644–660. [Google Scholar] [CrossRef]
- Pérez Pérez, M.; Martínez Sánchez, A.; de Luis Carnicer, P.; José Vela Jiménez, M. A technology acceptance model of innovation adoption: The case of teleworking. Eur. J. Innov. Manag. 2004, 7, 280–291. [Google Scholar] [CrossRef]
- Silva Cortès, A.; Montoya Restrepo, I.A.; Valencia Arias, J.A. The attitude of managers toward telework, why is it so difficult to adopt it in organizations? Technol. Soc. 2019, 59, 101133. [Google Scholar] [CrossRef]
- Hoornweg, N.; Peters, P.; Van Der Heijden, B. Finding the optimal mix between telework and office hours to enhance employee productivity: A study into the relationship between telework intensity and individual productivity, with mediation of intrinsic motivation and moderation of office hours. Adv. Ser. Manag. 2016, 16, 1–28. [Google Scholar] [CrossRef]
- Cuerdo-Vilches, T.; Navas-Martín, M.Á.; Oteiza, I. Working from home: Is our housing ready? Int. J. Environ. Res. Public Health 2021, 18, 7329. [Google Scholar] [CrossRef]
- Ipsen, C.; van Veldhoven, M.; Kirchner, K.; Hansen, J.P. Six key advantages and disadvantages of working from home in europe during COVID-19. Int. J. Environ. Res. Public Health 2021, 18, 1826. [Google Scholar] [CrossRef]
- Malik, A.; Rosenberger, P.J.; Fitzgerald, M.; Houlcroft, L. Factors affecting smart working: Evidence from Australia. Int. J. Manpow. 2016, 37, 1042–1066. [Google Scholar] [CrossRef]
- Molino, M.; Cortese, C.G.; Ghislieri, C. The promotion of technology acceptance and work engagement in industry 4.0: From personal resources to information and training. Int. J. Environ. Res. Public Health 2020, 17, 2438. [Google Scholar] [CrossRef] [Green Version]
- Bloom, N.; Liang, J.; Roberts, J.; Ying, Z.J. Does working from home work? Evidence from a Chinese experiment. Q. J. Econ. 2015, 130, 165–218. [Google Scholar] [CrossRef] [Green Version]
- Fonner, K.L.; Roloff, M.E. Why teleworkers are more satisfied with their jobs than are office-based workers: When less contact is beneficial. J. Appl. Commun. Res. 2010, 38, 336–361. [Google Scholar] [CrossRef]
- Ghislieri, C.; Dolce, V.; Sanseverino, D.; Wodociag, S.; Vonthron, A.-M.; Vayre, É.; Marianna, G.; Molino, M. Might insecurity and use of ICT enhance internet addiction and exhaust people? A study in two European countries during emergency remote working. Comput. Hum. Behav. 2021, 126, 107010. [Google Scholar] [CrossRef]
- Tarafdar, M.; Tu, Q.; Ragu-Nathan, B.S.; Ragu-Nathan, T.S. The impact of technostress on role stress and productivity. J. Manag. Inf. Syst. 2007, 24, 301–328. [Google Scholar] [CrossRef]
- Afonso, P.; Fonseca, M.; Teodoro, T. Evaluation of anxiety, depression and sleep quality in full-time teleworkers. J. Public Health 2021, fdab164. [Google Scholar] [CrossRef] [PubMed]
- Shipman, K.; Burrell, D.N.; Huff Mac Pherson, A. An organizational analysis of how managers must understand the mental health impact of teleworking during COVID-19 on employees. Int. J. Organ. Anal. 2021. [Google Scholar] [CrossRef]
- Bolisani, E.; Scarso, E.; Ipsen, C.; Kirchner, K.; Hansen, J.P. Working from home during COVID-19 pandemic: Lessons learned and issues. Manag. Mark. Chall. Knowl. Soc. 2020, 15, 458–476. [Google Scholar] [CrossRef]
- Xiao, Y.; Becerik-Gerber, B.; Lucas, G.; Roll, S.C. Impacts of Working From Home During COVID-19 Pandemic on Physical and Mental Well-Being of Office Workstation Users. J. Occup. Environ. Med. 2021, 63, 181–190. [Google Scholar] [CrossRef]
- Daft, R.L. Organization Theory & Design; Cengage Learning: New York, NY, USA, 2016; ISBN 978-1-285-86634-5. [Google Scholar]
- Bailey, D.E.; Kurland, N.B. A review of telework research: Findings, new directions, and lessons for the study of modern work. J. Organ. Behav. 2002, 23, 383–400. [Google Scholar] [CrossRef]
- Sarbu, M. Determinants of Work-at-Home Arrangements for German Employees. Labour 2015, 29, 444–469. [Google Scholar] [CrossRef]
- Sarbu, M. The role of telecommuting for work-family conflict among German employees. Res. Transp. Econ. 2018, 70, 37–51. [Google Scholar] [CrossRef]
- Illegems, V.; Verbeke, A.; S’Jegers, R. The organizational context of teleworking implementation. Technol. Forecast. Soc. Chang. 2001, 68, 275–291. [Google Scholar] [CrossRef]
- Golden, T.D.; Veiga, J.F. The impact of extent of telecommuting on job satisfaction: Resolving inconsistent findings. J. Manag. 2005, 31, 301–318. [Google Scholar] [CrossRef] [Green Version]
- Virick, M.; DaSilva, N.; Arrington, K. Moderators of the curvilinear relation between extent of telecommuting and job and life satisfaction: The role of performance outcome orientation and worker type. Hum. Relat. 2010, 63, 137–154. [Google Scholar] [CrossRef]
- Golden, T.D.; Veiga, J.F.; Dino, R.N. The impact of professional isolation on teleworker job performance and turnover intentions: Does time spent teleworking, interacting face-to-face, or having access to communication-enhancing technology matter? J. Appl. Psychol. 2008, 93, 1412–1421. [Google Scholar] [CrossRef]
- Pulido-Martos, M.; Cortés-Denia, D.; Lopez-Zafra, E. Teleworking in Times of COVID-19: Effects on the Acquisition of Personal Resources. Front. Psychol. 2021, 12, 2485. [Google Scholar] [CrossRef]
- Santos, M.H.; Rosa, M.; Correia, R.B.; Xavier, E. Gender roles and dynamics in COVID-19 times: Changes and continuities in sharing arrangements of housework and caregiving. Psicologia 2021, 35, 147–156. [Google Scholar] [CrossRef]
- Allen, T.D.; Merlo, K.; Lawrence, R.C.; Slutsky, J.; Gray, C.E. Boundary Management and Work-Nonwork Balance While Working from Home. Appl. Psychol. 2021, 70, 60–84. [Google Scholar]
- Syrek, C.; Kühnel, J.; Vahle-Hinz, T.; de Bloom, J. Being an accountant, cook, entertainer and teacher—All at the same time: Changes in employees’ work and work-related well-being during the coronavirus (COVID-19) pandemic. Int. J. Psychol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Sewell, G.; Taskin, L. Out of Sight, Out of Mind in a New World of Work? Autonomy, Control, and Spatiotemporal Scaling in Telework. Organ. Stud. 2015, 36, 1507–1529. [Google Scholar] [CrossRef] [Green Version]
- van der Lippe, T.; Lippényi, Z. Co-workers working from home and individual and team performance. New Technol. Work Employ. 2020, 35, 60–79. [Google Scholar] [CrossRef] [PubMed]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. Manag. Inf. Syst. 1989, 13, 319–339. [Google Scholar] [CrossRef] [Green Version]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Lee, Y.; Kozar, K.A.; Larsen, K.R.T. The Technology Acceptance Model: Past, Present, and Future. Commun. Assoc. Inf. Syst. 2003, 12, 50. [Google Scholar] [CrossRef]
- Scherer, R.; Siddiq, F.; Tondeur, J. The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Comput. Educ. 2019, 128, 13–35. [Google Scholar] [CrossRef]
- Chen, L.; Aklikokou, A.K. Determinants of E-government Adoption: Testing the Mediating Effects of Perceived Usefulness and Perceived Ease of Use. Int. J. Public Adm. 2020, 43, 850–865. [Google Scholar] [CrossRef]
- Lunney, A.; Cunningham, N.R.; Eastin, M.S. Wearable fitness technology: A structural investigation into acceptance and perceived fitness outcomes. Comput. Hum. Behav. 2016, 65, 114–120. [Google Scholar] [CrossRef]
- Marangunić, N.; Granić, A. Technology acceptance model: A literature review from 1986 to 2013. Univers. Access Inf. Soc. 2015, 14, 81–95. [Google Scholar] [CrossRef]
- Judge, T.A.; Kammeyer-Mueller, J.D. Job attitudes. Annu. Rev. Psychol. 2012, 63, 341–367. [Google Scholar] [CrossRef] [PubMed]
- Aczel, B.; Kovacs, M.; Van Der Lippe, T.; Szaszi, B. Researchers working from home: Benefits and challenges. PLoS ONE 2021, 16, e0249127. [Google Scholar] [CrossRef] [PubMed]
- Lo Presti, A.; De Rosa, A.; Viceconte, E. I want to learn more! Integrating technology acceptance and task–technology fit models for predicting behavioural and future learning intentions. J. Work. Learn. 2021. [Google Scholar] [CrossRef]
- Prati, G.; Mancini, A.D. The psychological impact of COVID-19 pandemic lockdowns: A review and meta-analysis of longitudinal studies and natural experiments. Psychol. Med. 2021, 51, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Karasek, R.A. Job Demands, Job Decision Latitude, and Mental Strain: Implications for Job Redesign. Adm. Sci. Q. 1979, 24, 285. [Google Scholar] [CrossRef]
- Raghuram, S.; Wiesenfeld, B.; Garud, R. Technology enabled work: The role of self-efficacy in determining telecommuter adjustment and structuring behavior. J. Vocat. Behav. 2003, 63, 180–198. [Google Scholar] [CrossRef]
- Carver, C.S.; Scheier, M.F.; Weintraub, K.J. Assessing Coping Strategies: A Theoretically Based Approach. J. Pers. Soc. Psychol. 1989, 56, 267–283. [Google Scholar] [CrossRef]
- Sica, C.; Magni, C.; Ghisi, M.; Altoè, G.; Sighinolfi, C.; Chiri, L.R.; Franceschini, S. Coping Orientation to Problems Experienced-Nuova Versione Italiana (COPE-NVI): Uno strumento per la misura degli stili di coping. Psicoter. Cogn. Comport. 2008, 14, 27–53. [Google Scholar]
- Major, D.A.; Kozlowski, S.W.J. Newcomer information seeking: Individual and contextual influences. Int. J. Sel. Assess. 1997, 5, 16–28. [Google Scholar] [CrossRef]
- Sarchielli, G.; Toderi, S. Effetti delle àncore di carriera sulle transizioni lavorative: Uno studio esplorativo longitudinale. Rev. Psicol. Soc. 2005, 20, 109–123. [Google Scholar] [CrossRef]
- Caprara, G.V. La Valutazione Dell’autoefficacia. Costrutti e Strumenti; Erickson: Trento, Italy, 2001. [Google Scholar]
- Mooi, E.A.; Sarstedt, M. A Concise Guide to Market Research: The Process, Data, and Methods Using IBM SPSS Statistics; Springer: Berlin, Germany, 2011. [Google Scholar]
- Venkatesh, V.; Davis, F.D. A model of the antecedents of perceived ease of use: Development and test. Decis. Sci. 1996, 27, 451–481. [Google Scholar] [CrossRef]
- Alexander, A.; De Smet, A.; Langstaff, M.; Ravid, D. What Employees Are Saying about the Future of Remote Work. Available online: www.mckinsey.com/business-functions/people-and-organizational-performance/our-insights/what-employees-are-saying-about-the-future-of-remote-work (accessed on 9 November 2021).
- Anderson, D.L. Organization Development: The Process of Leading Organizational Change; Sage Publications: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Knight, L.; Pye, A. Network learning: An empirically derived model of learning by groups of organizations. Hum. Relat. 2005, 58, 369–392. [Google Scholar] [CrossRef]
- Pérez-Nebra, A.; Sklaveniti, C.; Islam, G.; Petrović, I.; Pickett, J.; Alija, M.; Bal, P.M.; Tekeste, M.; Vukelić, M.; Bazana, S.; et al. COVID-19 and the future of work and organisational psychology. SA J. Ind. Psychol. 2021, 47, 1854. [Google Scholar] [CrossRef]
Variables | Total | Variables | Total |
---|---|---|---|
Gender, N (%) | Type of employment, N (%) | ||
Female | 67 (41.1%) | Full-time | 137 (84.0%) |
Male | 93 (57.1%) | Part-time | 26 (16.0%) |
No answer | 3 (1.8%) | ||
Age (years), N (%) | Organizational size, N (%) | ||
18–24 | 7 (4.3%) | Micro and Small | 43 (26.4%) |
25–39 | 85 (52.1%) | Medium | 27 (16.6%) |
40–54 | 56 (34.4%) | Big | 93 (57.1%) |
From 55 | 15 (9.2%) | ||
Have a child/children, N (%) | Work in team, N (%) | ||
No | 90 (55.2%) | No | 21 (12.9%) |
Yes | 73 (44.8%) | Yes | 142 (87.1%) |
Educational level, N (%) | Job role, N (%) | ||
Middle school or lower | 3 (1.8%) | Top Manager | 21 (12.9%) |
High school | 48 (29.4%) | Middle Manager | 13 (8%) |
Graduate | 25 (15.3%) | Employ | 84 (51.5%) |
Post-graduate | 68 (41.7%) | Technician/Professional | 22 (13.5%) |
Phd or other Acc. Spec. | 19 (11.7%) | Other | 23 (14.1%) |
Time spent commuting, N (%) | WFH work days, N (%) | ||
Up to 20 min | 69 (42.3%) | 0 | 42 (25.8%) |
20- 45 min | 61 (37.4%) | 1 | 15 (9.2%) |
More than 45 min | 33 (20.2%) | 2 | 20 (12.3%) |
Remote Work experience, N (%) | 3 | 17 (10.4%) | |
Never | 42 (25.8%) | 4 | 7 (4.3%) |
From COVID-19 lockdown | 68 (41.7%) | 5 | 58 (35.6%) |
Before COVID-19 lockdown | 53 (32.5%) | 6 | 4 (2.5%) |
Variable | M | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Remote Work exp. | - | - | - | |||||||||||
2. Organizational size | 2.75 | 2.11 | 0.44 ** | - | ||||||||||
3. WFH work days | - | - | 0.64 ** | 0.36 ** | - | |||||||||
4. Work in team | - | - | 0.11 | 0.24 ** | 0.04 | - | ||||||||
5. Having children | - | - | 0.19 * | 0.15 | 0.19 * | 0.05 | - | |||||||
6. WFH—PU | 3.41 | 0.84 | 0.19 * | 0.21 ** | 0.14 | −0.08 | 0.03 | - | ||||||
7. WFH—PEOU | 3.99 | 0.55 | 0.02 | 0.03 | 0.14 | −0.08 | 0.00 | −0.23 ** | - | |||||
8. WFH Belief work-family balance | 3.83 | 1.06 | −0.16 * | 0.03 | −0.09 | −0.03 | 0.02 | −0.10 | 0.17 * | - | ||||
9. WFH Belief workplace relationships | 3.23 | 1.17 | 0.29 ** | 0.22 ** | 0.15 | −0.05 | 0.00 | 0.49 ** | −0.32 ** | −0.07 | - | |||
10. WFH Belief needed technical skills | 2.77 | 1.25 | 0.33 * | 0.27 ** | 0.22 ** | 0.00 | 0.09 | 0.33 ** | −0.19 * | −0.36 ** | 0.48 ** | - | ||
11. Coping—Positive reint. | 3.12 | 0.55 | 0.11 | 0.09 | −0.01 | 0.24 ** | 0.04 | 0.09 | −0.07 | 0.03 | 0.08 | 0.07 | ||
12. Work Self-Efficacy | 4.22 | 0.65 | 0.04 | 0.06 | −0.04 | 0.11 | 0.07 | 0.07 | −0.08 | 0.00 | 0.14 | 0.14 | 0.37 ** | - |
13. Organizational effect. | 3.66 | 0.66 | 0.09 | 0.02 | 0.12 | 0.07 | −0.13 | 0.06 | 0.15 | 0.03 | 0.02 | 0.06 | 0.18 * | 0.03 |
Cluster | Gender | Age Groups | Education Level | Employment | Commuting Time | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | M | Other | 18–24 | 25–39 | 40–54 | ≥55 | High School or Lower | Grad. | Master | Ph.D. | Full-time | Part-time | <20 min. | 20–45 min. | >45 min. | |
Cluster 1 | 47.1 | 50.0 | 2.9 | 8.8 | 64.7 | 20.6 | 5.9 | 44.1 | 20.6 | 29.4 | 5.9 | 32.4 | 67.6 | 67.6 | 14.7 | 17.6 |
Cluster 2 | 42.8 | 57.2 | 0.0 | 4.8 | 52.4 | 23.8 | 19.0 | 52.4 | 23.8 | 23.8 | 0.0 | 23.8 | 76.2 | 33.3 | 61.9 | 4.8 |
Cluster 3 | 52.9 | 44.2 | 2.9 | 2.9 | 35.3 | 55.9 | 5.9 | 17.6 | 11.8 | 50.0 | 20.6 | 11.8 | 88.2 | 67.6 | 26.5 | 5.9 |
Cluster 4 | 41.2 | 58.8 | 0.0 | 2.9 | 47.1 | 38.2 | 11.8 | 23.5 | 14.7 | 44.1 | 17.6 | 11.8 | 88.2 | 44.1 | 32.4 | 23.5 |
Cluster 5 | 25.0 | 72.5 | 2.5 | 2.5 | 60.0 | 30.0 | 7.5 | 27.5 | 10.0 | 52.5 | 10.0 | 5.0 | 95.0 | 27.5 | 30.0 | 42.5 |
Cluster | N (% of Sample) | Remote Work Experiences | Organizational Size | WFH Work Days | Work in Team | Having Children |
---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | ||
Cluster 1 | 34 (20.85%) | 1.00 (0.00) | 1.82 (0.93) | 0.00 (0.00) | 2.00 (0.00) | 1.26 (0.44) |
Cluster 2 | 21 (12.90%) | 1.86 (0.79) | 1.76 (0.94) | 2.52 (2.33) | 1.00 (0.00) | 1.38 (0.50) |
Cluster 3 | 34 (20.85%) | 2.23 (0.43) | 1.61 (0.49) | 3.44 (1.52) | 2.00 (0.00) | 1.56 (0.50) |
Cluster 4 | 34 (20.85%) | 2.00 (0.00) | 3.00 (0.00) | 3.79 (1.47) | 2.00 (0.00) | 1.44 (0.50) |
Cluster 5 | 40 (24.55%) | 3.00 (0.00) | 3.00 (0.00) | 3.73 (1.72) | 2.00 (0.00) | 1.55 (0.50) |
TOTAL | 163 (100%) | 2.07 (0.76) | 2.31 (0.86) | 2.75 (2.11) | 1.87 (0.34) | 1.45 (0.50) |
F | 159.72 ** | 47.50 ** | 37.00 * | a | 2.14 | |
dF (Within; Between) | (4; 158) | (4; 158) | (4; 158) | - | (4; 158) |
Cluster | Gender | Age Groups | Educat. Level | Employment | Commuting |
---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | |
Cluster 1 | 1.52 (0.51) | 2.24 (0.70) | 1.97 (1.00) | 1.68 (0.47) | 1.41 (0.50) |
Cluster 2 | 1.57 (0.51) | 2.57 (0.87) | 1.71 (0.84) | 1.76 (0.44) | 1.71 (0.56) |
Cluster 3 | 1.45 (0.51) | 2.65 (0.65) | 2.74 (0.99) | 1.88 (0.33) | 1.74 (0.79) |
Cluster 4 | 1.59 (0.50) | 2.59 (0.74) | 2.56 (1.05) | 1.88 (0.33) | 1.79 (0.81) |
Cluster 5 | 1.74 (0.44) | 2.43 (0.67) | 2.45 (1.01) | 1.95 (0.22) | 2.15 (0.83) |
TOTAL | 1.58 (0.49) | 2.48 (0.72) | 2.34 (1.04) | 1.84 (0.34) | 1.78 (0.76) |
F | 1.77 | 1.79 | 5.13 ** | 3.21 * | 4.83 ** |
dF (Within; Between) | (4; 155) | (4; 158) | (4; 158) | (4; 158) | (4; 158) |
Cluster | WFH—PU | WFH—PEOU | Belief W-F Bal. | Belief Work. Relat. | Belief Tech. Skills | Coping | Work Self-Eff. | Organ. Eff. |
---|---|---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | |
Cluster 1 | 3.17 (0.76) | 3.67 (0.52) | 3.53 (1.05) | 3.18 (1.14) | 3.32 (1.22) | 3.14 (0.53) | 4.25 (0.50) | 3.60 (0.77) |
Cluster 2 | 3.52 (0.63) | 3.98 (0.44) | 4.05 (1.02) | 2.48 (0.98) | 2.86 (1.01) | 2.77 (0.49) | 4.03 (0.76) | 3.54 (0.68) |
Cluster 3 | 3.22 (1.00) | 3.96 (0.49) | 3.59 (1.18) | 3.03 (1.16) | 2.29 (1.17) | 3.04 (0.53) | 4.26 (0.56) | 3.66 (0.63) |
Cluster 4 | 3.26 (0.88) | 4.00 (0.52) | 3.71 (0.97) | 3.50 (1.31) | 2.85 (1.21) | 3.18 (0.48) | 4.39 (0.59) | 3.70 (0.55) |
Cluster 5 | 3.84 (0.66) | 4.27 (0.55) | 4.28 (0.93) | 3.08 (1.16) | 2.60 (1.33) | 3.27 (0.62) | 4.21 (0.78) | 3.73 (0.55) |
TOTAL | 3.41 (0.84) | 3.99 (0.54) | 3.83 (1.06) | 3.23 (1.17) | 2.77 (1.25) | 3.11 (0.55) | 4.22 (0.65) | 3.66 (0.66) |
F | 4.55 ** | 6.29 ** | 3.39 * | 1.27 | 3.33 * | 3.22 * | 1.29 | 3.55 |
dF (Within; Between) | (4;158) | (4; 158) | (4; 158) | (4; 158) | (4; 158) | (4; 158) | (4; 158) | (4; 158) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donati, S.; Viola, G.; Toscano, F.; Zappalà, S. Not All Remote Workers Are Similar: Technology Acceptance, Remote Work Beliefs, and Wellbeing of Remote Workers during the Second Wave of the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2021, 18, 12095. https://doi.org/10.3390/ijerph182212095
Donati S, Viola G, Toscano F, Zappalà S. Not All Remote Workers Are Similar: Technology Acceptance, Remote Work Beliefs, and Wellbeing of Remote Workers during the Second Wave of the COVID-19 Pandemic. International Journal of Environmental Research and Public Health. 2021; 18(22):12095. https://doi.org/10.3390/ijerph182212095
Chicago/Turabian StyleDonati, Simone, Gianluca Viola, Ferdinando Toscano, and Salvatore Zappalà. 2021. "Not All Remote Workers Are Similar: Technology Acceptance, Remote Work Beliefs, and Wellbeing of Remote Workers during the Second Wave of the COVID-19 Pandemic" International Journal of Environmental Research and Public Health 18, no. 22: 12095. https://doi.org/10.3390/ijerph182212095
APA StyleDonati, S., Viola, G., Toscano, F., & Zappalà, S. (2021). Not All Remote Workers Are Similar: Technology Acceptance, Remote Work Beliefs, and Wellbeing of Remote Workers during the Second Wave of the COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 18(22), 12095. https://doi.org/10.3390/ijerph182212095